Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 330: 118189, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38615700

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shentong Zhuyu Decoction (STZYD) is a traditional prescription for promoting the flow of Qi and Blood which is often used in the treatment of low back and leg pain clinicall with unclear mechanism. Neuropathic pain (NP) is caused by disease or injury affecting the somatosensory system. LncRNAs may play a key role in NP by regulating the expression of pain-related genes through binding mRNAs or miRNAs sponge mechanisms. AIM OF THE STUDY: To investigate the effect and potential mechanism of STZYD on neuropathic pain. METHODS: Chronic constriction injury (CCI) rats, a commonly used animal model, were used in this study. The target of STZYD in NP was analyzed by network pharmacology, and the analgesic effect of STZYD in different doses (H-STZYD, M-STZYD, L-STZYD) on CCI rats was evaluated by Mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL). Meanwhile, RNA-seq assay was used to detect the changed mRNAs and lncRNAs in CCI rats after STZYD intervention. GO analysis, KEGG pathway analysis, and IPA analysis were used to find key target genes and pathways, verified by qPCR and Western Blot. The regulatory effect of lncRNAs on target genes was predicted by co-expression analysis and ceRNA network construction. RESULTS: We found that STZYD can improve hyperalgesia in CCI rats, and H-STZYD has the best analgesic effect. The results of network pharmacological analysis showed that STZYD could play an analgesic role in CCI rats through the MAPK/ERK/c-FOS pathway. By mRNA-seq and lncRNA-seq, we found that STZYD could regulate the expression of Cnr1, Cacng5, Gucy1a3, Kitlg, Npy2r, and Grm8, and inhibited the phosphorylation level of ERK in the spinal cord of CCI rats. A total of 27 lncRNAs were associated with the target genes and 30 lncRNAs, 83 miRNAs and 5 mRNAs participated in the ceRNA network. CONCLUSION: STZYD has the effect of improving hyperalgesia in CCI rats through the MAPK/ERK/c-FOS pathway, which is related to the regulation of lncRNAs to Cnr1 and other key targets.


Subject(s)
Analgesics , Drugs, Chinese Herbal , Network Pharmacology , Neuralgia , RNA, Long Noncoding , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Neuralgia/drug therapy , Neuralgia/genetics , Male , Analgesics/pharmacology , Analgesics/therapeutic use , Rats , RNA, Long Noncoding/genetics , RNA-Seq , Disease Models, Animal , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Regulatory Networks/drug effects
2.
Genes (Basel) ; 15(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38540346

ABSTRACT

Blumea balsamifera (L.) DC., an important economic and medicinal herb, has a long history of being used as a traditional Chinese medicine. Its leaves have always been used as a raw material for the extraction of essential oils, comprising large amounts of terpenoids, which have good therapeutic effects on many diseases, such as eczema, bacterial infection, and hypertension. However, the genetic basis of terpenoid biosynthesis in this plant is virtually unknown on account of the lack of genomic data. Here, a combination of next-generation sequencing (NGS) and full-length transcriptome sequencing was applied to identify genes involved in terpenoid biosynthesis at five developmental stages. Then, the main components of essential oils in B. balsamifera were identified using GC-MS. Overall, 16 monoterpenoids and 20 sesquiterpenoids were identified and 333,860 CCS reads were generated, yielding 65,045 non-redundant transcripts. Among these highly accurate transcripts, 59,958 (92.18%) transcripts were successfully annotated using NR, eggNOG, Swissprot, KEGG, KOG, COG, Pfam, and GO databases. Finally, a total of 56 differently expressed genes (DEGs) involved in terpenoid biosynthesis were identified, including 38 terpenoid backbone genes and 18 TPSs, which provide a significant amount of genetic information for B. balsamifera. These results build a basis for resource protection, molecular breeding, and the metabolic engineering of this plant.


Subject(s)
Oils, Volatile , Transcriptome , Transcriptome/genetics , Terpenes/metabolism , Monoterpenes , RNA-Seq
3.
BMC Bioinformatics ; 25(1): 138, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553675

ABSTRACT

Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.


Subject(s)
Curare , RNA-Seq , Reproducibility of Results , Sequence Analysis, RNA/methods , Transcriptome , Software , High-Throughput Nucleotide Sequencing/methods , Gene Expression Profiling/methods
4.
J Ethnopharmacol ; 328: 118073, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513780

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION: Systems biology and omics.


Subject(s)
Agaricales , Polyporaceae , Antioxidants/metabolism , Transcriptome , RNA-Seq , Agaricales/genetics , Phylogeny , Prospective Studies , Polyporaceae/genetics
5.
J Ethnopharmacol ; 326: 117963, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38387680

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a serious complication of liver disease characterized by excessive collagen deposition, without effective therapeutic agents in the clinic. Fu-Gan-Wan (FGW) is an empirical formula used for the clinical treatment of hepatitis and cirrhosis. It has been shown to reverse experimental liver fibrosis. However, its corresponding mechanisms remain unclear. AIM OF THE REVIEW: This study aimed to elucidate the key pathways and target genes of FGW in attenuating liver fibrosis. MATERIALS AND METHODS: The therapeutic effects of different doses of FGW on liver fibrosis were investigated using a 2 mL/kg 15% CCl4-induced mouse model. Then, RNA-seq combined with network pharmacology was used to analyze the key biological processes and signaling pathways underlying the anti-liver fibrosis exertion of FGW. These findings were validated in a TGF-ß1-induced model of activation and proliferation of mouse hepatic stellate cell line JS-1. Finally, the key signaling pathways and molecular targets were validated using animal tissues, and the effect of FGW on tissue lipid peroxidation was additionally observed. RESULTS: We found that 19.5 g/kg FGW significantly down-regulated CCl4-induced elevation of hepatic ALT and AST, decreased collagen deposition, and inhibited the expression of pro-fibrotic factors α-SMA, COL1α1, CTGF, TIMP-1, as well as pro-inflammatory factor TGF-ß1. Additionally, FGW at doses of 62.5, 125, and 250 µg/mL dose-dependently blocked JS-1 proliferation, migration, and activation. Furthermore, RNA-seq identified the NF-κB signaling pathway as a key target molecular pathway for FGW against liver fibrosis, and network pharmacology combined with RNA-seq focused on 11 key genes. Significant changes were identified in CCL2 and HMOX1 by tissue RT-PCR, Western blot, and immunohistochemistry. We further demonstrated that FGW significantly attenuated CCl4-induced increases in p-p65, CCL2, CCR2, and HMOX1, while significantly elevating Nrf2. Finally, FGW significantly suppressed the accumulation of lipid peroxidation products MDA and 4-HNE and reconfigured the oxidation-reduction balance, including promoting the increase of antioxidants GPx, GSH, and SOD, and the decrease of peroxidation products ROS and GSSG. CONCLUSIONS: This study demonstrated that FGW exhibits potential in mitigating CCl4-induced hepatic fibrosis, lipid peroxidation, and iron metabolism disorders in mice. This effect may be mediated through the NF-κB/CCL2/CCR2 and Nrf2/HMOX1 pathways.


Subject(s)
NF-kappa B , Transforming Growth Factor beta1 , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Lipid Peroxidation , Network Pharmacology , RNA-Seq , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Signal Transduction , Liver , Collagen/metabolism , Carbon Tetrachloride/pharmacology , Hepatic Stellate Cells
6.
Integr Cancer Ther ; 23: 15347354241233258, 2024.
Article in English | MEDLINE | ID: mdl-38369762

ABSTRACT

BACKGROUND: Soothing the liver (called Shu Gan Jie Yu in Chinese, SGJY) is a significant therapeutic method for breast cancer in TCM. In this study, 3 liver-soothing herbs, including Cyperus rotundus L., Citrus medica L. var. sarcodactylis Swingle and Rosa rugosa Thunb. were selected and combined to form a SGJY herbal combinatory. THE AIM OF THE STUDY: To investigate the inhibiting effect of SGJY on breast cancer in vivo and vitro, and to explore the potential mechanisms. MATERIALS AND METHODS: SGJY herbal combination was extracted using water. A breast cancer rat model was developed by chemical DMBA by gavage, then treated with SGJY for 11 weeks. The tumor tissue was preserved for RNA sequencing and analyzed by IPA software. The inhibition effects of SGJY on MCF-7 and T47D breast cancer cells were investigated by SRB assay and cell apoptosis analysis, and the protein expression levels of SNCG, ER-α, p-AKT and p-ERK were measured by western blotting. RESULTS: SGJY significantly reduced the tumor weight and volume, and the level of estradiol in serum. The results of IPA analysis reveal SGJY upregulated 7 canonical pathways and downregulated 16 canonical pathways. Estrogen receptor signaling was the key canonical pathway with 9 genes downregulated. The results of upstream regulator analysis reveal beta-estradiol was the central target; the upstream regulator network scheme showed that 86 genes could affect the expression of the beta-estradiol, including SNCG, CCL21 and MB. Additionally, SGJY was verified to significantly alter the expression of SNCG mRNA, CCL21 mRNA and MB mRNA which was consistent with the data of RNA-Seq. The inhibition effects of SGJY exhibited a dose-dependent response. The apoptosis rates of MCF7 and T47D cells were upregulated. The protein expression of SNCG, ER-α, p-AKT and p-ERK were all significantly decreased by SGJY on MCF-7 and T47D cells. CONCLUSION: The results demonstrate that SGJY may inhibit the growth of breast cancer. The mechanism might involve downregulating the level of serum estradiol, and suppressing the protein expression in the SNCG/ER-α/AKT-ERK pathway.


Subject(s)
Breast Neoplasms , MAP Kinase Signaling System , Animals , Female , Humans , Rats , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Estradiol , gamma-Synuclein/genetics , gamma-Synuclein/metabolism , MCF-7 Cells , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Estrogen/metabolism , RNA, Messenger/metabolism , RNA-Seq
7.
Sci Rep ; 14(1): 1696, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242895

ABSTRACT

Psoraleae Fructus (PF) is a widely-used herb with diverse pharmacological activities, while its related hepatic injuries have aroused public concerns. In this work, a systematic approach based on RNA sequencing (RNA-seq), high-content screening (HCS) and molecular docking was developed to investigate the potential mechanism and identify major phytochemicals contributed to PF-induced hepatotoxicity. Animal experiments proved oral administration of PF water extracts disturbed lipid metabolism and promoted hepatic injuries by suppressing fatty acid and cholesterol catabolism. RNA-seq combined with KEGG enrichment analysis identified mitochondrial oxidative phosphorylation (OXPHOS) as the potential key pathway. Further experiments validated PF caused mitochondrial structure damage, mtDNA depletion and inhibited expressions of genes engaged in OXPHOS. By detecting mitochondrial membrane potential and mitochondrial superoxide, HCS identified bavachin, isobavachalcone, bakuchiol and psoralidin as most potent mitotoxic compounds in PF. Moreover, molecular docking confirmed the potential binding patterns and strong binding affinity of the critical compounds with mitochondrial respiratory complex. This study unveiled the underlying mechanism and phytochemicals in PF-induced liver injuries from the view of mitochondrial dysfunction.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Psoralea , Animals , Drugs, Chinese Herbal/chemistry , Molecular Docking Simulation , Psoralea/chemistry , RNA-Seq , Chemical and Drug Induced Liver Injury/drug therapy , Phytochemicals/pharmacology
8.
Fitoterapia ; 172: 105744, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952762

ABSTRACT

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Frankincense , Oils, Volatile , Sulfates , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Dextrans/metabolism , Dextrans/pharmacology , Dextrans/therapeutic use , Frankincense/metabolism , Frankincense/pharmacology , Frankincense/therapeutic use , Oils, Volatile/pharmacology , RNA-Seq , Disease Models, Animal , Molecular Structure , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/drug therapy
9.
Physiol Plant ; 175(5): e14010, 2023.
Article in English | MEDLINE | ID: mdl-37882262

ABSTRACT

Fruits and leaves of Solanum khasianum C. B. Clarke have long been used as a common Chinese herbal medicine. Steroidal glycoalkaloids (SGAs), the main active ingredient in S. khasianum, exhibit various pharmacological effects. However, genes involved in the SGA biosynthetic pathway in S. khasianum have not yet been identified. Genes encoding potential key SGA biosynthesis enzymes were identified through comprehensive RNA sequencing analysis (RNA-seq) of S. khasianum leaves, stems, and fruits. A total of 123,704 unigenes were obtained, of which 109,775 (88.74%) were annotated in seven public databases. Among these, 54 unigenes potentially involved in SGA biosynthesis were identified. Additionally, 23,636 differentially expressed genes were identified by comparing gene expression levels among the fruits, stems, and leaves of S. khasianum. The structural characteristics and phylogenetic relationship of cycloartenol synthase involved in SGA biosynthesis were further analyzed. Solasodine constituent was detected by high-performance liquid chromatography. This is the first study to report the comparative transcriptome analysis of different tissues of S. khasianum that identifies valuable genes potentially involved in SGA biosynthesis in this species.


Subject(s)
Solanum , Solanum/genetics , Phylogeny , Gene Expression Profiling , Transcriptome/genetics , RNA-Seq
10.
BMC Genomics ; 24(1): 579, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770878

ABSTRACT

BACKGROUND: The characteristic pink-reddish color in the salmonids fillet is an important, appealing quality trait for consumers and producers. The color results from diet supplementation with carotenoids, which accounts for up to 20-30% of the feed cost. Pigment retention in the muscle is a highly variable phenotype. In this study, we aimed to understand the molecular basis for the variation in fillet color when rainbow trout (Oncorhynchus mykiss) fish families were fed an Astaxanthin-supplemented diet. We used RNA-Seq to study the transcriptome profile in the pyloric caecum, liver, and muscle from fish families with pink-reddish fillet coloration (red) versus those with lighter pale coloration (white). RESULTS: More DEGs were identified in the muscle (5,148) and liver (3,180) than in the pyloric caecum (272). Genes involved in lipid/carotenoid metabolism and transport, ribosomal activities, mitochondrial functions, and stress homeostasis were uniquely enriched in the muscle and liver. For instance, the two beta carotene genes (BCO1 and BCO2) were significantly under-represented in the muscle of the red fillet group favoring more carotenoid retention. Enriched genes in the pyloric caecum were involved in intestinal absorption and transport of carotenoids and lipids. In addition, the analysis revealed the modulation of several genes with immune functions in the pyloric caecum, liver, and muscle. CONCLUSION: The results from this study deepen our understanding of carotenoid dynamics in rainbow trout and can guide us on strategies to improve Astaxanthin retention in the rainbow trout fillet.


Subject(s)
Oncorhynchus mykiss , Humans , Animals , Oncorhynchus mykiss/metabolism , RNA-Seq , Carotenoids/metabolism , Muscles/metabolism , Liver/metabolism
11.
BMC Plant Biol ; 23(1): 434, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723448

ABSTRACT

BACKGROUND: Neo-tetraploid rice lines exhibit high fertility and strong heterosis and harbor novel specific alleles, which are useful germplasm for polyploid rice breeding. However, the mechanism of the fertility associated with miRNAs remains unknown. In this study, a neo-tetraploid rice line, termed Huaduo21 (H21), was used. Cytological observation and RNA-sequencing were employed to identify the fertility-related miRNAs in neo-tetraploid rice. RESULTS: H21 showed high pollen fertility (88.08%), a lower percentage of the pollen mother cell (PMC) abnormalities, and lower abnormalities during double fertilization and embryogenesis compared with autotetraploid rice. A total of 166 non-additive miRNAs and 3108 non-additive genes were detected between H21 and its parents. GO and KEGG analysis of non-additive genes revealed significant enrichments in the DNA replication, Chromosome and associated proteins, and Replication and repair pathways. Comprehensive multi-omics analysis identified 32 pairs of miRNA/target that were associated with the fertility in H21. Of these, osa-miR408-3p and osa-miR528-5p displayed high expression patterns, targeted the phytocyanin genes, and were associated with high pollen fertility. Suppression of osa-miR528-5p in Huaduo1 resulted in a low seed set and a decrease in the number of grains. Moreover, transgenic analysis implied that osa-MIR397b-p3, osa-miR5492, and osa-MIR5495-p5 might participate in the fertility of H21. CONCLUSION: Taken together, the regulation network of fertility-related miRNAs-targets pairs might contribute to the high seed setting in neo-tetraploid rice. These findings enhance our understanding of the regulatory mechanisms of pollen fertility associated with miRNAs in neo-tetraploid rice.


Subject(s)
MicroRNAs , Oryza , Oryza/genetics , Tetraploidy , Plant Breeding , Fertility/genetics , Pollen/genetics , RNA-Seq , MicroRNAs/genetics
12.
BMC Complement Med Ther ; 23(1): 263, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488573

ABSTRACT

BACKGROUND: The purpose of this study was to demonstrate the in vitro anti-nephritis activity of Rostellularia procumbens (L.) Nees (R. procumbens) extract and to make a preliminary investigation of its anti-nephritis mechanism. METHODS: A prediction network was built that describes the relationship between R. procumbens and CGN. Then, the potential targets for R. procumbens against CGN were imported into the DAVID database for Gene Ontology (GO) biological annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A lipopolysaccharide (LPS)-stimulated rat mesangial cell HBZY-1 model in vitro was used to examine the anti-inflammatory activity of R. procumbens extract. RNA-seq was utilized to investigate differentially expressed genes (DEGs) and enriched signaling pathways between groups. Finally, qPCR was used for the validation analysis of the experimental results. RESULTS: The results of network pharmacology showed that R. procumbens exerts its therapeutic effect on CGN through the AGE-RAGE signaling pathway in diabetic complications, PI3K-Akt, IL-17 signaling pathway, and so on. R. procumbens n-butanol extract (J-NE) can effectively relieve inflammation in HBZY-1. The results of KEGG pathway enrichment suggest that J-NE attenuated CGN was associated with the IL-17 signaling pathway, and the results of RNA-seq were consistent with network pharmacology. Targets enriched in the IL-17 signaling pathway, including Chemokine (C-C motif) ligand 7 (CCL7), Lipocalin 2 (LCN2), Chemokine (C-C motif) ligand 2 (CCL2), and Chemokine (C-X-C motif) ligand 1 (CXCL1), have been identified as crucial targets attenuating CGN by J-NE. CONCLUSION: R. procumbens is a promising pharmacological candidate for the treatment of CGN in the present era.


Subject(s)
Glomerulonephritis , Nephritis , Animals , Rats , Interleukin-17 , Network Pharmacology , RNA-Seq , Phosphatidylinositol 3-Kinases , Chronic Disease , Plant Extracts/pharmacology
13.
Arch Insect Biochem Physiol ; 114(2): 1-21, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37459157

ABSTRACT

A nonmodel insect, Acrolepiopsis sapporensis, has been analyzed in immune responses. The total hemocytes in the fifth instar larvae were 2.33 × 106 cells/mL. These hemocytes comprised at least five different types and different relative ratios: 47% granulocytes, 26% plasmatocytes, 11% oenocytoid, 8% prohemocytes, and 5% spherulocytes. Upon bacterial challenge, some of the hemocytes exhibited typical hemocyte-spreading behaviors, such as focal adhesion, and filopodial and lamellipodial cytoplasmic extensions. The hemocyte behaviors induced cellular immune responses demonstrated by nodule formation. In addition, the plasma collected from the immune-challenged larvae exhibited humoral immune responses by bacterial growth inhibition along with enhanced phenoloxidase enzyme activity. These cellular and humoral immune responses were further analyzed by determining the immune-associated genes from a transcriptome generated by RNA-Seq. A total of about 12 Gb sequences led to about 218,116 contigs, which were predicted to encode about 46,808 genes. Comparative expression analysis showed 8392 uniquely expressed genes in the immune-challenged larvae. Differentially expressed gene (DEG) analysis among the commonly expressed genes indicated that 782 genes were upregulated and 548 genes were downregulated in the expressions after bacterial challenge. These immune-associated genes included pattern recognition receptors, immune mediation/signaling genes, and various immune effectors. Specifically, the genetic components of the Toll, IMD, and JAK/STAT immune signaling pathways were included in the DEG database. These results demonstrate the immune responses of A. sapporensis larvae and suggest the genes associated with the immune responses in this nonmodel insect.


Subject(s)
Moths , Animals , Moths/genetics , Onions/genetics , RNA-Seq , Larva , Immunity/genetics , Hemocytes
14.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1908-1915, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282967

ABSTRACT

This study aimed to analyze the biological foundation and biomarkers of stable coronary heart disease(CHD) with phlegm and blood stasis(PBS) syndrome based on RNA-seq and network pharmacology. Peripheral blood nucleated cells from five CHD patients with PBS syndrome, five CHD patients with non-PBS syndrome, and five healthy adults were collected for RNA-seq. The specific targets of CHD with PBS syndrome were determined by differential gene expression analysis and Venn diagram analysis. The active ingredients of Danlou Tablets were screened out from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the "component-target" prediction was completed through PubChem and SwissTargetPrediction. The "drug-ingredient-target-signaling pathway" network of Danlou Tablets against CHD with PBS syndrome was optimized by Cytoscape software. After the target biomarkers were identified, 90 participants were enrolled for diagnostic tests, and 30 CHD patients with PBS syndrome were included in before-and-after experiment to determine the therapeutic effect of Danlou Tablets on those targets. As revealed by RNA-seq and Venn diagram analysis, 200 specific genes were identified for CHD with PBS syndrome. A total of 1 118 potential therapeutic targets of Danlou Tablets were predicted through network pharmacology. Through integrated analysis of the two gene sets, 13 key targets of Danlou Tablets in the treatment of CHD with PBS syndrome were screened out, including CSF1, AKR1C2, PDGFRB, ARG1, CNR2, ALOX15B, ALDH1A1, CTSL, PLA2G7, LAP3, AKR1C3, IGFBP3, and CA1. They were presumably the biomarkers of CHD with PBS syndrome. The ELISA test further showed that CSF1 was significantly up-regulated in the peripheral blood of CHD patients with PBS syndrome, and was significantly down-regulated after Danlou Tablets intervention. CSF1 may be a biomarker for CHD with PBS syndrome, and it is positively correlated with the severity of the disease. The diagnostic cut-off of CSF1 for CHD with PBS syndrome was 286 pg·mL~(-1).


Subject(s)
Biomarkers , Coronary Disease , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Mucus , Adult , Humans , Biomarkers/analysis , Coronary Disease/complications , Coronary Disease/diagnosis , Coronary Disease/drug therapy , Coronary Disease/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Molecular Docking Simulation , Network Pharmacology , RNA-Seq , Syndrome , Mucus/metabolism , Sputum/metabolism , Blood Circulation , Leukocytes, Mononuclear/pathology , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Gene Expression/drug effects , Gene Expression Profiling
15.
Methods Mol Biol ; 2650: 65-75, 2023.
Article in English | MEDLINE | ID: mdl-37310624

ABSTRACT

Organoids are 3D ex vivo cell aggregates derived from primary tissue and shown to closely recapitulate tissue homeostasis. Organoids deliver certain advantages compared to 2D cell lines and mouse models, especially in drug-screening studies and translational research projects. The application of organoids in the research field is fast-emerging and new techniques for organoid manipulation are constantly developing. Despite recent advances, RNA-seq-based drug-screening platforms in organoids are not yet established. Here, we provide a detailed protocol for performing TORNADO-seq, a targeted RNA-seq-based drug-screening method in organoids. Analyzing complex phenotypes with a large number of carefully selected read-outs allows to directly classify and group drugs even without structural similarity or overlapping mode of actions from prior knowledge. Our assay principle combines cost-effectiveness and sensitive detection of multiple cell identities, signaling pathways, and key drivers of cellular phenotypes and can be applied to many systems where this new form of high-content screening can provide information not obtainable otherwise.


Subject(s)
Tornadoes , Animals , Mice , RNA-Seq , Drug Evaluation, Preclinical , Biological Assay , Organoids
16.
Funct Integr Genomics ; 23(3): 215, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37389664

ABSTRACT

Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.


Subject(s)
Begomovirus , Solanum tuberosum , Solanum tuberosum/genetics , RNA-Seq , Gene Library
17.
Front Immunol ; 14: 1174008, 2023.
Article in English | MEDLINE | ID: mdl-37153564

ABSTRACT

Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be continuous or intermittent and is accompanied by paresthesia, which seriously affects patient quality of life. Advanced insights into CPSP mechanisms and therapeutic strategies require a deeper understanding of the molecular processes of the thalamus. Here, using single-nucleus RNA sequencing (snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which revealed a total of four major cell types within the four thalamic samples from mice. Compared with the control group, the experimental group possessed the higher sensitivity to mechanical, thermal, and cold stimuli, and increased microglia numbers and decreased neuron numbers. We analysed a collection of differentially expressed genes and neuronal marker genes obtained from bulk RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb were key genes verified by immunofluorescence (IF). Immune infiltration analysis found that these key genes were closely related to macrophages, T cells, related chemokines, immune stimulators and receptors. Gene Ontology (GO) enrichment analysis also showed that the key genes were enriched in biological processes such as protein export from nucleus and protein sumoylation. In summary, using large-scale snRNA-seq, we have defined the transcriptional and cellular diversity in the brain after TH. Our identification of discrete cell types and differentially expressed genes within the thalamus can facilitate the development of new CPSP therapeutics.


Subject(s)
Neuralgia , Stroke , Mice , Animals , Stroke/complications , Stroke/genetics , Stroke/metabolism , RNA-Seq , Quality of Life , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/genetics , Thalamus/metabolism , RNA, Small Nuclear
18.
PLoS One ; 18(5): e0285216, 2023.
Article in English | MEDLINE | ID: mdl-37205684

ABSTRACT

Thrombosis is a key pathological event in cardiovascular diseases and is also the most important targeting process for their clinical management. In this study, arachidonic acid (AA) was used to induce thrombus formation in zebrafish larvae. Blood flow, red blood cell (RBCs) aggregation and cellular oxidative stress were measured to evaluate the antithrombotic effect of Tibetan tea (TT). Meanwhile, the potential molecular mechanism was further explored by transcriptome sequencing (RNA-seq). The results indicated that TT could significantly restore heart RBCs intensity of thrombotic zebrafish, whilst decreasing RBCs accumulation in the caudal vein. The transcriptome analysis revealed that the preventive effect of TT on thrombosis could be mostly attributed to changes in lipid metabolism related signaling pathways, such as fatty acid metabolism, glycerollipid metabolism, ECM-receptor interaction and steroid biosynthesis signaling pathway. This study demonstrated that Tibetan tea could alleviate thrombosis by reducing oxidative stress levels and regulating lipid metabolism.


Subject(s)
Thrombosis , Transcriptome , Animals , Zebrafish/metabolism , RNA-Seq , Arachidonic Acid/pharmacology , Arachidonic Acid/metabolism , Tibet , Thrombosis/drug therapy , Thrombosis/prevention & control , Tea/metabolism
19.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047679

ABSTRACT

As key regulators of the Jasmonates (JAs) signal transduction pathway, JAZ protein, and MYC transcription factors are imperative for plant response to external environmental changes, growth, and development. In this study, 18 StJAZs and 12 StMYCs were identified in potatoes. Their chromosomal position, phylogenetic development, gene structure, and promoter cis-acting parts of the StJAZ genes were analyzed. In addition, Protein-Protein Interaction (PPI) network analysis of StJAZ and StMYC gene families and yeast two-hybrid assay demonstrated that five StMYCs can interact with 16 StJAZs, which provides new insights into the operation mechanism of StJAZs and StMYCs in JA signal response. Moreover, we explored the expression profiles of StJAZs and StMYCs genes in different tissues and during abiotic stresses by RNA-seq data. Based on the PPI network and transcriptome data, the genes StJAZ11, StJAZ16, and StMYC6 were chosen for further qRT-PCR study under salt or mannitol treatment. Under mannitol-induced drought or salinity treatment, the expression patterns of StMYC6, StJAZ11, and StJAZ16 were different, indicating that the JAZ protein and MYC transcription factor may be engaged in the response of potatoes to abiotic stress, which opened up a new research direction for the genetic improvement of potatoes in response to environmental stress.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Phylogeny , Stress, Physiological/genetics , Promoter Regions, Genetic , RNA-Seq , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Plant Signal Behav ; 18(1): 2199644, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37039834

ABSTRACT

The TOR (Target of Rapamycin) signaling pathway, which takes TOR kinase as the core, regulates the absorption, distribution, and recycling of nutrients by integrating metabolic network and other signaling pathways, thus participating in the plant growth-defense trade-off. While terpenoids play an important role in plant growth, development, stress response, and signal transduction. The effect of the TOR signaling pathway on terpenoid biosynthesis in plants has yet to be studied in detail. In this study, the tissue culture seedlings of Salvia miltiorrhiza were treated with the TOR inhibitor AZD8055. The results show that the roots of the control group had begun to grow on the 8th day, while the seedlings treated with AZD8055 had no rooting signs. Combined with the expression changes of genes related to the TOR signaling pathway in the first 8 days, samples on the 3rd, 6th, and 8th days were selected for RNA-Seq analysis. Through RNA-Seq analysis, a total of 50,689 unigenes were obtained from the samples of these three periods, of which 4088 unigenes showed differential expression. The function enrichment and time-series analysis of differentially expressed genes (DEGs) showed that the main influence of the TOR signal pathway on plant growth-related processes was gradually transmitted with treatment time after TOR was inhibited. Pathway enrichment analysis of DEGs showed that the genes in the biosynthesis of terpenoids, such as diterpenoid and carotenoid biosynthetic pathways, could be regulated. Compared with other stages, DEGs related to terpenoid biosynthesis were mainly regulated in the S2 stage. In addition, the genes involved in terpenoid skeleton biosynthesis was also considerably enriched in the S2 stage, according to the results of gene set enrichment analysis (GSEA) of unigenes. Inhibition of the TOR signaling pathway may affect the biosynthesis of terpenoid signaling molecules, inhibit gibberellin's biosynthesis, and promote abscisic acid's biosynthesis. This study has discussed the effect of interfering with the TOR pathway on terpenoid biosynthesis in S. miltiorrhiza from the perspective of omics and provides new insight into the interaction between the terpenoid biosynthesis pathway and the growth-defense trade-off of medicinal plants.


Subject(s)
Salvia miltiorrhiza , Terpenes , Terpenes/metabolism , Salvia miltiorrhiza/genetics , RNA-Seq , Metabolic Networks and Pathways , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL