Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.045
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Environ Manage ; 356: 120548, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492420

ABSTRACT

Urban stormwater runoff is a significant source of nutrient pollution that is very costly to treat. Water quality trading (WQT) is a market-based strategy that can be used to lower the costs associated with meeting stormwater quality regulations. While many WQT programs have experienced low participation, Virginia's program has seen high participation due to the inclusion of land developers and other regulated stormwater dischargers. However, the extent to which WQT is used as a compliance option by regulated stormwater dischargers is not well understood, particularly when compared with the adoption of traditional compliance options. To address this knowledge gap, we collated a novel dataset comprising site characteristics and stormwater compliance methods for all development projects in the City of Roanoke, Virginia from December 2015 to March 2022. We analyzed this dataset to characterize the adoption of nutrient offset credits and other compliance methods being used, including best management practices (BMPs) and improved land covers associated with reduced nutrient export. Results show that credits are the preferred compliance option in Roanoke and were used as the only treatment compliance method for 59% of projects with treatment requirements. Projects using credits corresponded with a lower median disturbed area (1.36 acres) and lower median nutrient load reduction requirement (0.69 pounds of total phosphorus per year) compared with other compliance methods. Furthermore, we found that 58% of the projects that used credits achieved stormwater quantity compliance using methods other than implementing stormwater control devices. By mapping buyers and sellers of credits, we found that all credit sellers are downstream of the development projects. We discuss how this downstream trading could be a cause for concern, as part of a larger discussion of the advantages of tracking stormwater compliance methods, drawing on Roanoke as a case study.


Subject(s)
Water Pollutants, Chemical , Water Quality , Virginia , Rain , Cities , Phosphorus/analysis , Water Movements , Environmental Monitoring/methods
2.
J Environ Manage ; 354: 120314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401493

ABSTRACT

In the context of rapid urban expansion, the interaction between humanity and nature has become more prominent. Urban land and rivers often exist as distinct entities with limited material exchange. However, during rainfall, these two systems interconnect, resulting in the transfer of land-derived pollutants into rivers. Such transfer significantly increases river pollutant levels, adversely affecting water quality. Therefore, developing a water quality simulation and prediction model is crucial. This model should effectively illustrate pollutant movement and dispersion during rain events. This study proposes a comprehensive model that merges the Storm Water Management Model (SWMM) with the Environmental Fluid Dynamics Code (EFDC). This integrated model assesses the spread and dispersion of pollutants, including Ammonia Nitrogen (NH3-N), Total Phosphorus (TP), Total Nitrogen (TN), and Chemical Oxygen Demand (COD), within urban water cycles for various rainfall conditions, thus offering critical theoretical support for managing the water environment. The application of this model under different rainfall intensities (light, moderate and heavy) provides vital insights. During light rainfall, the river's natural purification process can sustain surface water quality at Class IV. Moderate rainfall causes accumulation of pollutants, reducing water quality to Class V. Conversely, heavy rainfall rapidly increases pollutant concentrations due to higher inflow, pushing the river to a degraded Class V status, which is beyond its natural purification capacity, necessitating engineering solutions to reattain Class IV quality. Furthermore, pollutant accumulation in downstream river sections is more influenced by flow rate than by rainfall intensity. In summary, the SWMM-EFDC integrated model proves highly effective in predicting river water quality, thereby significantly aiding urban water pollution control.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring/methods , Environmental Pollutants/analysis , Water Pollutants, Chemical/analysis , Water Quality , Phosphorus/analysis , Rain , Nitrogen/analysis , China
3.
J Environ Qual ; 53(2): 241-252, 2024.
Article in English | MEDLINE | ID: mdl-38409568

ABSTRACT

Agricultural phosphorus (P) losses are harmful to water quality, but knowledge gaps about the importance of fertilizer management practices on new (recently applied) sources of P may limit P loss mitigation efforts. Weighted regression models applied to subsurface tile drainage water quality data enabled estimating the new P losses associated with 155 P applications in Ohio and Indiana, USA. Daily discharge and dissolved reactive P (DRP) and total P (TP) loads were used to detect increases in P loss following each application which was considered new P. The magnitude of new P losses was small relative to fertilizer application rates, averaging 79.3 g DRP ha-1 and 96.1 g TP ha-1 , or <3% of P applied. The eight largest new P losses surpassed 330 g DRP ha-1 or 575 g TP ha-1 . New P loss mitigation strategies should focus on broadcast liquid manure applications; on average, manure applications caused greater new P losses than inorganic fertilizers, and surface broadcast applications were associated with greater new P losses than injected or incorporated applications. Late fall applications risked having large new P losses applications. On an annual basis, new P contributed an average of 14% of DRP and 5% of TP losses from tile drains, which is much less than previous studies that included surface runoff, suggesting that tile drainage is relatively buffered with regard to new P losses. Therefore old (preexisting soil P) P sources dominated tile drain P losses, and P loss reduction efforts will need to address this source.


Subject(s)
Fertilizers , Phosphorus , Manure , Water Movements , Rain , Agriculture
4.
J Contam Hydrol ; 261: 104305, 2024 02.
Article in English | MEDLINE | ID: mdl-38301313

ABSTRACT

Initial flush management is an effective measure to control non-point source pollution (NPSP) in storm runoff. However, determining the parameter of the initial flush in different areas may pose challenges in storm runoff management strategies. To address this issue, Erhai Lake in China, Yunnan-Guizhou Plateau, was selected as an example for the study. Erhai Lake is a typical mesotrophic lake with the profound influence of NPSP. The NPSP control strategy in this area will provide a valuable reference for other lakes. In 2021, 289 storm events and 190 ditchwater samples were detected around Erhai Lake. The average flow in the ditches ranged from 0.004 to 0.147 m3/s, the instant total nitrogen (TN) concentration ranged from 0.28 to 91.43 mg/L, and the instant total phosphorus (TP) concentration ranged from 0.26 to 7.35 mg/L in the storm events. It was found that the concentration of pollutants was lower than expected in the initial flush period. Instead, the event mean concentrations of TN and TP were 9.3 and 2.1 times higher than in the wet seasons, showing high nutrient concentration levels throughout the entire rainfall period. To manage storm runoff effectively, a flow-processes-division method was proposed to analyze the inflow condition and pollutant removal rate in different runoff periods. The peak flow interception strategy was recommended as the optimal stormwater management plan, as it showed the highest inflow conditions and 50% pollutant removal rate. Considering the need to reduce the constant flush of stormwater runoff, it is essential to establish a healthy water cycle system to alleviate NPSP and raise the Erhai water level. The storm runoff management method can serve as a practical tool for lake areas that do not exhibit initial flush characteristics.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Rain , China , Water Movements , Phosphorus , Nitrogen/analysis
5.
Trop Anim Health Prod ; 56(2): 69, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319414

ABSTRACT

The objective of the present study was to evaluate the association between rainfall and the disappearance of mineral mixtures in the supplementation of cattle on pasture. Supplement consumption and rainfall data were obtained from five experiments carried out between 2016 and 2022. The experiments lasted from 84 to 126 days and had 12 to 18 paddocks formed by Brachiaria spp. under grazing by beef cattle (n = 544), receiving mineral supplementation. Supplement disappearance (SD), difference between the amount offered and leftovers (considering intake and losses) and precipitation (PR), was measured over periods of 14 to 21 days. The periods (n = 565) were classified as very dry, dry, normal, rainy, and very rainy, using the Quantis method. The number of rainy days (RD) and the average precipitation per RD (APRD) per period and the average body weight (BW) of the animals in the periods were also determined. Linear regression analyses assessed the association between BW, PR, RD, and APRD. The average PR in the periods studied was 68.5 mm, ranging from 0.00 to 160.3 mm. Each period had up to six RD, with up to 129.5 mm precipitated. The average BW was 270 kg, ranging from 208 to 335 kg and the average SD was 82.2 g/animal/day, ranging from 0.52 to 176.7 g/animal/day. Differences in RD and APRD are consistent across precipitation classes. In the regression analysis, the model with the highest coefficient of determination was the one that contained the linear and quadratic terms for the RD variable. Including linear and quadratic terms of all variables in a multiple regression represented more than half of the variation in the disappearance of the supplement (R2 = 0.5823). There is no clear relationship between the intensity of precipitation, reflected in the form of classes, and the disappearance of supplements offered to cattle on pasture since dry and very rainy periods can be equivalent. However, variables that characterize the precipitation pattern are more relevant than animal live weight to explain existing variations in supplement disappearance. Among them, the frequency with which precipitation occurs (number of rainy days in the period) seems to be more important than the precipitation rate itself, probably because it is related to the volume of precipitation accumulated in the period.


Subject(s)
Brachiaria , Minerals , Cattle , Animals , Dietary Supplements , Rain
6.
Environ Monit Assess ; 196(2): 214, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286925

ABSTRACT

Two physical models were used to simulate the infiltration and redistribution process of light crude oil after leakage in a heterogeneous soil layer following water level variation and rainfall. Migration fronts and redistribution characteristics of oil during gravity seepage, water level variation, and rainfall were obtained using charge-coupled device (CCD) camera shooting and cyan-magenta-yellow‒black (CMYK)-based gray analysis, which were employed efficiently and at a low cost. Then, the influencing factors and migration mechanisms were examined. Finally, the soil water and oil contents were measured to verify the simulation results. The results are as follows: (1) the geologic lens and fine-coarse interface can intercept oil, resulting in a local highly contaminated area. (2) The crude oil infiltration path and velocity varied greatly with the different soil types and initial water contents. Within a certain range, the higher the initial water content is, the higher the lateral and vertical infiltration speeds. (3) The oil redistribution process was dominated by vertical infiltration under the condition of water level variation or rainfall, but oil-water displacement and the capillary pressure caused some oil to move horizontally near the geologic lens and fine-coarse interface. (4) Water level variation resulted in a synchronous rise or fall of the oil accumulation area, but rainfall caused it to move up. (5) Water level variation and rainfall imposed a certain influence on the periodic accumulation and release of crude oil in heterogeneous soil, especially in the presence of geologic lenses and lithologic interfaces.


Subject(s)
Petroleum , Petroleum/analysis , Soil , Rain , Environmental Monitoring , Water/analysis , Water Movements
7.
Water Res ; 252: 121182, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290238

ABSTRACT

Evapotranspiration is a key hydrological process for reducing stormwater runoff in bioretention systems, regardless of their physical configuration. Understanding the volumes of stormwater that can be returned to the atmosphere via evapotranspiration is, therefore, a key consideration in the design of any bioretention system. This study establishes the evapotranspiration dynamics of three common, structurally different, bioretention vegetation treatments (an Amenity Grass mix, and mono-cultures of Deschampsia cespitosa and Iris sibirica) compared with an un-vegetated control using lab-scale column experiments. Via continuous mass and moisture loss data, observed evapotranspiration rates were compared with those predicted by the FAO-56 Penman-Monteith model for five 14-day dry periods during Spring 2021, Summer 2021, and Spring 2022. Soil moisture reductions over the 14-day trials led to reduced rates of evapotranspiration. This necessitated the use of a soil moisture extraction function alongside a crop coefficient to represent actual evapotranspiration from FAO-56 Penman-Monteith reference evapotranspiration estimates. Crop coefficients (Kc) varied between 0.65 and 2.91, with a value of 1.0 identified as a recommended default value in the absence of treatment-specific empirical data. A continuous hydrological model with Kc=1.0 and a loading ratio of 10:1 showed that evapotranspiration could account for between 1 and 12% of the annual water budget for a bioretention system located in the UK and Ireland, increasing to a maximum of 35% when using the highest Kc observed (2.91).


Subject(s)
Dehydration , Soil , Humans , Seasons , Hydrology , Ireland , Rain
8.
J Environ Manage ; 351: 119855, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128211

ABSTRACT

The drainage system is a key measure for regulating runoff nutrient losses on sloping farmlands. Confluence and diverging drainage systems are two drainage layouts representing natural water network systems and are widely distributed in sloping farmlands; however, the effects of these drainage systems on runoff nutrient losses in the sloped plots remain unclear. This study investigated the effects of different drainage systems on the characteristics of runoff nitrogen (N) losses in sloped plots using laboratory rainfall simulations. Three treatments, including bare slope (without drainage system, CK), confluence drainage system (T1), and diverging drainage system (T2), were used to compare the changes in concentrations and losses of total nitrogen (TN), dissolved nitrogen (DN), and particulate nitrogen (PN), and the DN:TN ratio in runoff under a combination of 1.8 mm min-1 rainfall intensity and three slope gradients (5°, 10°, and 15°). The results showed that the time to runoff was significantly delayed in T2 compared with that in CK and T1 across all slopes (p < 0.05). Accumulated runoff depth was considerably lower in T1 and T2 than in CK across all slopes (p < 0.05). The TN and PN concentrations in T1 were markedly lower than those in T2 on the 10° and 15° slopes (p < 0.05). The DN concentration in T1 was lowest at the 5° slope (p < 0.05). TN loss in T1 was 14.7-33.9% and 17.9-30.3% lower than those in CK and T2 across all slopes, respectively (p < 0.05). The PN loss in T1 was 56.7% and 53.3% lower than that in T2 on the 10° and 15° slopes, respectively (p < 0.05). DN loss in T1 was 39.3-72.5% lower than that in CK for all slopes (p < 0.05). DN:TN in T2 was lower than that in CK and T1 at the 10° and 15° slopes (p < 0.05). Our results confirm the effectiveness of drainage systems in reducing runoff nutrient losses in a sloped plot and demonstrate that the confluence drainage system is better at reducing N losses in runoff than diverging drainage systems.


Subject(s)
Phosphorus , Soil , Phosphorus/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Water Movements , China , Rain
9.
Environ Sci Pollut Res Int ; 31(4): 5655-5667, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123779

ABSTRACT

The combined role of ground cover management in controlling soil erosion and nutrient loss from new orchards is still less understood. In this study, four ground cover management practices, orchard with grass cover (OG), orchard with interplant cover (OI), orchard with straw cover (OS), and orchard with bare ground (OB), were designed to identify their impacts on soil erosion and associated carbon-nitrogen-phosphorus loss in new orchards by rainfall simulation tests with rainfall intensities of 60, 90, and 120 mm h-1 and 90 min rainfall duration. The results showed that OS had the lowest surface flow coefficient (6.6%) and highest subsurface flow coefficient (32.5%). The highest soil loss rate occurred in the OB plot (65.4 g m-2 min-1), and the lowest soil loss rate occurred in the OS plot (0.5 g m-2 min-1). OS plot showed better effectiveness in improving soil erosion. However, the increased infiltration capacity was facilitated in terms of causing non-point source pollution. The C-N-P ratios of surface flow in different cover measures (OB, OI, OG, and OS) were 1.4:1.2:0.9:1, 1.8:1.7:1.2:1, and 2.3:1.9:1.2:1, respectively. The ratios of sediment in different cover measures were 7.3:9:2.3:1, 2:1.5:1.2:1, and 1.2:1:0.8:0.7, respectively. Cover management plots play an active role in reducing nutrient loss in surface flow and sediment, but the increased infiltration in covered management plots is associated with the risk of groundwater contamination in subsurface flow. The C-N-P ratios of subsurface flow in OB and covered managed plots (OI, OG, and OS) were 1:3.3:1.6:2.7, 1:1.5:2.2:2.4 and 1:1.2:1.5:1.3, respectively. Therefore, when managing the phenomenon of soil erosion through ground cover measures, attention should also be focused on the function of cover measures in regulating non-point source pollution underground, such as subsurface flow. This research recommends a combination of cover management measures to further mitigate erosion and the risk of groundwater contamination.


Subject(s)
Nitrogen , Phosphorus , Nitrogen/analysis , Carbon , Soil , Poaceae , Rain
10.
Water Res ; 250: 121017, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38118254

ABSTRACT

Bioretention systems are one of the most widely used stormwater control measures for urban runoff treatment. However, stable and effective dissolved nutrient treatment by bioretention systems is often challenged by complicated stormwater conditions. In this study, pyrite-only (PO), pyrite-biochar (PB), pyrite-woodchip (PW), and pyrite-woodchip-biochar mixed (M) bioretention systems were established to study the feasibility of improving both stability and efficiency in bioretention system via multi-media interaction. PB, PW, and M all showed enhanced dissolved nitrogen and/or phosphorus removal compared to PO, with M demonstrating the highest efficiency and stability under different antecedent drying durations (ADD), pollutant levels, and prolonged precipitation depth. The total dissolved nitrogen and dissolved phosphorus removal in M ranged between 64%-86% and 80%-95%, respectively, with limited organic matter and iron leaching. Pore water, microbial community, and material analysis collectively indicate that pyrite, woodchip, and biochar synergistically facilitated multiple nutrient treatment processes and protected each other against by-product leaching. Pyrite-woodchip interaction greatly increased nitrate removal by facilitating mixotrophic denitrification, while biochar further enhanced ammonium adsorption and expanded the denitrification area. The Fe3+ generated by pyrite aerobic oxidation was adsorbed on the biochar surface and potentially formed a Fe-biochar composite layer, which not only reduced Fe3+-induced pyrite excessive oxidation but also potentially increased organic matter adsorption. Fe (oxyhydr)oxides intermediate product formed by pyrite oxidation, in return, controlled the phosphorus and organic matter leaching from biochar and woodchip. Overall, this study demonstrates that multi-media interaction may enable bioretention systems to achieve stable and effective urban runoff treatment.


Subject(s)
Charcoal , Iron , Nitrogen , Sulfides , Nitrogen/analysis , Phosphorus/analysis , Rain
11.
Environ Monit Assess ; 196(1): 80, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38141083

ABSTRACT

Glyphosate herbicide is an indispensable material in agricultural production. In order to explore the potential environmental effects of glyphosate application in karst slope farmland, this paper used a variable slope steel tank to simulate the surface microtopography and underground pore structure characteristics of karst slope farmland, and combined with artificial rainfall experiments to explore the migration path of glyphosate in karst slope farmland and the impact of spraying glyphosate on soil nitrogen and phosphorus loss. The results showed that under the condition of heavy rain, glyphosate in karst slope farmland was mainly transported and diffused by surface runoff, supplemented by underground runoff; secondly, in different hydrological paths, glyphosate directly affected the content of nitrogen and phosphorus in runoff, and all showed extremely significant positive correlation (p < 0.001). In addition, rainfall conditions such as rainfall intensity, rainfall duration, and runoff affected the content of nitrogen and phosphorus in runoff to varying degrees. In conclusion, the application of glyphosate significantly increased the content of nitrogen and phosphorus in different runoff and accelerated the loss of nitrogen and phosphorus from soil, which not only led to soil degradation, but also threatened the safety of aquatic ecosystem. Therefore, in the prevention and control of agricultural non-point source pollution, the threat of glyphosate to the surrounding aquatic ecosystem cannot be ignored, especially in karst areas with frequent rainstorms and serious water erosion, long-term monitoring and risk assessment of glyphosate are needed.


Subject(s)
Glyphosate , Phosphorus , Farms , Phosphorus/analysis , Nitrogen/analysis , Ecosystem , Environmental Monitoring , Soil/chemistry , China , Rain , Water Movements
12.
PLoS One ; 18(10): e0293181, 2023.
Article in English | MEDLINE | ID: mdl-37871022

ABSTRACT

Plum Rains Season (PRS) has the typical characteristics of outdoor air temperature dramatic changes and high air humidity in the hot summer and cold winter region in China. When the outdoor temperature rises rapidly during PRS, the building envelope surface temperature is probably lower than the indoor air dew point temperature, resulting in moisture condensation. This paper evaluates the influence of geographical location and outdoor meteorological parameters on the indoor humidity environment. The effects of critical parameters such as altitude, average temperature, relative humidity, total precipitation, total precipitation days, atmospheric pressure, and wind speed on the building envelope moisture condensation in nine typical cities in the hot summer and cold winter region were simulated and analyzed. The results show that the Condensation Frequency (CFn) in the western, central, and eastern regions reached the highest in April, May, and June, respectively. Among the nine typical cities, Changsha has the highest Condensation Risk (CR). In addition, the altitude, total precipitation, and atmospheric pressure have little effect on the indoor humidity environment, and it is not directly related to CR; The average temperature and total precipitation days were not related to CR in the western and eastern regions and positively correlated with CR in the central region; The wind speed was positively correlated with CR in the western and central regions and negatively correlated in the eastern region; The relative humidity can affect the indoor humidity environment and moisture condensation on the inner surface of walls, when the relative humidity increases, the CR increases.


Subject(s)
Air Pollutants , Prunus domestica , Seasons , Air Pollutants/analysis , Humidity , Temperature , China , Rain
13.
J Environ Manage ; 347: 119116, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37757686

ABSTRACT

Rainfall plays a crucial role in influencing the loss of agricultural diffuse pollution. The middle Yangtze River region is well-know for its humid climate and numerous agricultural activities. Thus, this study quantitatively analyzed the concentration and distribution of nitrogen (N) and phosphorus (P) load and loss in a major tributary of the middle Yangtze River under different rainfall patterns by using sampling analysis and SWAT model simulation. The total nitrogen (TN) and nitrate-nitrogen (NO3-) concentrations were 1.604-3.574 and 0.830-2.556 mg/L, respectively. The total phosphorous (TP) and Soluble Reactive Phosphorus (SRP) were 2-148 and 2-104 µg/L, respectively. The modeling results demonstrated that higher rainfall intensity led to greater load and loss flux of diffuse pollutant at the outlet. Organic nitrogen (ORGN) is the main nitrogen form transported from the subbasin to the reach, while organic phosphorus (ORGP) and inorganic phosphorus (INORGP) were transported at similar amounts. Under the condition of conventional rainfall, the outlet reaches mainly transported NO3-, and ORGN gradually increased when rainstorm events occurred. The ratio of INORGP to ORGP was relatively stable. During extreme rainfall event, rainfall is the dominant element of agricultural diffuse pollution. A strong positive correlation exists between rainfall intensity and pollution loss during rainstorms. Storm rain events were the main source of TN and TP losses. Few storm rain days generated pollutants that accounted for a large proportion of the total loss, and their impact on TP loss was significantly greater than that of TN. The influence of storm rain on TN is mainly the increase in runoff, while TP is sensitive to the runoff and sediment transport promoted by rainfall. By setting different precipitation scenarios, it was confirmed that under the same rainfall amount, short-term storm rain has the most significant impact on the TN load, whereas TP load may be influenced more by the combined effects of rainfall duration and intensity. Therefore, to reduce the impact of agricultural diffuse pollution, it is important to take targeted measures for the rainstorm days.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Rivers , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Movements , Phosphorus/analysis , Environmental Pollutants/analysis , Nitrogen/analysis , Rain , China
14.
Water Res ; 245: 120658, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37776591

ABSTRACT

A holistic understanding of the quality and quantity of stormwater in the context of catchment land use plays a crucial role in stormwater management. This study investigated the quality and quantity of stormwater from forested, residential, industrial, and mixed land use areas. Water samples were collected from seven sites over two years at different stages of the runoff hydrograph using fixed sampling stations. Analysis of physicochemical and hydrological variables showed different patterns across the four land use types at various flow conditions highlighting the complex nature of stormwater quality influenced by catchment and rainfall characteristics. Mean concentrations of dissolved organic and oxidised nitrogen (DON and NOx-N) and dissolved organic and filterable reactive phosphorus (DOP and FRP) in stormwater from industrial, mixed-use and residential catchment types were statistically different from stormwater originating from a forested catchment. On average, residential, mixed-use and industrial catchments transported over 50 times more NOx-N to the receiving waters compared to forested catchments. Under high flow conditions, total phosphorus, FRP and total suspended solids (TSS) were mobilised, indicating that phosphorous export is directly related to sediment export regardless of the land use. The study outcomes contribute to the formulation of more effective stormwater management strategies to deal with the drivers of nutrients and TSS inputs resulting from modified land use types to minimise the urbanisation impacts on aquatic biota. In particular, the elevated dissolved nitrogen fractions from all the catchment types other than the forested catchment is a concern for receiving waters, as these can potentially impair water quality and impact the ecosystem health of downstream water bodies such as Intermittently Closed and Open Lakes or Lagoons (ICOLL). The stochastic nature of hydrology and corresponding nutrient loads should be prioritised in stormwater management action plans. However, as space limitations hinder the expansion of vegetation cover and retrofitting stormwater management devices, a paradigm shift in stormwater management is required to achieve the desired outcomes. The study outcomes further indicate that a one-size-fits-all approach to stormwater management may not deliver the desired outcomes, and a suite of tailor-made approaches targeting various flow conditions and catchment surface types is needed.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Ecosystem , Water Pollutants, Chemical/analysis , Water Movements , Phosphorus/analysis , Dissolved Organic Matter , Nitrogen/analysis , Rain
15.
J Environ Qual ; 52(6): 1115-1126, 2023.
Article in English | MEDLINE | ID: mdl-37573476

ABSTRACT

Bioretention cells, a type of green stormwater infrastructure, have been shown to reduce runoff volumes and remove a variety of pollutants. The ability of bioretention cells to remove nitrogen and phosphorus, however, is variable, and bioretention soil media can act as a net exporter of nutrients. This is concerning as excess loading of nitrogen and phosphorus can lead to eutrophication of surface waters, which green stormwater infrastructure is intended to ameliorate. Drinking water treatment residuals (DWTR), metal (hydr)oxide-rich by-products of the drinking water treatment process, have been studied as an amendment to bioretention soil media due to their high phosphorus sorption capacity. However, very few studies have specifically addressed the effects that DWTRs may have on nitrogen removal performance within bioretention cells. Here, we investigated the effects of DWTR amendment on nitrogen removal in bioretention cells treating stormwater in a roadside setting. We tested the capacity of three different DWTRs to either retain or leach dissolved inorganic nitrogen in the laboratory and also conducted a full-scale field experiment where DWTR-amended bioretention cells and experimental controls were monitored for influent and effluent nitrogen concentrations over two field seasons. We found that DWTRs alone exhibit some capacity to leach nitrate and ammonium, but when integrated into sand- and compost-based bioretention soil media, DWTRs have little to no effect on the removal of nitrogen in bioretention cells. These results suggest that DWTRs can be used in bioretention media for enhanced phosphorus retention without the risk of contributing to nitrogen export in bioretention effluent.


Subject(s)
Drinking Water , Nitrogen , Nitrogen/analysis , Denitrification , Phosphorus , Soil/chemistry , Rain
16.
PLoS One ; 18(8): e0289479, 2023.
Article in English | MEDLINE | ID: mdl-37535586

ABSTRACT

Investigating the impact of different factors on soil and nutrient loss and suggesting viable control measures is currently a significant concern. This study aims to examine the variations in soil erosion, as well as nitrogen and phosphorus loss, in the core area of the typical hilly diffuse Blackland erosion control. To achieve this, runoff plots with slopes of 3° and 5° were set up in the Sunjiagou sub-basin, located in the upper reaches of the Feiketu River. These plots were subjected to various soil and water conservation measures, along with different levels of vegetation cover. This study aims to analyze the soil and nutrient loss patterns and characteristics in each runoff plot during the natural rainfall events occurring between 2020 and 2022. The results show that soil and nutrient losses are highly significantly and positively correlated with rainfall intensity. The RUSLE model demonstrates a better fit for both cross ridge tillage and bare ground. The loss of nitrogen was much more significant than that of phosphorus, and nitrate nitrogen is the main form of nitrogen loss. Nitrogen loss is mainly dominated by nitrate nitrogen (NN), which is easily soluble in water and constantly migrates with runoff due to the negatively charged NN (NN accounted for 45.2% ~ 81.8% of total nitrogen (TN)). In contrast, the positively charged ammonia nitrogen (AN) is more stable in combination with the soil; large losses only occur under severe sediment erosion. Phosphorus is easily attached to sediment, and the high sediment production leads to a more serious loss of total phosphorus (PP) in the particulate state (PP accounts for 72.7% ~ 96.2% of total phosphorus (TP)). Changing longitudinal ridge tillage to cross ridge tillage and planting vegetation with better water retention and sediment fixation as plant hedges can effectively prevent the loss of soil, runoff, nitrogen, and phosphorus.


Subject(s)
Environmental Monitoring , Soil , Nitrates , Phosphorus/analysis , Nitrogen/analysis , Nutrients , Water , China , Water Movements , Rain
17.
Environ Sci Pollut Res Int ; 30(40): 92317-92331, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37488381

ABSTRACT

Ecological ditches are a typical ecological facility for controlling road stormwater runoff pollution; they mainly remove harmful pollutants from runoff through plant absorption, retention and sedimentation, ecological adsorption, and microbial action. In this paper, according to the transport form of rainwater in the ditches, the removal effects of two different types of ditches on nitrogen, phosphorus, heavy metals, and other pollutants were simulated under three conditions of rainfall, slow flow, and still water, respectively, and their operating characteristics were analyzed. The results showed that the removal rate of TN in the two ecological ditches under slow flow conditions showed a downward trend as a whole with the increase of hydraulic load, and the suitable hydraulic load for TN removal should be selected as 0.3 m3/(m2 day). Under the simulated rainfall conditions, the TN removal rates of no. 1 and no. 2 ditches were 26.1-37.2% and 24.9 ~ 52.5%, respectively, and the TP removal rates were 44.6 ~ 63.3% and 36.1 ~ 62.1%. After 19.4 h and 22.1 h in the static state, the TP concentration in no. 1 ditch and no. 2 ditch reached the surface V water standard, and the average removal rate of TP was 74.7% and 53.7%, respectively. This paper provides a reference for selecting suitable parameters and optimizing the operational performance of ecological ditches to reduce runoff pollutants more effectively.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water Movements , Water , Rain , Phosphorus/analysis , Nitrogen/analysis , Environmental Monitoring , China
18.
Water Res ; 243: 120386, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494741

ABSTRACT

Identifying sources of pollutants in watersheds is critical to accurately predicting stormwater quality. Many existing software used to model stormwater quality rely on decades-old data sets which may not represent current runoff quality in the United States. Because of environmental regulations promulgated at the federal level over previous decades, there is a need to understand long-term trends (and potential shifts) in runoff quality to better parameterize models. Pollutant event mean concentrations (EMCs) from the National Stormwater Quality Database (NSQD) were combined with those from recent sources to understand if untreated stormwater quality has changed over the past 40 years. A significant decreasing monotonic trend (i.e., continually decreasing in a nonuniform fashion) was observed for total suspended solids (TSS), total phosphorus (TP), total Kjeldahl nitrogen (TKN), total copper (Cu), total lead (Pb), and total zinc (Zn) in the resultant database, suggesting that runoff quality has become less polluted with time. Median EMCs decreased from 99.2 to 42 mg/L, 0.34 to 0.26 mg/L, 1.27 to 1.03 mg/L, 40 to 6.8 µg/L, 110 to 3.7 µg/L, and 375 to 53.3 µg/L for TSS, TP, TN, Cu, Pb, and Zn, respectively, from the 1980s to the 2010s. These significant reductions often aligned temporally with advancements in clean manufacturing, amendments of the Clean Air Act, and other source control efforts which impact pollutant bioavailability and atmospheric deposition. Results suggest environmental regulations not specifically targeting stormwater management have had a positive impact on stormwater quality and that temporal fluctuations should be considered in modeling.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , United States , Water Pollutants, Chemical/analysis , Lead , Zinc/analysis , Phosphorus , Environmental Monitoring/methods , Rain , Water Movements
19.
J Environ Manage ; 344: 118542, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37393873

ABSTRACT

The sand and gravel fillers used in traditional bioretention cells are expensive and becoming increasingly scarce, and their performance is unstable. It is important to find a stable, reliable, and low-cost alternative filler for bioretention facilities. Using cement as a modified loess filler for bioretention cells is a low-cost and easily obtainable alternative. The loss rate and anti-scouring index of the cement-modified loess (CM) were analyzed under different curing times, cement addition amount, and compactness control conditions. This study found that the stability and strength of the cement-modified loess in water with a density of not less than 1.3 g/cm3, a curing time, of not less than 28 d and a cement addition amount not less than 10% meets the use requirements of the bioretention cell filler. X-ray diffraction and Fourier transform infrared spectroscopy of cement-modified materials with a 10% cement addition and a curing time of 28 days (CM28) and 56 days (CM56). Cement-modified materials with 2% straw and a curing time of 56 days (CS56) showed that the three kinds of modified loess all contain calcium carbonate and that the surface contains hydroxyl and amino functional groups that can effectively remove phosphorus. The specific surface areas of the CM56, CM28, and CS56 samples were 12.53 m2/g, 24.731 m2/g, and 26.252 m2/g, respectively, which are significantly higher than that of sand (0.791 m2/g). At the same time, the adsorption capacity of the ammonia nitrogen and the phosphate that was present in the three modified materials is better than that of sand. CM56, like sand, has rich microbial communities, which can entirely remove nitrate nitrogen in water under anaerobic conditions, indicating that CM56 can be used as an alternative filler for bioretention cells. The production of cement-modified loess is simple and cost-effective, and using modified loess as a filler can reduce the use of stone resources or other on-site materials. Current methods for improving the filler of bioretention cells are mainly based on sand. This experiment used loess to improve the filler. The performance of loess is better than sand, and can completely replace sand as the filler in bioretention cells.


Subject(s)
Sand , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phosphorus , Water , Nitrogen , Rain
20.
Environ Sci Pollut Res Int ; 30(36): 85446-85465, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37391556

ABSTRACT

Changes in natural rainfall characterized by heavy precipitation and high rainfall intensity would increase the risks and uncertainty of nutrients losses. Losses of nitrogen (N) and phosphorus (P) with water erosion from agriculture-related activities has become the principal nutrients resulting the eutrophication of water bodies. However, a little attention has been paid to the loss characteristic of N and P responding to natural rainfall in widely used contour ridge systems. To explore the loss mechanism of N and P in contour ridge system, nutrient loss associated with runoff and sediment yield was observed in in situ runoff plots of sweet potato (SP) and peanut (PT) contour ridges under natural rainfall. Rainfall events were divided into light rain, moderate rain, heavy rain, rainstorm, large rainstorm, and extreme rainstorm level, and rainfall characteristics for each rainfall level were recorded. Results showed that rainstorm, accounting for 46.27% of the total precipitation, played a destructive role in inducing runoff, sediment yield, and nutrient loss. The average contribution of rainstorm to sediment yield (52.30%) was higher than that to runoff production (38.06%). Rainstorm respectively generated 43.65-44.05% of N loss and 40.71-52.42% of P loss, although light rain induced the greatest enrichment value for total nitrogen (TN, 2.44-4.08) and PO4-P (5.40). N and P losses were dominated by sediment, and up to 95.70% of the total phosphorus and 66.08% of TN occurred in sediment. Nutrient loss exhibited the highest sensitivity to sediment yield compared to runoff and rainfall variables, and a significant positive linear relationship was observed between nutrient loss and sediment yield. SP contour ridge presented higher nutrient loss than that in PT contour ridge, especially for P loss. Findings gained in this study provide references for the response strategies of nutrient loss control to natural rainfall change in contour ridge system.


Subject(s)
Phosphorus , Water Movements , Phosphorus/analysis , Water , China , Rain , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL