Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 33, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334837

ABSTRACT

Plant probiotics are live microbial cells or cultures that support plant growth and control plant pathogens through different mechanisms. They have various effects on plants, including plant growth promotion through the production of indole acetic acid (IAA), biological control activity (BCA), and production of cellulase enzymes, thus inducing systemic resistance and increasing the availability of mineral elements. The present work aimed to study the potential of Achromobacter marplatensis and Bacillus velezensis as plant probiotics for the field cultivation of potatoes. In vitro studies have demonstrated the ability of selected probiotics to produce IAA and cellulase, as well as antimicrobial activity against two plant pathogens that infect Solanum tuberosum as Fusarium oxysporum and Ralstonia solanacearum under different conditions at a broad range of different temperatures and pH values. In vivo study of the effects of the probiotics A. marplatensis and B. velezensis on S. tuberosum plants grown in sandy clay loamy soil was detected after cultivation for 90 days. Probiotic isolates A. marplatensis and B. velezensis were able to tolerate ultraviolet radiation (UV) exposure for up to two hours, the dose response curve exhibited that the D10 values of A. marplatensis and B. velezensis were 28 and 16 respectively. In the case of loading both probiotics with broth, the shoot dry weight was increased significantly from 28 in the control to 50 g, shoot length increased from 24 to 45.7 cm, branches numbers increased from 40 to 70 branch, leaves number increased from 99 to 130 leaf, root dry weight increased from 9.3 to 12.9 g, root length increased from 24 to 35.7 cm, tuber weight increased from 15 to 37.0 g and tubers number increased from 9 to 24.4 tuber, the rot percentage was reduced to 0%. The addition of both probiotic isolates, either broth or wheat grains load separately has enhanced all the growth parameters; however, better results and increased production were in favor of adding probiotics with broth more than wheat. On the other hand, both probiotics showed a remarkable protective effect against potato pathogens separately and reduced the negative impact of the infection using them together.


Subject(s)
Cellulases , Fusarium , Ralstonia solanacearum , Solanum tuberosum , Ultraviolet Rays , Plants , Cellulases/pharmacology , Plant Diseases/prevention & control
2.
mSphere ; 9(2): e0066523, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38231250

ABSTRACT

This study investigated the change in the microbiome of tomato rhizosphere soils after the invasion of Ralstonia solanacearum and analyzed the correlation between microbes and soil physicochemical properties. Diversity analyses of the bacteria in healthy and diseased rhizosphere soil samples (HRS and DRS) revealed that HRS had a higher species diversity and were compositionally different from DRS (P ≤ 0.05). Substantial differences in the relative abundance of Actinobacteria (37.52% vs 28.96%, P ≤ 0.05) and Proteobacteria (29.20% vs 35.59%, P ≤ 0.05) were identified in HRS and DRS, respectively. Taxonomic composition analysis showed ten differentially abundant genera, and seven of them (Gaiella, Roseisolibacter, Solirubrobacter, Kribbella, Acidibacter, Actinomarinicola, and Marmoricola) are more abundant in HRS. Soil pH and enzyme activities were negatively correlated with the abundance of R. solanacearum. The contents of total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (alkaline N), available phosphorus (AP), available potassium (AK), NO3-N(NN), NH4+-N (AN), and organic matter (OM) were all significantly increased in DRS. The composition and richness of protozoa in the samples show significant differences. Cephalobus, Acrobeles, Heteromita, norank_Tylenchida, and Rotylenchulus were enriched in DRS. Microbial interaction networks revealed that the HRS networks were more complex than the DRS networks. Overall, the results of this study demonstrate that healthy soil has a more complex microbial community structure and higher enzyme activity, and the invasion of R. solanacearum damages the soil microbial system.IMPORTANCEHow does the invasion of Ralstonia solanacearum affect tomato rhizosphere bacteria and protozoa? Which microbial changes can affect the growth of R. solanacearum? To date, most research studies focus on bacteria, with little research on protozoa, and even less on the synergistic effects between protozoa and bacteria. Here, we analyzed the correlation between tomato rhizosphere bacterial and protozoan communities and soil physicochemical properties during the invasion of R. solanacearum. We found that the diversity and abundance of rhizosphere microorganisms in healthy rhizosphere soil samples (HRS) were significantly higher than those in diseased rhizosphere soil samples (DRS), and there were significant changes in soil pH and enzyme activity. Overall, in this study, the analysis of microbial changes during the invasion of R. solanacearum provides a theoretical basis for the prevention and control of bacterial wilt.


Subject(s)
Microbiota , Ralstonia solanacearum , Solanum lycopersicum , Soil/chemistry , Soil Microbiology , Bacteria , China , Nitrogen , Phosphorus , Potassium
3.
Plant J ; 116(5): 1342-1354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37614094

ABSTRACT

Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/genetics , Ralstonia solanacearum/physiology , Trypsin Inhibitors/metabolism , Plant Vascular Bundle , Plants , Plant Diseases
4.
Genes (Basel) ; 14(6)2023 05 27.
Article in English | MEDLINE | ID: mdl-37372350

ABSTRACT

The NPR1 (nonexpressor of pathogenesis-related genes 1) gene is an activator of the systemic acquisition of resistance (SAR) in plants and is one of the central factors in their response to pathogenic bacterial infestation, playing an important role in plant disease resistance. Potato (Solanum tuberosum) is a crucial non-grain crop that has been extensively studied. However, the identification and analysis of the NPR1-like gene within potato have not been understood well. In this study, a total of six NPR1-like proteins were identified in potato, and phylogenetic analysis showed that the six NPR1-like proteins in Solanum tuberosum could be divided into three major groups with NPR1-related proteins from Arabidopsis thaliana and other plants. Analysis of the exon-intron patterns and protein domains of the six NPR1-like genes from potato showed that the exon-intron patterns and protein domains of the NPR1-like genes belonging to the same Arabidopsis thaliana subfamily were similar. By performing quantitative real-time PCR (qRT-PCR) analysis, we found that six NPR1-like proteins have different expression patterns in different potato tissues. In addition, the expression of three StNPR1 genes was significantly downregulated after being infected by Ralstonia solanacearum (RS), while the difference in the expression of StNPR2/3 was insignificant. We also established potato StNPR1 overexpression lines that showed a significantly increased resistance to R. solanacearum and elevated activities of chitinase, ß-1,3-glucanase, and phenylalanine deaminase. Increased peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities, as well as decreased hydrogen peroxide, regulated the dynamic balance of reactive oxygen species (ROS) in the StNPR1 overexpression lines. The transgenic plants activated the expression of the genes associated with the Salicylic acid (SA) defense response but suppressed the expression of the genes associated with Jasmonic acid (JA) signaling. This resulted in resistance to Ralstonia solanacearum.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ralstonia solanacearum , Solanum tuberosum , Ralstonia solanacearum/physiology , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Arabidopsis/genetics , Arabidopsis/microbiology , Phylogeny , Plants, Genetically Modified , Arabidopsis Proteins/metabolism
5.
Mol Plant Pathol ; 24(8): 947-960, 2023 08.
Article in English | MEDLINE | ID: mdl-37154802

ABSTRACT

Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Virulence , Solanum tuberosum/genetics , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Plants, Genetically Modified/metabolism
6.
Viruses ; 15(4)2023 03 25.
Article in English | MEDLINE | ID: mdl-37112822

ABSTRACT

Ralstonia solanacearum is the causal agent of bacterial wilt, one of the most destructive diseases of solanaceous plants, affecting staple crops worldwide. The bacterium survives in water, soil, and other reservoirs, and is difficult to control. In this sense, the use of three specific lytic R. solanacearum bacteriophages was recently patented for bacterial wilt biocontrol in environmental water and in plants. To optimize their applications, the phages and the bacterium need to be accurately monitored and quantified, which is laborious and time-consuming with biological methods. In this work, primers and TaqMan probes were designed, and duplex and multiplex real-time quantitative PCR (qPCR) protocols were developed and optimized for the simultaneous quantification of R. solanacearum and their phages. The quantification range was established from 108 to 10 PFU/mL for the phages and from 108 to 102 CFU/mL for R. solanacearum. Additionally, the multiplex qPCR protocol was validated for the detection and quantification of the phages with a limit ranging from 102 targets/mL in water and plant extracts to 103 targets/g in soil, and the target bacterium with a limit ranging from 103 targets/mL in water and plant extracts to 104 targets/g in soil, using direct methods of sample preparation.


Subject(s)
Bacteriophages , Ralstonia solanacearum , Bacteriophages/genetics , Real-Time Polymerase Chain Reaction , Plant Diseases/microbiology , Crops, Agricultural
7.
World J Microbiol Biotechnol ; 39(7): 176, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115313

ABSTRACT

Due to an inevitable disadvantage of chemical or physical synthesis routes, biosynthesis approach to nanoparticles, especially metallic oxide is attractive nowadays. Metallic oxides nanoparticles present a new approach to the control of plant pathogens. ZnO nanoparticles (ZNPs) have very important role in phytopathology. In current study, biosynthesized ZNPs were tested against two devastating bacterial pathogens including Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato. ZNPs were produced using a new extract from the plant Picea smithiana using an environmentally friendly, cost-effective and simple procedure. Zinc acetate was added to P. smithiana extract, stirred and heated to 200 °C. The white precipitation at the bottom were clear indication of synthesis of nanoparticles, which were further dried by subjecting them at 450 °C. X-ray diffraction pattern determined that the ZNPs had a crystallite size of about 26 nm, Fourier transform infrared spectroscopy indicated a peak between 450 and 550 cm-1 and the particle size estimated by dynamic light scattering was about 25 nm on average. Scanning electron microscopic analysis indicated that the particles were hexagonal in shape 31 nm in diameter. Antibacterial tests showed ZNPs synthesized by P. smithiana resulted in clear inhibition zones of 20.1 ± 1.5 and 18.9 ± 1.5 mm and 44.74 and 45.63% reduction in disease severity and 78.40 and 80.91% reduction in disease incidence in X. compestris pv. vesicatoria and R. solanacearum respectively at concentration of 100 µg/ml. Our findings reveal that the concentration of ZNPs was important for their efficient antibacterial activity. Overall, the biosynthesized ZNPs have been found to have effective antimicrobial activities against bacterial wilt and bacterial leaf spot in tomato.


Subject(s)
Metal Nanoparticles , Picea , Ralstonia solanacearum , Solanum lycopersicum , Xanthomonas campestris , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
8.
J Exp Bot ; 74(14): 4208-4224, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37086267

ABSTRACT

Potato (Solanum tuberosum) is an important crop globally and is grown across many regions in China, where it ranks fourth in the list of staple foods. However, its production and quality are severely affected by bacterial wilt caused by Ralstonia solanacearum. In this study, we identified StTOPP6, which belongs to the type one protein phosphatase (TOPP) family, and found that transient knock down of StTOPP6 in potato increased resistance against R. solanacearum. RNA-seq analysis showed that knock down of StTOPP6 activated immune responses, and this defense activation partly depended on the mitogen-activated protein kinase (MAPK) signal pathway. StTOPP6 inhibited the expression of StMAPK3, while overexpression of StMAPK3 enhanced resistance to R. solanacearum, supporting the negative role of StTOPP6 in plant immunity. Consistent with the results of knock down of StTOPP6, overexpressing the phosphatase-dead mutation StTOPP6m also attenuated infection and up-regulated MAPK3, showing that StTOPP6 activity is required for disease. Furthermore, we found that StTOPP6 affected the StMAPK3-mediated downstream defense pathway, eventually suppressing the accumulation of reactive oxygen species (ROS). Consistent with these findings, plants with knock down of StTOPP6, overexpression of StTOPP6m, and overexpression of StMAPK3 all displayed ROS accumulation and enhanced resistance to R. solanacearum. Taken together, the findings of our study demonstrate that StTOPP6 negatively regulates resistance to bacterial wilt by affecting the MAPK3-mediated pathway.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Ralstonia solanacearum/physiology , Signal Transduction , Phosphoprotein Phosphatases/metabolism , Plant Diseases/microbiology , Disease Resistance/genetics
9.
J Appl Microbiol ; 133(4): 2642-2654, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35892189

ABSTRACT

AIMS: The current study aimed to determine the chemical compositions of ginger extract (GE) and to assess the antibacterial activities of GE against the ginger bacterial wilt pathogen Ralstonia solanacearum and to screen their mechanisms of action. METHODS AND RESULTS: A total of 393 compounds were identified by using ultra-performance liquid chromatography and tandem-mass spectrometry. The antibacterial test indicated that GE had strong antibacterial activity against R. solanacearum and that the bactericidal effect exhibited a dose-dependent manner. The minimum inhibitory concentration and minimum bactericidal concentration of R. solanacearum were 3.91 and 125 mg/ml, respectively. The cell membrane permeability and integrity of R. solanacearum were destroyed by GE, resulting in cell content leakage, such as electrolytes, nucleic acids, proteins, extracellular adenosine triphosphate and exopoly saccharides. In addition, the activity of cellular succinate dehydrogenase and alkaline phosphatase of R. solanacearum decreased gradually with an increase in the GE concentration. Scanning electron microscopy analysis revealed that GE treatment changed the morphology of the R. solanacearum cells. Further experiments demonstrated that GE delayed or slowed the occurrence of bacterial wilt on ginger. CONCLUSIONS: GE has a significant antibacterial effect on R. solanacearum, and the antibacterial effect is concentration dependent. The GE treatments changed the morphology, destroyed membrane permeability and integrity, reduced key enzyme activity and inhibit the synthesis of the virulence factor EPS of R. solanacearum. GE significantly controlled the bacterial wilt of ginger during infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides insight into the antimicrobial mechanism of GE against R. solanacearum, which will open a new application field for GE.


Subject(s)
Nucleic Acids , Ralstonia solanacearum , Solanum lycopersicum , Zingiber officinale , Adenosine Triphosphate , Alkaline Phosphatase/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Extracts , Succinate Dehydrogenase/pharmacology , Virulence Factors
10.
Phytopathology ; 112(10): 2072-2083, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35522048

ABSTRACT

Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with bacterial wilt of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation. The pathogen was phylotyped by multiplex PCR and 536 RSSC strains typed at a sequevar level. Two RSSC phylotypes were identified, phylotype II (98.4%, n = 506 [sequevar 1 (n = 505) and sequevar 2 (n = 1)]) and phylotype I (1.6%, n = 30 [sequevar 13 (n = 9) and a new sequevar (n = 21)]). The phylotype II sequevar 1 strains were haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. The TRST scheme identified 51 TRST profiles within the phylotype II sequevar 1 strains with a modest diversity index (HGDI = 0.87), confirming the epidemic clonality of RSSC phylotype II sequevar 1 strains in Kenya. A minimum spanning tree and mapping of the TRST profiles revealed that TRST27 '8-5-12-7-5' is the primary founder of the clonal complex of RSSC phylotype II sequevar 1 and is widely distributed via latently infected seed tubers. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Kenya/epidemiology , Phylogeny , Plant Diseases/microbiology , Ralstonia , Ralstonia solanacearum/genetics , Solanum tuberosum/microbiology
11.
Mol Genet Genomics ; 297(4): 1081-1100, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35616707

ABSTRACT

Eucalyptus urophylla is an economically important tree species that widely planted in tropical and sub-tropical areas around the world, which suffers significant losses due to Ralstonia solanacearum. However, little is known about the molecular mechanism of pathogen-response of Eucalyptus. We collected the vascular tissues of a E. urophylla clone infected by R. solanacearum in the laboratory, and combined transcriptome and metabolome analysis to investigate the defense responses of Eucalyptus. A total of 11 flavonoids that differentially accumulated at the first stage or a later stage after infection. The phenylpropanoid of p-coumaraldehyde, the two alkaloids trigonelline and DL-ephedrine, two types of traditional Chinese medicine with patchouli alcohol and 3-dihydrocadambine, and the amino acid phenylalanine were differentially accumulated after infection, which could be biomarkers indicating a response to R. solanacearum. Differentially expressed genes involved in plant hormone signal transduction, phenylpropanoids, flavonoids, mitogen-activated protein kinase (MAPK) signaling, and amino acid metabolism were activated at the first stage of infection or a later stage, indicating that they may participate in the defense against infection. This study is expected to deliver several insights into the molecular mechanism in response to pathogens in E. urophylla, and the findings have far-reaching implications in the control of E. urophylla pathogens.


Subject(s)
Eucalyptus , Ralstonia solanacearum , Amino Acids/genetics , Clone Cells/metabolism , Eucalyptus/genetics , Flavonoids/metabolism , Metabolome/genetics , Plant Diseases/genetics , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Transcriptome/genetics
12.
Mol Plant Pathol ; 23(5): 679-692, 2022 05.
Article in English | MEDLINE | ID: mdl-35122373

ABSTRACT

A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in R. solanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of R. solanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for R. solanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of R. solanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Virulence/genetics
13.
J Appl Microbiol ; 132(5): 3694-3704, 2022 May.
Article in English | MEDLINE | ID: mdl-35064994

ABSTRACT

AIMS: Because of severe economic losses and food security concerns caused by plant pathogenic bacteria, Ralstonia solanacearum, there is a need to develop novel control methods. This study was aimed to green synthesize the zinc oxide nanoparticles (ZnO NPs) through Withania coagulans leaf extracts and checked their antibacterial potential alone or in combination with W. coagulans leaf extract for the management of R. solanacearum causing bacterial wilt disease in tomato. METHODS AND RESULTS: ZnO NPs were synthesized through an eco-friendly approach using leaves extract of W. coagulans and characterized through various spectroscopic approaches, that is Fourier transform infrared spectroscopic, UV-visible spectroscopy and energy dispersive spectroscopy. The antibacterial effect of W. coagulans leaf extract and ZnO NPs alone and in combination was tested in vitro and in vivo against bacterial wilt pathogen in tomato plants. The results showed that combine application of leaf extract and ZnO NPs inhibited in vitro growth of R. solanacearum more than applying alone. Three application times (0, 6 and 12 days before transplantation) of leaf extract, ZnONPs and their combine application were tested in vivo. The combine treatment and longest application time (12 days before transplantation) were more effective in suppressing soil population of R. solanacearum, reducing disease severity and enhancing plant growth than applying alone and smaller application time. CONCLUSION: It is concluded that W. coagulans leaf extract and ZnO NPs have strong antibacterial potential against R. solanacearum in vitro and in vivo. SIGNIFICANCE AND IMPACT OF STUDY: The results of this study suggest the potential application of leaf extract and ZnO nanoparticles for controlling R. solanacearum as safe, eco-friendly and less expensive integrated disease management strategy in tomato crop.


Subject(s)
Nanoparticles , Ralstonia solanacearum , Solanum lycopersicum , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Soil , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
14.
Plant Dis ; 106(6): 1736-1742, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34962417

ABSTRACT

Ralstonia solanacearum is a pathogen causing bacterial wilt disease of potato, resulting in 70% potato production losses in Kenya. A study was conducted to determine the diversity of R. solanacearum species complex strains within the main potato-growing regions of Kenya. Potato tubers were collected in different potato-growing regions of Kenya from visibly wilted potato plants as well as samples of tomato, irrigation water, and cultures for pathogen isolation. Genomic DNA was isolated from 135 purified cultures of RSSC isolates and PCR-amplified using multiplex and sequevar primers targeting the endoglucanase (egl) partial gene sequences. Pathogenicity tests using R. solanacearum strain (phylotype II sequevar I) were done on the cultivars Kenya Karibu, Shangi, Chulu, Wanjiku, and MoneyMaker. Phylogenetic analysis of the partial egl gene identified two genospecies, R. pseudosolanacearum sp. nov. (1.5%) and R. solanacearum (98.5%). All R. solanacearum strains clustered in sequevar I and were distributed in all the potato-growing regions surveyed. The cultivars were grown in a greenhouse for two cycles in a randomized complete block design and inoculated with R. solanacearum strain. The severity scores were assessed and the area under the disease progress curve (AUDPC) was determined. All the cultivars tested for pathogenicity exhibited wilting symptoms at varying intervals after infection, with none showing complete resistance to R. solanacearum. Cultivar Shangi exhibited minimum disease severity and progression of 41.14% and AUDPC of 1041.7, respectively, while 'Kenya Karibu' was the most susceptible with a high progression rate of 68.24% and AUDPC of 1897.5, respectively. 'MoneyMaker', 'Chulu', and 'Wanjiku' showed no significant difference in disease severity, depicting a simultaneous rate of infection among them. These findings provide valuable information to better understand the pathogen genetic diversity in Kenya and how it spreads.


Subject(s)
Phylogeny , Plant Diseases , Ralstonia solanacearum , Solanum tuberosum , Kenya , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Solanum tuberosum/microbiology
15.
Planta ; 254(5): 96, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34655339

ABSTRACT

MAIN CONCLUSION: NB-LRR genes in the three Solanum species showed specific constitution characteristics and evolved multiple clusters and duplicates. Some genes could respond to biotic stresses such as tomato bacterial wilt. Nucleotide-binding and leucine-rich repeat (NB-LRR, NLR) is a largest resistance gene family in plants, which plays a key role in response to biotic stresses. In this study, NB-LRR genes in cultivated tomato Solanum lycopersicum (Sl) and its wild relatives S. pennellii (Spe) and S. pimpinellifolium (Spi) were analyzed using bioinformatics approaches. In total, 238, 202 and 217 NB-LRR genes of 8 different types were found in Sl, Spe and Spi, respectively. The three species showed similar genomic characteristics. The NB-LRR genes were mainly distributed on chromosomes 4, 5 and 11 and located at the distal zones, forming multiple clusters and tandem duplicates. A large number of homologs appeared through gene expansion, with most Ka/Ks values being less than 1, indicating that purifying selection had occurred in evolution. These genes were mainly expressed in root and could respond to different biotic stresses. RT-qPCR analysis revealed that SlNLR genes could respond to tomato bacterial wilt, with SlNLR1 probably involved in the resistance response, whereas others being the opposite. The transcription factors (TFs) and interaction proteins that regulate target genes were mainly Dof, NAC and MYB families and kinases. The results provide a basis for the isolation and application of related genes in plant disease resistance breeding.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum , Solanum lycopersicum/genetics , Plant Breeding , Plant Diseases/genetics , Plant Proteins/genetics , Solanum/genetics
16.
Methods Mol Biol ; 2354: 375-385, 2021.
Article in English | MEDLINE | ID: mdl-34448170

ABSTRACT

Potato bacterial wilt is caused by the devastating bacterial pathogen Ralstonia solanacearum. Quantitative resistance to this disease has been and is currently introgressed from a number of wild relatives into cultivated varieties through laborious breeding programs. Here, we present two methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato. The first one uses R. solanacearum reporter strains constitutively expressing the luxCDABE operon or the green fluorescent protein (gfp) to follow pathogen colonization in potato germplasm. Luminescent strains are used for nondestructive live imaging, while fluorescent ones enable precise pathogen visualization inside the plant tissues through confocal microscopy. The second method is a BIO-multiplex-PCR assay that is useful for sensitive and specific detection of viable R. solanacearum (IIB-1) cells in latently infected potato plants. This BIO-multiplex-PCR assay can specifically detect IIB-1 sequevar strains as well as strains belonging to all four R. solanacearum phylotypes and is sensitive enough to detect without DNA extraction ten bacterial cells per mL in complex samples.The described methods allow the detection of latent infections in roots and stems of asymptomatic plants and were shown to be efficient tools to assist potato breeding programs.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Multiplex Polymerase Chain Reaction , Operon , Plant Diseases , Ralstonia solanacearum/genetics
17.
Methods Mol Biol ; 2354: 401-413, 2021.
Article in English | MEDLINE | ID: mdl-34448172

ABSTRACT

The Ralstonia solanacearum species complex (RSSC) is composed of several Ralstonia species and strains that are little related and show varied host range and distinct geographic distributions. The RSSC causes wilt disease, and can thus have severe economic consequences for many important crops and ornamental plants. One such is potato (Solanum tuberosum), where infection causes brown rot of the tubers. It is important that symptomatic tubers and plants can be rapidly and easily tested, as exclusion of infected material is a cornerstone of management of bacterial diseases. A suitable method is loop-mediated isothermal amplification, a rapid, DNA-based method that can be used for specific detection of plant pathogens in infected materials. The combination of this loop-mediated isothermal amplification assay for the RSSC with a simple sample preparation method is fit for purpose for identification of this devastating disease in symptomatic tubers and plants. This methodology is rapid and cost efficient, and can be carried out outside of conventional laboratory facilities.


Subject(s)
Ralstonia solanacearum , Solanum tuberosum , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Plant Diseases , Ralstonia solanacearum/genetics
18.
J Biosci ; 462021.
Article in English | MEDLINE | ID: mdl-34373368

ABSTRACT

Wilting of potato plants with an incidence of 20-30 % was observed for the first time in the agricultural farms of Andaman Islands, India. The infected plants showed wilting syndrome that included downward drooping of leaves, yellowing, and collapse of the entire plants. Characteristic milky-white exudate from the infected stem indicated bacterial etiology of the disease. Upon streaking onto 2, 3, 5 triphenyl-tetrazolium chloride amended nutrient medium, the bacterial exudate yielded characteristic creamy-white, fluidal, irregular colonies with the pink center. Upon inoculation, the randomly picked bacterial colonies, AN_PRSGr and AN_PRSCh, representing the two locations, incited wilt symptoms on one-month-old potato plants. The host range studies revealed that the isolates were pathogenic on tomato and eggplant but non-pathogenic to chili and Solanum torvum (wild eggplant). The 16S rRNA gene sequencing and the Ralstonia-specific PCR test confirmed the identity of AN_PRSGr and AN_PRSCh as Ralstonia solanacearum. Intra-species level classification revealed their identity as strains of race 1, biovar 3, and phylotype-I. Multilocus sequence typing (MLST)-based in-depth sequence alignment for phylogenetic analysis revealed the isolates AN_PRSGr and AN_PRSCh clustered with two mainland race 1/biovar 3/phylotype-I isolates of Kerala, India. However, the allelic profile-based goeBURST-analysis placed them as singletons in the global collection of Ralstonia solanacearum, conforming intra-racial/ intra-phylotype diversity within race 1/biovar3/phylotype-I strains. The molecular characterization.


Subject(s)
Agriculture , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/isolation & purification , Solanum tuberosum/microbiology , India , Multilocus Sequence Typing
19.
Mol Plant Microbe Interact ; 34(10): 1212-1215, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34232701

ABSTRACT

We share whole genome sequences of six strains from the Ralstonia solanacearum species complex, a diverse group of Betaproteobacteria that cause plant vascular wilt diseases. Using single-molecule real-time technology, we sequenced and assembled full genomes of Rs5 and UW700, two phylotype IA-sequevar 7 (IIA-7) strains from the southeastern United States that are closely related to the R. solanacearum species type strain, K60, but were isolated >50 years later. Four sequenced strains from Africa include a soil isolate from Nigeria (UW386, III-23), a tomato isolate from Senegal (UW763, I-14), and two potato isolates from the Madagascar highlands (RUN2474, III-19 and RUN2279, III-60). This resource will support studies of the genetic diversity, ecology, virulence, and microevolution of this globally distributed group of high-impact plant pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum tuberosum , Phylogeny , Plant Diseases , Ralstonia , Ralstonia solanacearum/genetics
20.
Plant Sci ; 307: 110877, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33902863

ABSTRACT

Multiprotein bridging factor 1 (MBF1) is a transcription coactivator that has a general defense response to pathogens. However, the regulatory mechanisms of MBF1 resistance bacterial wilt remain largely unknown. Here, the role of StMBF1c in potato resistance to Ralstonia solanacearum infection was characterized. qRT-PCR assays indicated that StMBF1c could was elicited by SA, MJ and ABA and the time-course expression pattern of the StMBF1c gene induced by R. solanacearum was found to be twice significant upregulated expression during the early and middle stages of bacterial wilt. Combined with the co-expression analysis of disease-resistant marker genes, gain-of-function and loss-of-function assays demonstrated that StMBF1c was associated with defence priming. Overexpression or silencing the MBF1c could enhance plants resistance or sensitivity to R. solanacearum through inducing or reducing NPR and PR genes related to SA signal pathway. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiment results confirmed the interaction of StMBF1c with StTPS5 which played a key role in ABA signal pathway in potato. It is speculated that by combining StTPS5 and resistance marker genes, StMBF1c is activated twice to participate in potato bacterial wilt resistance, in which EPI, PTI involved.


Subject(s)
Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Ralstonia solanacearum , Solanum tuberosum/genetics , Solanum tuberosum/microbiology , Up-Regulation/genetics , Up-Regulation/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Markers , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL