Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Comput Math Methods Med ; 2022: 3179200, 2022.
Article in English | MEDLINE | ID: mdl-35309841

ABSTRACT

Human immunodeficiency virus (HIV) infection is characterized not only by severe immunodeficiency but also by persistent inflammation and immune activation. These characteristics persist in people living with HIV (PLHIV) receiving effective antiretroviral therapy (ART) and are associated with morbidity and mortality in nonacquired immunodeficiency syndrome (AIDS) events. ART can inhibit HIV replication and promote immune reconstitution, which is currently the most effective way to control AIDS. However, despite effective long-term ART and overall suppression of plasma HIV RNA level, PLHIV still shows chronic low-level inflammation. The exact mechanisms that trigger chronic inflammation are unknown. Activation of the inflammasome is essential for the host response to pathogens, and some recent studies have confirmed the role of the inflammasome in the pathogenesis of inflammatory diseases. The NLRP3 inflammasome has been widely studied, which is a pyrin domain-containing protein 3 belonging to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent studies suggest that inflammasome-mediated pyroptosis is associated with CD4+ T cell loss in the absence of persistent infectious HIV replication. This article reviews the mechanism of the NLRP3 inflammasome and its correlation with immune reconstitution in PLHIV treated with ART.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Computational Biology , HIV Infections/pathology , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Reconstitution , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Pyroptosis/drug effects , Pyroptosis/immunology
2.
Front Immunol ; 12: 711939, 2021.
Article in English | MEDLINE | ID: mdl-34305952

ABSTRACT

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Recently was been found that pyroptosis is a unique form of proinflammatory programmed death, that is different from apoptosis. A growing number of studies have investigated pyroptosis and its relationship with sepsis, including the mechanisms, role, and relevant targets of pyroptosis in sepsis. While moderate pyroptosis in sepsis can control pathogen infection, excessive pyroptosis can lead to a dysregulated host immune response and even organ dysfunction. This review provides an overview of the mechanisms and potential therapeutic targets underlying pyroptosis in sepsis identified in recent decades, looking forward to the future direction of treatment for sepsis.


Subject(s)
Pyroptosis/physiology , Sepsis/immunology , Alarmins/physiology , Apoptosis/physiology , Caspases/metabolism , Cytokines/physiology , Disseminated Intravascular Coagulation , Drugs, Chinese Herbal/pharmacology , Heart/physiopathology , Humans , Lung/physiopathology , Pyroptosis/drug effects , Pyroptosis/immunology , Sepsis/blood , Sepsis/drug therapy , Sepsis/physiopathology
3.
Nat Immunol ; 21(7): 736-745, 2020 07.
Article in English | MEDLINE | ID: mdl-32367036

ABSTRACT

Cytosolic sensing of pathogens and damage by myeloid and barrier epithelial cells assembles large complexes called inflammasomes, which activate inflammatory caspases to process cytokines (IL-1ß) and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores, leading to cytokine release and inflammatory cell death (pyroptosis). Inhibiting GSDMD is an attractive strategy to curb inflammation. Here we identify disulfiram, a drug for treating alcohol addiction, as an inhibitor of pore formation by GSDMD but not other members of the GSDM family. Disulfiram blocks pyroptosis and cytokine release in cells and lipopolysaccharide-induced septic death in mice. At nanomolar concentration, disulfiram covalently modifies human/mouse Cys191/Cys192 in GSDMD to block pore formation. Disulfiram still allows IL-1ß and GSDMD processing, but abrogates pore formation, thereby preventing IL-1ß release and pyroptosis. The role of disulfiram in inhibiting GSDMD provides new therapeutic indications for repurposing this safe drug to counteract inflammation, which contributes to many human diseases.


Subject(s)
Disulfiram/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/antagonists & inhibitors , Pyroptosis/drug effects , Sepsis/drug therapy , Animals , Caspase 1/genetics , Caspase 1/metabolism , Caspase Inhibitors/pharmacology , Caspases/metabolism , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Cell Line, Tumor , Disulfiram/therapeutic use , Drug Evaluation, Preclinical , Drug Repositioning , Female , HEK293 Cells , High-Throughput Screening Assays , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Liposomes , Mice , Mutagenesis, Site-Directed , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pyroptosis/immunology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sepsis/immunology , Sf9 Cells , Spodoptera
4.
Int J Med Sci ; 17(8): 1006-1014, 2020.
Article in English | MEDLINE | ID: mdl-32410829

ABSTRACT

Inflammation is the root cause of many diseases that pose a serious threat to human health. Excessive inflammation can also result in preterm birth or miscarriage in pregnant women. Pumpkin (Cucurbita moschata Duchesne, CMD) is a well-known traditional health food and medicinal herb used in many countries to treat diabetes, obesity, osteoporosis, cancer and other diseases. In this study, we investigated the effects of hot water extract derived from the tendrils of C. moschata Duchesne (TCMD) on NLRP3 inflammasome activation in murine macrophages and human trophoblast cells. The TCMD treatment of LPS-primed bone marrow-derived macrophages (BMDMs) and human trophoblast cells attenuated NLRP3 inflammasome activation induced by inflammasome activators such as ATP, nigericin, and monosodium urate (MSU). TCMD treatment suppressed IL-1ß secretion in a dose-dependent manner, without affecting IL-6 secretion. In addition, TCMD inhibited NLRP3-dependent pyroptosis in BMDMs. TCMD also suppressed the release of mature IL-1ß and activation of cleaved-caspase-1 via limited ASC oligomerization. Furthermore, TCMD significantly inhibited IL-1ß secretion and pyroptotic cell death in human trophoblast cells. These results suggest that TCMD exhibits anti-inflammatory effects mediated via inhibition of NLRP3 inflammasome activation suggesting therapeutic potential against inflammatory diseases, preterm birth, and miscarriage.


Subject(s)
Cucurbita/chemistry , Inflammasomes/drug effects , Macrophages/drug effects , Plant Extracts/pharmacology , Trophoblasts/drug effects , Abortion, Spontaneous/immunology , Abortion, Spontaneous/prevention & control , Animals , Cell Line , Female , Humans , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Lipopolysaccharides/immunology , Macrophages/immunology , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/therapeutic use , Pregnancy , Premature Birth/immunology , Premature Birth/prevention & control , Primary Cell Culture , Pyroptosis/drug effects , Pyroptosis/immunology , Trophoblasts/immunology
5.
Immunity ; 43(5): 987-97, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26572063

ABSTRACT

Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens.


Subject(s)
Bacterial Infections/immunology , Inflammasomes/immunology , Killer Cells, Natural/immunology , Pyroptosis/immunology , Animals , Apoptosis Regulatory Proteins/immunology , Calcium-Binding Proteins/immunology , Caspase 1/immunology , Cell Death/immunology , Chromobacterium/immunology , Granulomatous Disease, Chronic/immunology , Interferon-gamma/immunology , Interleukin-18/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Liver/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL