Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Biomed Pharmacother ; 139: 111654, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33957563

ABSTRACT

Previous studies have suggested that Lycium barbarum (L. barbarum) has a radioprotective function, although more in-depth investigation is still required. We investigated the radioprotective efficacy of extract of the fruits of L. barbarum (LBE) and its radioprotective mechanisms. Mice were exposed to 8.5 Gy, 5.5 Gy, or 6.0 Gy total body irradiation (TBI), and the survival rate, lymphocyte percentage, amount of cytokines, and viability of the irradiated cells, as well as the gut microbiome and fecal metabolomics were studied. LBE enhanced the survival of the mice exposed to 8.5 Gy γ-ray TBI or 5.5 Gy X-ray TBI. After 6.0 Gy γ-ray TBI, LBE exhibited good immunomodulatory properties, mainly characterized by the accelerated recovery of lymphocyte percentages, and the enhanced expression of immune-related cytokines. LBE reconstituted the gut microbiota of irradiated mice, increased the relative abundance of potentially beneficial genera (e.g., Turicibacter, Akkermansia), and decreased the relative abundance of potentially harmful bacterial genera (e.g., Rikenellaceae_RC9_gut_group). Beneficial regulatory effects of LBE on the host metabolites were also noted, and the major upregulated metabolites induced by LBE, such as Tetrahydrofolic acid and N-ornithyl-L-taurine, were positively correlated with the immune factor interleukin (IL)-6. In vitro, LBE also increased the vitality of rat small intestinal epithelial cells (IEC-6) after 4.0 Gy γ-ray irradiation and promoted the growth of Akkermansia muciniphila. These results confirmed a radioprotective function of LBE and indicated that the radioprotective mechanism may be due to immunomodulation and the synergistically modulating effect on the gut microbiota and related metabolites.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immunity/drug effects , Lycium/chemistry , Plant Extracts/therapeutic use , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/therapeutic use , Animals , Cytokines/metabolism , Epithelial Cells/drug effects , Feces/microbiology , Fruit/chemistry , Immunomodulation/drug effects , Interleukin-6/metabolism , Intestine, Small/drug effects , Lymphocyte Count , Male , Metabolomics , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/metabolism , Rats , Survival Analysis , Whole-Body Irradiation
2.
BMC Complement Med Ther ; 21(1): 10, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407412

ABSTRACT

BACKGROUND: Curcumin has been demonstrated to exert anti-oxidant, anti-fibrotic, anti-inflammatory, and anti-cancer activities. This study was conducted to observe the effect and inner mechanism of curcumin in rats with radiation-induced liver damage (RILD). METHODS: Thirty SD rats were classified into Control, Radiation group and Curcumin (Cur) + Radiation group (n = 10 in each group). The changes in body weight of the rats were observed on the 3rd, 7th and 14th days after the treatment with curcumin. On the 14th day post treatment, the heart blood of the rats was drawn for measurement of liver function indices including total protein (TP), alanine aminotransfetase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) as well as aspartate aminotransfetase (AST). Subsequently, the rats were euthanized and liver tissues were taken to observe liver morphological changes using hematoxylin-eosin (HE), and to analyze apoptosis condition using transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assays. Meanwhile, the oxidative stress level in liver tissue homogenate was determined by biochemical analysis. The expression of nuclear factor kappa B (NF-κB) pathway-associated and apoptosis-associated proteins was detected using Western blot analysis, and the expression levels of inflammatory factors were measured by Enzyme-linked immunosorbent assay (ELISA). RESULTS: The reduced body weight was observed in rats of the Radiation group compared to the Control and Cur + Radiation groups on day 14. In the Radiation group, hepatic cell edema and inflammatory cell infiltration could be visible under the light microscope, and the hepatocytes presented with vacuolar degeneration. In the Cur + Radiation group, the hepatocytes swelled under the microscope, but the pathological changes were alleviated in comparison with the Radiation group. RILD rats with curcumin treatment presented with decreased ALT, AST, ALP, LDH, and maleicdialdehyde (MDA) levels, and elevated TP, superoxide dismutase (SOD), caspase activated DNase (CAD) and glutathione (GSH) levels. Apoptosis and inflammation in rats with RILD were up-regulated, and the NF-κB pathway was activated, but they were reversed after continuously intragastric administration of curcumin for 14 days. CONCLUSION: Our study highlights that curcumin treatment reduces the liver damage caused by radiation through the inhibition of the NF-κB pathway.


Subject(s)
Curcumin/therapeutic use , Liver Diseases/drug therapy , Liver/drug effects , NF-kappa B/metabolism , Radiation Injuries, Experimental/drug therapy , Animals , Curcuma , Curcumin/pharmacology , Liver/metabolism , Liver/pathology , Liver Diseases/etiology , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Oxidative Stress/drug effects , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Rats, Sprague-Dawley , Signal Transduction/drug effects
3.
Cancer Lett ; 501: 20-30, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33359449

ABSTRACT

High-dose radiation exposure induces gastrointestinal (GI) stem cell death, resulting in denudation of the intestinal mucosa and lethality from GI syndrome, for which there is currently no effective therapy. Studying an intestinal organoid-based functional model, we found that Sirtuin1(SIRT1) inhibition through genetic knockout or pharmacologic inhibition significantly improved mouse and human intestinal organoid survival after irradiation. Remarkably, mice administered with two doseages of SIRT1 inhibitors at 24 and 96 h after lethal irradiation promoted Lgr5+ intestinal stem cell and crypt recovery, with improved mouse survival (88.89% of mice in the treated group vs. 0% of mice in the control group). Moreover, our data revealed that SIRT1 inhibition increased p53 acetylation, resulting in the stabilization of p53 and likely contributing to the survival of intestinal epithelial cells post-radiation. These results demonstrate that SIRT1 inhibitors are effective clinical countermeasures to mitigate GI toxicity from potentially lethal radiation exposure.


Subject(s)
Gastrointestinal Diseases/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Intestines/drug effects , Niacinamide/pharmacology , Radiation Injuries, Experimental/drug therapy , Sirtuin 1/antagonists & inhibitors , Acetylation , Animals , Cell Survival/drug effects , Cell Survival/radiation effects , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Intestines/pathology , Intestines/radiation effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organoids , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Mol Med Rep ; 23(1)2021 01.
Article in English | MEDLINE | ID: mdl-33179101

ABSTRACT

Huangqi, the dried root of Radix Astragali, is an essential herb in Traditional Chinese Medicine and has been used to promote hematopoiesis for centuries. Astragalus polysaccharide (ASPS), the bioactive compound of Huangqi, serves a crucial role in hematopoiesis. The aim of the present study was to investigate the hematopoietic effects, in particular the thrombopoietic effects, and the molecular mechanisms of ASPS using an irradiation­induced myelosuppressive mouse model. Colony­forming unit assays, flow cytometric analysis of apoptosis, ELISAs, Giemsa staining and western blotting were performed to determine the hematopoietic and anti­apoptotic effects of ASPS. The results demonstrated that ASPS enhanced the recovery of red blood cells at day 21 following treatment, as well as platelets and white blood cells at day 14. In addition, ASPS promoted colony formation in all lineages (megakaryocytes, granulocyte monocytes, erythroid cells and fibroblasts). The morphological study of the bone marrow demonstrated that tri­lineage hematopoiesis was preserved in the ASPS­ and thrombopoietin (TPO)­treated groups compared with the control group. The overall cellularity (mean total cell count/area) of the ASPS­treated group was similar to that of the TPO­treated group. Additionally, in vitro experiments indicated that treatment with 100 µg/ml ASPS exhibited the maximum effect on colony formation. ASPS attenuated cell apoptosis in megakaryocytic cells via inhibiting the mitochondrial caspase­3 signaling pathway. In conclusion, ASPS promoted hematopoiesis in irradiated myelosuppressive mice possibly via enhancing hematopoietic stem/progenitor cell proliferation and inhibiting megakaryocytes apoptosis.


Subject(s)
Drugs, Chinese Herbal/chemistry , Megakaryocytes/cytology , Polysaccharides/administration & dosage , Radiation Injuries, Experimental/drug therapy , Thrombocytopenia/prevention & control , Animals , Apoptosis/drug effects , Astragalus propinquus , Disease Models, Animal , Dose-Response Relationship, Drug , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Injections, Intraperitoneal , Male , Megakaryocytes/drug effects , Megakaryocytes/radiation effects , Mice , Polysaccharides/pharmacology , Radiation Injuries, Experimental/complications , Radiation Injuries, Experimental/metabolism , Thrombocytopenia/etiology
5.
Acta Biochim Pol ; 67(4): 629-632, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33332781

ABSTRACT

We aimed to evaluate whether resveratrol affects radiation-induced changes in metabolite profiles of the mouse heart. Hearts were irradiated in vivo with a single 2 Gy dose during the resveratrol administration and metabolite profiles of heart tissue were analyzed by the untargeted HR-MAS NMR approach twenty weeks after irradiation. The administration of resveratrol mitigated the radiation-induced decline in the content of choline-containing compounds and unsaturated lipids, which might reflect the stabilization of cell membrane structure against radiation-related damage. Results obtained with this mouse model suggest that the resveratrol supplementation may prevent metabolic changes related to radiation-induced damage in the heart.


Subject(s)
Cardiotonic Agents/pharmacology , Heart/radiation effects , Metabolome/drug effects , Phosphatidylcholines/metabolism , Radiation Injuries, Experimental/prevention & control , Resveratrol/pharmacology , Administration, Oral , Animals , Female , Glycine/metabolism , Lactic Acid/metabolism , Metabolome/radiation effects , Mice , Mice, Inbred C57BL , Photons/adverse effects , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation, Ionizing , Taurine/analogs & derivatives , Taurine/metabolism
6.
Sci Rep ; 10(1): 18300, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110120

ABSTRACT

Gamma radiation is a commonly used adjuvant treatment for abdominally localized cancer. Since its therapeutic potential is limited due to gastrointestinal (GI) syndrome, elucidation of the regenerative response following radiation-induced gut injury is needed to develop a preventive treatment. Previously, we showed that Krüppel-like factor 4 (KLF4) activates certain quiescent intestinal stem cells (ISCs) marked by Bmi1-CreER to give rise to regenerating crypts following γ irradiation. In the current study, we showed that γ radiation-induced expression of p21Waf1/Cip1 in Bmi1-CreER cells is likely mitigated by MUSASHI-1 (MSI1) acting as a negative regulator of p21Waf1/Cip1 mRNA translation, which promotes exit of the Bmi1-CreER cells from a quiescent state. Additionally, Bmi1-specific Klf4 deletion resulted in decreased numbers of MSI1+ cells in regenerating crypts compared to those of control mice. We showed that KLF4 binds to the Msi1 promoter and activates its expression in vitro. Since MSI1 has been shown to be crucial for crypt regeneration, this finding elucidates a pro-proliferative role of KLF4 during the postirradiation regenerative response. Taken together, our data suggest that the interplay among p21Waf1/Cip1, MSI1 and KLF4 regulates Bmi1-CreER cell survival, exit from quiescence and regenerative potential upon γ radiation-induced injury.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gamma Rays/adverse effects , Intestinal Mucosa/radiation effects , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Radiation Injuries, Experimental/metabolism , Stem Cells/radiation effects , Animals , HEK293 Cells , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Kruppel-Like Factor 4 , Mice , Polymerase Chain Reaction , Stem Cells/metabolism
7.
Health Phys ; 119(5): 604-620, 2020 11.
Article in English | MEDLINE | ID: mdl-32947489

ABSTRACT

Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.


Subject(s)
Acute Radiation Syndrome/diagnosis , Gastrointestinal Tract/metabolism , Organ Sparing Treatments/methods , Proteome/metabolism , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/diagnosis , Retinoids/metabolism , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/metabolism , Animals , Biomarkers/metabolism , Bone Marrow/radiation effects , Disease Models, Animal , Gastrointestinal Tract/radiation effects , Macaca mulatta , Male , Proteome/analysis , Radiation Dosage , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism
8.
Article in English | MEDLINE | ID: mdl-32619786

ABSTRACT

The liver is the pivotal metabolic organ primarily responsible for metabolic activities, detoxification and regulation of carbohydrate, protein, amino acid, and lipid metabolism. However, very little is known about the complicated pathophysiologic mechanisms of liver injury result from ionizing radiation exposure. Therefore, a pseudotargeted metabolomics approach based on gas chromatography-tandem mass spectrometry with selected reaction monitoring (GC-MS-SRM) was developed to study metabolic alterations of liver tissues in radiation-induced hepatic injury. The pseudotargeted GC-MS-SRM method was validated with satisfactory analytical characteristics in terms of precision, linearity, sensitivity and recovery. Compared to the SIM-based approach, the SRM scanning method had mildly better precision, higher sensitivity, and wider linear ranges. A total of 37 differential metabolites associated with radiation-induced hepatic injury were identified using the GC-MS-SRM metabolomics method. Global metabolic clustering analysis showed that amino acids, carbohydrates, unsaturated fatty acids, organic acids, metabolites associated with pyrimidine metabolism, ubiquinone biosynthesis and oxidative phosphorylation appeared significantly declined after high dose irradiation exposure, whereas metabolites related to lysine catabolism, glycerolipid metabolism and glutathione metabolism presented the opposite behavior. These changes indicate energy deficiency, antioxidant defense damage, accumulation of ammonia and lipid oxidation of liver tissues in response to radiation exposure. It is shown that the developed pseudotargeted method based on GC-MS-SRM is a useful tool for metabolomics study.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Liver Diseases/metabolism , Metabolome/radiation effects , Metabolomics/methods , Radiation Injuries, Experimental/metabolism , Animals , Linear Models , Liver/chemistry , Liver/metabolism , Liver/radiation effects , Male , Rats , Rats, Wistar , Reproducibility of Results
9.
J Ethnopharmacol ; 258: 112814, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32251760

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum Polysaccharide (GLP),traditional Chinese medicine (TCM) active ingredient, has a long history and has good curative effects on radiation injury. However, the mechanism of GLP treating radiation injury has not been clearly elucidated. THE AIM OF THE STUDY: This study was aimed to investigate the preventive effects of GLP on mice with radiation injury and to explore its mechanisms by serum metabolomics. MATERIALS AND METHODS: Thirty mice were randomly divided into three groups,and namely 10 per group. The normal control group and the radiation model with normal saline and GLP group with GLP treatment (96 mg·kg-1) for 14 days. 2 h after 7th day after the intragastric administration, the model group and GLP group were subjected to whole body irradiation by X-rays except the normal control group. The peripheral blood WBC, RBC, HGB, PLT indicators.UPLC-Q-TOF-MS technique was used to analyze the serum of normal group, model group and GLP group, and to explore its potential key biomarkers and corresponding related metabolic pathways. RESULTS: The number of peripheral blood leukocytes (WBC) in the radiation model group was lower than that in the GLP group and the number of platelets (PLT) in the GLP group was significantly higher than that in the model group.Combined with the methods of principal component analysis (PCA), projection to latent structure-discrimination analysis (PLS-DA), three group were clearly distinguished from each other and 18 metabolites were identified as the potential biomarkers in the GLP treated mice. The identified biomarkers indicated that there were perturbations of the taurine and hypotaurine metabolism and glycerophospholipid metabolism. CONCLUSION: GLP can play a role in radiation protection by improving the expression of related potential biomarkers and related metabolic pathways in serum of radiation-induced mice.


Subject(s)
Polysaccharides/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Reishi/chemistry , Animals , Biomarkers/metabolism , Chromatography, High Pressure Liquid , Male , Mass Spectrometry , Medicine, Chinese Traditional , Metabolomics , Mice , Mice, Inbred BALB C , Polysaccharides/isolation & purification , Radiation Injuries, Experimental/metabolism , Radiation-Protective Agents/isolation & purification
10.
Exp Hematol ; 84: 54-66, 2020 04.
Article in English | MEDLINE | ID: mdl-32240658

ABSTRACT

Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMß2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.


Subject(s)
Acute Radiation Syndrome/metabolism , Bone Marrow/metabolism , Gamma Rays/adverse effects , Hematopoiesis/radiation effects , Iron/metabolism , Radiation Injuries, Experimental/metabolism , Acute Radiation Syndrome/genetics , Acute Radiation Syndrome/pathology , Animals , Bone Marrow/pathology , Captopril/pharmacology , Erythrocytes/metabolism , Erythrocytes/pathology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Mice , Mice, Transgenic , NF-E2-Related Factor 2/biosynthesis , NF-E2-Related Factor 2/genetics , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/pathology
11.
Cutan Ocul Toxicol ; 39(2): 126-133, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32183539

ABSTRACT

Background: ultraviolet radiation types A and B (UV) (400-315nm and 315-280nm respectively) are the main components present in sunlight known to cause skin injuries. Arnica montana is a plant that has been widely studied for containing anti-inflammatory, healing and analgesic properties capable of preventing or ameliorating lesions. Here, we investigated the therapeutic effect of topical application of Arnica montana after UVB-induced cutaneous injuries in mice.Methods: mice were exposed to UVB radiation (Philips TL40W/12 RS lamp) in a period of 3 hours. After one hour of radiation exposure, the animals were treated with topical application of Arnica montana ointment (250 mg/g) in the ear. At the time of 16 hours after treatment, the parameters of edema, oxidative stress and inflammatory reaction were measured in the ear of mice.Results: our results demonstrated that topical treatment with Arnica montana reduced the UVB-induced inflammatory response as demonstrated by the reduction of ear edema, inhibition of myeloperoxidase activation, decrease of nuclear factor kappa B levels and reduction of proinflammatory cytokines levels, such as interleukin-1beta, interleukin-6, tumour necrosis factor-alpha and interferon-gamma. In addition, Arnica montana ameliorated oxidative damage mediated by UVB radiation, as demonstrated by the reduction of lipid peroxidation, protein oxidation and increase of tissue antioxidant capacity and glutathione levels in the ear.Conclusion: we concluded that Arnica montana ointment is effective in alleviating the auricular inflammatory process and oxidative damage induced by acute UVB radiation, sustaining the traditional use of Arnica montana for the treatment of skin disorders.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Arnica , Edema/drug therapy , Photosensitivity Disorders/drug therapy , Plant Preparations/therapeutic use , Radiation Injuries, Experimental/drug therapy , Ultraviolet Rays/adverse effects , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cytokines/metabolism , Edema/metabolism , Male , Mice , NF-kappa B/metabolism , Ointments , Oxidative Stress/drug effects , Peroxidase/metabolism , Photosensitivity Disorders/metabolism , Plant Preparations/pharmacology , Radiation Injuries, Experimental/metabolism
12.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G439-G450, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31961718

ABSTRACT

Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.


Subject(s)
Acute Radiation Syndrome/etiology , Dietary Supplements/toxicity , Intestine, Small/drug effects , Methionine/toxicity , Radiation Injuries, Experimental/etiology , Acute Radiation Syndrome/metabolism , Acute Radiation Syndrome/microbiology , Acute Radiation Syndrome/pathology , Animals , DNA Methylation/drug effects , Dysbiosis , Energy Metabolism/drug effects , Gastrointestinal Microbiome/drug effects , Intestine, Small/metabolism , Intestine, Small/microbiology , Intestine, Small/pathology , Male , Mice, Inbred C57BL , Mice, Inbred CBA , Radiation Dosage , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/microbiology , Radiation Injuries, Experimental/pathology , Risk Factors , Whole-Body Irradiation
13.
Environ Toxicol ; 35(4): 430-442, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31749214

ABSTRACT

Nanoparticle is a microscopic particle that has been existed in a wide range of biotechnological purposes. Zinc oxide nanoparticles (ZnO-NPs) have fewer environmental hazards and have shown positive impacts in the medical field. This work aimed to observe the effects of low and high doses of ZnO-NPs on heart injury induced by ionizing radiation (IR). Animals were irradiated by 8 Gy of gamma rays and ZnO-NPs (10 and 300 mg/Kg/day) were orally delivered to rats 1 hour after irradiation. Animals were dissected on 15th day postirradiation. Data showed that the oxidative damage resulted from radiation exposure, appeared by marked increments in the malondialdehyde (MDA) content and the level and protein expression of thioredoxin-interacting protein (TXNIP) with a noticeable decline in the level and expression of thioredoxin 1 (Trx-1) and thioredoxin reductase (TrxR), as well as glutathione (GSH) level and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Moreover, radiation-induced inflammation, manifested by a noticeable elevation in the level of tumor necrotic factor-alpha (TNF-α), interleukin-18 (IL-18), and C-reactive protein (CRP). Additionally, endothelial dysfunction marked with a high level of asymmetric dimethylarginine (ADMA), total nitrite/nitrate (NOx), intercellular adhesion molecule 1 (ICAM-1), homocysteine (Hcy), creatine kinase (CK-MB), cardiac troponin-I (cTn-I), and lactate dehydrogenase (LDH). In addition, a decrease of zinc (Zn) level in the cardiac tissue was recorded. ZnO-NPs treatment (10 mg/kg) mitigated the oxidative stress and inflammation effects on the cardiovascular tissue through the positive modulations in the studied parameters. In contrast, ZnO-NPs treatment (300 mg/kg) induced cardiovascular toxicity of normal rats and elevated the deleterious effects of radiation. In conclusion, ZnO-NPs at a low dose could mitigate the adverse effects on cardiovascular tissue induced by radiation during its applications, while the high dose showed morbidity and mortality in normal and irradiated rats.


Subject(s)
Arginine/analogs & derivatives , Cell Cycle Proteins/metabolism , Gamma Rays , Heart , Nanoparticles/chemistry , Radiation Injuries, Experimental/metabolism , Zinc Oxide/pharmacology , Animals , Arginine/metabolism , Biomarkers/metabolism , Cardiotoxicity , Cytokines/metabolism , Dose-Response Relationship, Drug , Heart/drug effects , Heart/radiation effects , Inflammation , Male , Oxidative Stress/drug effects , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/prevention & control , Rats , Zinc Oxide/chemistry , Zinc Oxide/toxicity
14.
Biomed Res Int ; 2019: 9051713, 2019.
Article in English | MEDLINE | ID: mdl-31061829

ABSTRACT

OBJECTIVE: In this study, we evaluated changes in bone remodeling in an irradiated rat calvarial defect model according to duration of hyperbaric oxygen therapy. MATERIALS AND METHODS: The 28 rats were divided into four groups. Radiation of 12 Gy was applied to the skull, and 5-mm critical size defects were formed on both sides of the skull. Bone grafts were applied to one side of formed defects. From the day after surgery, HBO was applied for 0, 1, and 3 weeks. At 6 weeks after bone graft, experimental sites were removed and analyzed for radiography, histology, and histomorphometry. RESULTS: Micro-CT analysis showed a significant increase in new bone volume in the HBO-3 group, with or without bone graft. When bone grafting was performed, BV, BS, and BS/TV all significantly increased. Histomorphometric analysis showed significant increases in %NBA and %BVN in the HBO-1 and HBO-3 groups, regardless of bone graft. CONCLUSION: Hyperbaric oxygen therapy was effective for bone regeneration with only 1 week of treatment.


Subject(s)
Bone Regeneration/radiation effects , Hyperbaric Oxygenation , Radiation Injuries, Experimental , Skull , X-Rays/adverse effects , Animals , Male , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/therapy , Rats , Rats, Sprague-Dawley , Skull/diagnostic imaging , Skull/injuries , Skull/metabolism , Skull/pathology , X-Ray Microtomography
15.
Biomed Pharmacother ; 115: 108955, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31075733

ABSTRACT

Radiation-induced pulmonary fibrosis (RIPF) is a severe complication in patients treated with thoracic irradiation. Until now, there are no effective therapeutic drugs for RIPF. In the present study, we attempted to evaluate the effect of Magnesium isoglycyrrhizinate (MgIG) on RIPF, and to further explore the underlying mechanisms. We found that MgIG treatment markedly improved radiation-induced lung pathological changes, reduced collagen deposition, and decreased the transforming growth factor beta1 (TGF-ß1) elevation induced by irradiation. In addition, MgIG treatment significantly relieved oxidative damage of pulmonary fibrosis in mice characterized by increased antioxidant factors expression and reduced oxidative factors expression. And, MgIG treatment also significantly reduced the production of intracellular reactive oxygen species (ROS) in vitro. Interestingly, administration of MgIG achieved lower expression levels of Nox4, and phosphorylation of p38MAPK and Akt in vivo and in vitro. Furthermore, treatment with MgIG notably reduced the expression levels of myofibroblast markers, Nox4, and phosphorylation of p38MAPK and Akt both in vivo and in vitro. More importantly, the inhibitory effects of MgIG on fibroblast differentiation were enhanced when the p38MAPK/Akt/Nox4 pathway was inhibited using their respective antagonists or Nox4 siRNA in vitro. Taken together, these findings suggested that MgIG could attenuate RIPF partly by inhibiting fibroblast differentiation, which was closely related to modulation of the p38MAPK/Akt/Nox4 pathway.


Subject(s)
Cell Differentiation/drug effects , Fibroblasts/drug effects , Lung/metabolism , Pulmonary Fibrosis/prevention & control , Radiation Injuries, Experimental/prevention & control , Saponins/pharmacology , Triterpenes/pharmacology , Animals , Cell Line , Drugs, Chinese Herbal , Female , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gamma Rays , Humans , Lung/drug effects , Lung/pathology , Mice, Inbred C57BL , NADPH Oxidase 4/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Sci Rep ; 9(1): 1079, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705366

ABSTRACT

Ginsenosides are one of major types of bioactive compounds in American ginseng (AG) and utilized to assess the quality of various AG samples. The contents of ginsenosides showed cultivation region-related variation, which is possibly associated with AG's pharmacological effect difference. Therefore, to reveal the quality difference of AGs in different cultivation regions, AG samples from seven cultivation regions were evaluated via analyzing their contents of nine ginsenosides and the biochemical parameters in AG-treated irradiated mice. Pre-administration of AG decoctions could reversely modulate the irradiation-induced changes of antioxidant enzymatic activity, cytokine level and hormone level in irradiated mice, which demonstrated that AG had the radioprotective effects due to its antioxidative, immunomodulatory and anti-inflammatory properties. However, this radioprotection effect varied among different cultivation regions of AGs. Collectively, Beijing and Canada-cultivated AGs had the best radioprotection. Heilongjiang and Jilin-originated AGs had the similar pharmacological effects while USA, Shandong and Shaanxi-grown AGs had closer pharmacological effects. This biochemical measurements-based PCA and heatmap clustering of AGs from seven cultivation regions was nearly consistent with ginsencoside content- and the previous serum metabolome-based analyses. However, the pearson correlation analysis revealed that only Rb3 and Rd were significantly correlated with some of assayed biochemical parameters in irradiated mice pretreated with different cultivation regions of AG extracts.


Subject(s)
Gamma Rays/adverse effects , Ginsenosides , Panax/chemistry , Radiation Injuries, Experimental , Radiation-Protective Agents , Animals , Ginsenosides/chemistry , Ginsenosides/pharmacology , Mice , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/chemistry , Radiation-Protective Agents/pharmacology
17.
Environ Toxicol ; 34(2): 123-130, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30311401

ABSTRACT

Oxidative stress, apoptosis, and fibrosis may play a major role in the development of radiation-induced liver damage. Betaine, a native compound widely present in beetroot, was reported to possess hepato-protective properties. The objective of this study was to investigate the influence of betaine on radiation-induced liver damage. Animals were exposed to 9 Gy applied in 3 doses of 3 Gy/wk. Betaine (400 mg/kg/d), was orally supplemented to rats after the first radiation dose, and daily during the irradiation period. Animals were sacrificed 1 day after the last dose of radiation. The results showed that irradiation has induced oxidative stress in the liver denoted by a significant elevation in malondialdehyde, protein carbonyl, and 8-hydroxy-2-deoxyguanosine with a significant reduction in catalase activity and glutathione (GSH) content. The activity of the detoxification enzyme cytochrome P450 (CYP450) increased while GSH transferase (GSH-T) decreased. The activity of the apoptotic marker caspase-3 increased concomitant with increased hyaluronic acid, hydroxyproline, laminin (LN), and collagen IV. These alterations were associated with a significant increase of gamma-glutamyl transferase, alkaline phosphatase and alanine and aspartate aminotransferase markers of liver dysfunction. Betaine treatment has significantly attenuated oxidative stress, decreased the activity of CYP450, enhanced GSH-T, reduced the activity of caspase-3, and the level of fibrotic markers concomitant with a significant improvement of liver function. In conclusion, betaine through its antioxidant activity and by enhancing liver detoxification and reducing apoptosis may alleviate the progression of liver fibrosis and exert a beneficial impact on radiation-induced liver damage.


Subject(s)
Antioxidants/therapeutic use , Betaine/therapeutic use , Gamma Rays , Liver/radiation effects , Oxidative Stress/drug effects , Radiation Injuries, Experimental/prevention & control , Animals , Dietary Supplements , Liver/metabolism , Liver/pathology , Liver Function Tests , Male , Oxidative Stress/radiation effects , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Rats
18.
Mol Vis ; 24: 621-632, 2018.
Article in English | MEDLINE | ID: mdl-30294201

ABSTRACT

Purpose: The purpose of this study was to investigate the effects of bilberry extract with its anthocyanins on retinal photoreceptor cell damage and on the endoplasmic reticulum (ER) stress induced by exposure to blue light-emitting diode (LED) light. Methods: Cultured murine photoreceptor cells (661W) were exposed to blue LED light with or without bilberry extract or its anthocyanins in the culture media. Aggregated short-wavelength opsin (S-opsin) in murine photoreceptor cells was observed with immunostaining. The expression of factors involved in the unfolded protein response was examined with immunoblot analysis and quantitative real-time reverse transcription (RT)-PCR. Furthermore, cell death was observed with double staining with Hoechst 33342 and propidium iodide after dithiothreitol (DTT) treatment. Results: Bilberry extract and anthocyanins suppressed the aggregation of S-opsin, activation of ATF4, and expression of the mRNA of the factors associated with the unfolded protein response (UPR). In addition, bilberry extract and the anthocyanins inhibited the death of photoreceptor cells induced by DTT, an ER stress inducer. Conclusions: These findings suggest that bilberry extract containing anthocyanins can alter the effects of blue LED light and DTT-induced retinal photoreceptor cell damage. These effects were achieved by modulating the activation of ATF4 and through the suppression of the abnormal aggregation of S-opsin.


Subject(s)
Anthocyanins/pharmacology , Endoplasmic Reticulum Stress/drug effects , Light/adverse effects , Photoreceptor Cells, Vertebrate/radiation effects , Plant Extracts/pharmacology , Unfolded Protein Response/drug effects , Vaccinium myrtillus/chemistry , Animals , Apoptosis , Blotting, Western , Cell Line , Dithiothreitol/pharmacology , Immunoblotting , Mice , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Protein Aggregation, Pathological , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/prevention & control , Real-Time Polymerase Chain Reaction , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control , Rod Opsins/metabolism
19.
J Nutr Sci Vitaminol (Tokyo) ; 64(4): 301-304, 2018.
Article in English | MEDLINE | ID: mdl-30175796

ABSTRACT

Blackcurrants (Ribes nigrum L.) have various benefits for human health. In particular, a polysaccharide derived from blackcurrant was found to be an immunostimulating food ingredient in a mouse model. We named a polysaccharide derived from blackcurrant cassis polysaccharide (CAPS). In a previous clinical study, we reported that CAPS affects skin dehydration, demonstrating its effectiveness against skin inflammation was related to atopic dermatitis; skin inflammation caused skin dehydration. However, there are no studies regarding CAPS effectiveness against skin dehydration. The current study aimed to investigate CAPS effectiveness against skin dehydration. We further demonstrate the effect of oral administration of CAPS on skin dehydration caused by ultraviolet (UV) irradiation-induced inflammation in mice. We found that CAPS administration suppresses skin dehydration caused by UV irradiation. We also found that CAPS decreases interleukin-6 and matrix metalloproteinase transcription levels in the mouse skin. These results show that CAPS improves skin hydration in UV-irradiated mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Dermatitis, Atopic/therapy , Dietary Carbohydrates/therapeutic use , Fruit/chemistry , Plant Extracts/therapeutic use , Ribes/chemistry , Skin/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Dermatitis, Atopic/etiology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/analysis , Dietary Carbohydrates/isolation & purification , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Dietary Fiber/therapeutic use , Dietary Supplements/analysis , Female , Gene Expression Regulation/radiation effects , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Matrix Metalloproteinase 13/chemistry , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Mice, Hairless , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Prebiotics/administration & dosage , Prebiotics/analysis , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/therapy , Skin/immunology , Skin/radiation effects , Specific Pathogen-Free Organisms , Ultraviolet Rays/adverse effects , Water/metabolism
20.
Food Funct ; 9(9): 4936-4947, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30178790

ABSTRACT

Syzygium aromaticum L., commonly named clove, is widely used in the food industry due to its antioxidant and antibacterial capabilities. However, little information is available regarding its role in resisting skin photoaging. This study investigated 50% ethanol extract of Syzygium aromaticum L. (SA) and eugenol (EO) for anti-aging effects in UVB-irradiated normal human dermal fibroblasts (NHDFs) and hairless mice. In vitro, SA and EO suppressed matrix metalloproteinase-1, 3 (MMP-1 and MMP-3) secretion as well as the activator protein 1 (AP-1) phosphorylation. SA and EO also activated nuclear erythroid 2-related factor/antioxidant-response element (Nrf2/ARE) signaling which improves the antioxidant activity and inhibited nuclear factor-κB (NF-κB) and interleukin-6 (IL-6) expression, pro-inflammatory factors. Furthermore, SA and EO suppressed the nuclear factor of activated T cells c1 (NFATc1) which is a known activator of MMPs, cooperator transforming growth factor beta (TGF-ß) and NF-κB in Ca2+/calcineurin-regulated transcription. In vivo, SA significantly improved the levels of procollagen type I and elastin through TGF/Smad signaling. The histopathological studies found that SA reduced wrinkles. SA also increased filament aggregating protein (filaggrin), which repairs the skin barrier function and improved the skin's hydration. Altogether, SA effectively ameliorated UVB-induced photoaging. It is expected to become a promising natural product.


Subject(s)
Dietary Supplements , Flowering Tops/chemistry , Plant Extracts/therapeutic use , Radiation Injuries, Experimental/therapy , Skin/radiation effects , Syzygium/chemistry , Wound Healing , Animals , Antioxidants/therapeutic use , Cell Survival/radiation effects , Cells, Cultured , Eugenol/therapeutic use , Filaggrin Proteins , Gene Expression Regulation/radiation effects , Humans , Male , Mice, Hairless , Oils, Volatile/therapeutic use , Oxidative Stress/radiation effects , Phosphorylation/radiation effects , Protein Processing, Post-Translational/radiation effects , Radiation Injuries, Experimental/immunology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Random Allocation , Skin/immunology , Skin/metabolism , Skin/pathology , Skin Aging/immunology , Skin Aging/pathology , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL