Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Comp Neurol ; 530(16): 2835-2851, 2022 11.
Article in English | MEDLINE | ID: mdl-35770983

ABSTRACT

The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.


Subject(s)
Receptor, Melanocortin, Type 3 , Sex Characteristics , Animals , Brain/metabolism , Female , Hypothalamus/metabolism , Male , Melanocortins , Mice , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism
2.
Nature ; 599(7885): 436-441, 2021 11.
Article in English | MEDLINE | ID: mdl-34732894

ABSTRACT

The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development1. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure2. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes. We found that humans who carry loss-of-function mutations in MC3R, including a rare homozygote individual, have a later onset of puberty. Consistent with previous findings in mice, they also had reduced linear growth, lean mass and circulating levels of IGF1. Mice lacking Mc3r had delayed sexual maturation and an insensitivity of reproductive cycle length to nutritional perturbation. The expression of Mc3r is enriched in hypothalamic neurons that control reproduction and growth, and expression increases during postnatal development in a manner that is consistent with a role in the regulation of sexual maturation. These findings suggest a bifurcating model of nutrient sensing by the central melanocortin pathway with signalling through MC4R controlling the acquisition and retention of calories, whereas signalling through MC3R primarily regulates the disposition of calories into growth, lean mass and the timing of sexual maturation.


Subject(s)
Child Development/physiology , Nutritional Status/physiology , Puberty/physiology , Receptor, Melanocortin, Type 3/metabolism , Sexual Maturation/physiology , Adolescent , Aged, 80 and over , Animals , Child , Estrous Cycle/genetics , Estrous Cycle/physiology , Female , Homozygote , Humans , Hypothalamus/cytology , Hypothalamus/physiology , Insulin-Like Growth Factor I/metabolism , Male , Melanocortins/metabolism , Menarche/genetics , Menarche/physiology , Mice , Phenotype , Puberty/genetics , Receptor, Melanocortin, Type 3/deficiency , Receptor, Melanocortin, Type 3/genetics , Sexual Maturation/genetics , Time Factors , Weight Gain
3.
Mol Metab ; 53: 101317, 2021 11.
Article in English | MEDLINE | ID: mdl-34400348

ABSTRACT

OBJECTIVE: Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally alters the normal functioning of these receptors and mediates their responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system (CNS). However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS: We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS: Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS: This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.


Subject(s)
Melanocortins/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Hypothalamus/metabolism , Mice , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/genetics , Signal Transduction
4.
Article in English | MEDLINE | ID: mdl-34119636

ABSTRACT

Ferulic acid (FA) is a phenolic acid found within the plant cell wall that has physiological benefits as an antioxidant. Although metabolic benefits of FA supplementation are described, lacking are reports of effects on appetite regulation. Thus, our objective was to determine if FA affects food or water intake, using chicks as a model. At 4 days post-hatch, broiler chicks were intraperitoneally injected with 0 (vehicle), 12.5, 25, or 50 mg/kg of FA. Chicks treated with 50 mg/kg of FA consumed 70% less food than controls at 30 min post-injection, and the effect dissipated thereafter. Water intake was not affected at any time. In a behavior analysis, FA-treated chicks defecated fewer times than vehicle-injected chicks, while other behaviors were not affected. There was an increase in c-Fos immunoreactivity within the hypothalamic arcuate nucleus (ARC) of FA-treated chicks, and no differences were detected in other nuclei. mRNA abundance was measured in the whole hypothalamus and the ARC. There was decreased hypothalamic galanin, ghrelin, melanocortin receptor 3, and pro-opiomelanocortin (POMC) mRNA in FA-treated chicks. Within the ARC, there was an increase in c-Fos mRNA and a decrease in POMC mRNA in response to FA. It is likely that the mechanism responsible for mediating FA's transient effects on food intake originates within the ARC, possibly involving POMC. A greater understanding of the short-term, mild appetite-suppressive effects of FA may have applications to treating eating disorders and modulating food intake in animal models of obesity.


Subject(s)
Chickens/metabolism , Coumaric Acids/chemistry , Phytochemicals/chemistry , Animals , Animals, Newborn , Anorexia/chemically induced , Apoptosis , Appetite , Appetite Regulation , Arcuate Nucleus of Hypothalamus/metabolism , Behavior, Animal , Coumaric Acids/pharmacology , Disease Models, Animal , Drinking/drug effects , Galanin/metabolism , Ghrelin/metabolism , Hypothalamus/metabolism , Pro-Opiomelanocortin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Melanocortin, Type 3/metabolism , Signal Transduction
5.
Sci Transl Med ; 13(590)2021 04 21.
Article in English | MEDLINE | ID: mdl-33883274

ABSTRACT

Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans. MC3R deletion produced multiple forms of sexually dimorphic anorexia that resembled aspects of human anorexia nervosa. However, there was no sexual dimorphism in the expression of MC3R in AgRP neurons, 97% of which expressed MC3R. Chemogenetic manipulation of arcuate MC3R neurons and pharmacologic manipulation of MC3R each exerted potent bidirectional regulation over feeding behavior in male and female mice, whereas global ablation of MC3R-expressing cells produced fatal anorexia. Pharmacological effects of MC3R compounds on feeding were dependent on intact AgRP circuitry in the mice. Thus, the dominant effect of MC3R appears to be the regulation of the AgRP circuitry in both male and female mice, with sexually dimorphic sites playing specialized and subordinate roles in feeding behavior. Therefore, MC3R is a potential therapeutic target for disorders characterized by anorexia, as well as a potential target for weight loss therapeutics.


Subject(s)
Anorexia , Receptor, Melanocortin, Type 3 , Animals , Anorexia/drug therapy , Feeding Behavior , Female , Hypothalamus/metabolism , Male , Mice , Neurons/metabolism , Receptor, Melanocortin, Type 3/metabolism
6.
J Med Chem ; 64(9): 5577-5592, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33886285

ABSTRACT

The central melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are key regulators of body weight and energy homeostasis. Herein, the discovery and characterization of first-in-class small molecule melanocortin agonists with selectivity for the melanocortin-3 receptor over the melanocortin-4 receptor are reported. Identified via "unbiased" mixture-based high-throughput screening approaches, pharmacological evaluation of these pyrrolidine bis-cyclic guanidines resulted in nanomolar agonist activity at the melanocortin-3 receptor. The pharmacological profiles at the remaining melanocortin receptor subtypes tested indicated similar agonist potencies at both the melanocortin-1 and melanocortin-5 receptors and antagonist or micromolar agonist activities at the melanocortin-4 receptor. This group of small molecules represents a new area of chemical space for the melanocortin receptors with mixed receptor pharmacology profiles that may serve as novel lead compounds to modulate states of dysregulated energy balance.


Subject(s)
Guanidine/metabolism , Pyrrolidines/chemistry , Receptor, Melanocortin, Type 3/agonists , Algorithms , Animals , Drug Evaluation, Preclinical , Energy Metabolism/drug effects , Guanidine/analogs & derivatives , Guanidine/pharmacology , Guanidine/therapeutic use , High-Throughput Screening Assays , Humans , Mice , Mice, Knockout , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33827930

ABSTRACT

The ventromedial hypothalamus (VMH) is a critical neural node that senses blood glucose and promotes glucose utilization or mobilization during hypoglycemia. The VMH neurons that control these distinct physiologic processes are largely unknown. Here, we show that melanocortin 3 receptor (Mc3R)-expressing VMH neurons (VMHMC3R) sense glucose changes both directly and indirectly via altered excitatory input. We identify presynaptic nodes that potentially regulate VMHMC3R neuronal activity, including inputs from proopiomelanocortin (POMC)-producing neurons in the arcuate nucleus. We find that VMHMC3R neuron activation blunts, and their silencing enhances glucose excursion following a glucose load. Overall, these findings demonstrate that VMHMC3R neurons are a glucose-responsive hypothalamic subpopulation that promotes glucose disposal upon activation; this highlights a potential site for targeting dysregulated glycemia.


Subject(s)
Glucose/metabolism , Hyperglycemia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Receptor, Melanocortin, Type 3/metabolism , Animals , Hypothalamus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 3/genetics , Synaptic Potentials
8.
Nutrients ; 12(11)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202557

ABSTRACT

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Subject(s)
Bulimia/genetics , Eating/genetics , Feeding Behavior , Hyperphagia/genetics , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Body Mass Index , Eating/psychology , Humans , Hypothalamus/metabolism , Motivation , Mutation , Obesity/psychology , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Reward
9.
Peptides ; 119: 170080, 2019 09.
Article in English | MEDLINE | ID: mdl-31260713

ABSTRACT

Nesfatin-1 is an anorexic peptide derived from nucleobindin 2 (NUCB2). An increase in hypothalamic nesfatin-1 inhibits feeding behavior and promotes weight loss. However, the effects of weight loss on hypothalamic nesfatin-1 levels are unclear. In this study, obese rats lost weight in three ways: Calorie Restriction diet (CRD), Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). We found an increase in nesfatin-1 serum and cerebrospinal fluid levels after weight loss in obese Sprague-Dawley (SD) rats. Moreover, weight loss also increased hypothalamic melanocortin 3/4 receptor (MC3/4R) and extracellular regulated kinase phosphorylation (p-ERK) signaling. Third ventricle administration of antisense morpholino oligonucleotide (MON) against the gene encoding NUCB2 inhibited hypothalamic nesfatin-1 and p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. Third ventricle administration of SHU9119 (MC3/4R blocker) blocked hypothalamic MC3/4R, inhibited p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. These findings indicate that weight loss leads to an increase in hypothalamic nesfatin-1. The increase in hypothalamic nesfatin-1 participates in regulating feeding behavior through the MC3/4R-ERK signaling especially after SG and RYGB.


Subject(s)
Feeding Behavior , Hypothalamus/metabolism , MAP Kinase Signaling System , Nucleobindins/metabolism , Obesity/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Hypothalamus/pathology , Male , Morpholinos/genetics , Morpholinos/pharmacology , Nucleobindins/antagonists & inhibitors , Nucleobindins/genetics , Obesity/genetics , Obesity/pathology , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/genetics
10.
Endocrine ; 61(1): 94-104, 2018 07.
Article in English | MEDLINE | ID: mdl-29704154

ABSTRACT

PURPOSE: Melanocortin-3 receptor (MC3R), melanocortin-4 receptor (MC4R), and a recently identified melanocortin-2 receptor accessory protein 2 (MRAP2), are highly expressed in hypothalamus and coordinately regulate energy homeostasis, but the single cellular transcriptome of melanocortin system remains unknown. Several infrequent MRAP2 variants are reported from severe obese human patients but the mechanisms on how they affect melanocortin signaling are unclear. METHODS: First, we performed in silico analysis of mouse hypothalamus RNA sequencing datasets at single-cell resolution from two independent studies. Next, we inspected the three-dimensional conformational alteration of three mutations on MRAP2 protein. Finally, the influence of MRAP2 variants on MC3R and MC4R signaling was analyzed in vitro. RESULTS: (1) We confirmed the actual co-expression of Mrap2 with Mc3r and Mc4r, and demonstrated more broad distribution of Mrap2-positive neuronal populations than Mc3r or Mc4r in mouse hypothalamus. (2) Compared with wild-type MRAP2, MRAP2N88Y, and MRAP2R125C showed impaired α-MSH-induced MC4R or MC3R stimulation. (3) MRAP2N88Yexhibited enhanced interaction with MC4R protein and its own. CONCLUSIONS: This is the first dedicated description of single-cell transcriptome signature of Mrap2, Mc3r, and Mc4r in the central nerve system and the first evidence describing the unique dimer formation, conformational change, and pharmacological effect of MRAP2 mutations on MC3R signaling.


Subject(s)
Carrier Proteins/pharmacology , Hypothalamus/metabolism , Receptors, Melanocortin/drug effects , Adaptor Proteins, Signal Transducing , Animals , Computer Simulation , Genetic Variation , Humans , Hypothalamus/drug effects , Mice , Mutation/genetics , Neurons/metabolism , Nucleic Acid Conformation , Plasmids , RNA/genetics , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction/genetics , alpha-MSH/pharmacology
11.
Nutr Neurosci ; 21(1): 49-58, 2018 Jan.
Article in English | MEDLINE | ID: mdl-27686011

ABSTRACT

OBJECTIVE: The objective was to determine the effects of high-protein and high-fat diets, and fasting and refeeding, on appetite regulation in chicks. METHODS: Day of hatch chicks were fed one of four diets: basal, high protein (25% crude protein), and 15 and 30% high fat (15 and 30% metabolizable energy derived from soybean oil, respectively), and assigned to one of three treatments at 4 days: (1) access to feed, (2) 3 hours of fasting, or (3) fasting followed by 1 hour of refeeding. The hypothalamus was collected, total RNA isolated, and mRNA abundance measured. RESULTS: Food intake was reduced in chicks fed the high-protein and high-fat diets. Agouti-related peptide, neuropeptide Y (NPY), NPY receptors 1, 2, and 5, melanocortin receptors 3 and 4 (MC3R and 4R, respectively), mesotocin, corticotropin-releasing factor (CRF), and CRF receptor sub-type 2 (CRFR2) mRNAs were greatest in chicks that consumed the basal diet. Refeeding was associated with increased MC3R mRNA in the high-protein diet group. CRFR2 mRNA was increased by fasting and refeeding in chicks that consumed the high-protein diet. DISCUSSION: Food intake and hypothalamic gene expression of some important appetite-associated factors were reduced in chicks fed the high-protein or high-fat diets. Fasting and refeeding accentuated several differences and results suggest that the CRF and melanocortin pathways are involved.


Subject(s)
Appetite Regulation , Diet, High-Fat , Diet, High-Protein , Hypothalamus/physiology , Animals , Appetite , Body Weight , Chickens , Fasting , Gene Expression Regulation , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism
12.
Appetite ; 113: 30-40, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28229938

ABSTRACT

Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) have been documented to participate in amphetamine (AMPH)-induced appetite suppression. This study investigated whether ghrelin signalling is associated with changes in NPY/POMC-mediated appetite control. Rats were given AMPH daily for four days, and changes in food intake, body weight, plasma ghrelin, hypothalamic NPY, melanocortin 3 receptor (MC3R), ghrelin O-acyltransferase (GOAT), acyl ghrelin (AG) and ghrelin receptor (GHSR1a) were examined and compared. Food intake, body weight and NPY expression decreased, while MC3R expression increased and expressed reciprocally to NPY expression during AMPH treatment. Plasma ghrelin and hypothalamic AG/GOAT/GHSR1a expression decreased on Day 1 and Day 2, which was associated with the positive energy metabolism, and returned to normal levels on Day 3 and Day 4, which was associated with the negative energy metabolism; this expression pattern was similar to that of NPY. Infusion with a GHSR1a antagonist or an NPY antisense into the brain enhanced the decrease in NPY and AG/GOAT/GHSR1a expression and the increase in MC3R expression compared to the AMPH-treated group. Peripheral ghrelin and the central ghrelin system participated in the regulation in AMPH-induced appetite control. These results shed light on the involvement of ghrelin signalling in reciprocal regulation of NPY/POMC-mediated appetite control and may prove useful for the development of anti-obesity drugs.


Subject(s)
Amphetamine/pharmacology , Appetite Regulation/drug effects , Central Nervous System Stimulants/pharmacology , Ghrelin/blood , Hypothalamus/metabolism , Neuropeptide Y/metabolism , Pro-Opiomelanocortin/metabolism , Acyltransferases/metabolism , Animals , Body Weight/drug effects , Eating/drug effects , Energy Metabolism/drug effects , Male , Rats , Rats, Wistar , Receptor, Melanocortin, Type 3/metabolism , Receptors, Ghrelin/metabolism , Signal Transduction/drug effects
13.
J Neuroendocrinol ; 28(10)2016 10.
Article in English | MEDLINE | ID: mdl-27601011

ABSTRACT

Kisspeptin controls reproduction by stimulating gonadotrophin-releasing hormone neurones via its receptor Kiss1r. Kiss1r is also expressed other brain areas and in peripheral tissues, suggesting additional nonreproductive roles. We recently determined that Kiss1r knockout (KO) mice develop an obese and diabetic phenotype. In the present study, we investigated whether Kiss1r KOs develop this metabolic phenotype as a result of alterations in the expression of metabolic genes involved in the appetite regulating system of the hypothalamus, including neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc), as well as leptin receptor (Lepr), ghrelin receptor (Ghsr), and melanocortin receptors 3 and 4 (Mc3r, Mc4r). Body weights, leptin levels and hypothalamic gene expression were measured in both gonad-intact and gonadectomised (GNX) mice at 8 and 20 weeks of age that had received either normal chow or a high-fat diet. We detected significant increases in Pomc expression in gonad-intact Kiss1r KO mice at 8 and 20 weeks, although there were no alterations in the other metabolic-related genes. However, the Pomc increases appeared to reflect genotype differences in circulating sex steroids, because GNX wild-type and Kiss1r KO mice exhibited similar Pomc levels, along with similar Npy levels. The altered Pomc gene expression in gonad-intact Kiss1r KO mice is consistent with previous reports of reduced food intake in these mice and may serve to increase the anorexigenic drive, perhaps compensating for the obese state. However, the surprising overall lack of changes in any of the hypothalamic metabolic genes in GNX KO mice suggests that the aetiology of obesity in the absence of kisspeptin signalling may reflect peripheral rather than central metabolic impairments.


Subject(s)
Energy Metabolism , Gene Expression , Hypothalamus/metabolism , Obesity/metabolism , Receptors, Kisspeptin-1/metabolism , Animals , Appetite , Body Weight , Female , Gonads/metabolism , Leptin/blood , Male , Mice , Mice, Knockout , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Obesity/genetics , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Receptors, Kisspeptin-1/genetics
14.
J Med Chem ; 59(7): 3112-28, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26959173

ABSTRACT

Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.


Subject(s)
Receptors, Melanocortin/agonists , Receptors, Melanocortin/antagonists & inhibitors , Animals , Binding, Competitive , Chemistry Techniques, Synthetic , Cyclic AMP/metabolism , Drug Design , Drug Evaluation, Preclinical/methods , Eating/drug effects , Female , Humans , Infusions, Intraventricular , Ligands , Male , Mice, Inbred C57BL , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protein Multimerization , Receptor, Melanocortin, Type 1/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Receptors, Melanocortin/metabolism , Structure-Activity Relationship
15.
J Neuroendocrinol ; 28(5)2016 05.
Article in English | MEDLINE | ID: mdl-26924179

ABSTRACT

Chicken lines that have been divergently selected for either low (LWS) or high (HWS) body weight at 56 days of age for more than 57 generations have different feeding behaviours in response to a range of i.c.v. injected neurotransmitters. The LWS have different severities of anorexia, whereas the HWS become obese. Previously, we demonstrated that LWS chicks did not respond, whereas HWS chicks increased food intake, after central injection of neuropeptide Y (NPY). The present study aimed to determine the molecular mechanisms underlying the loss of orexigenic function of NPY in LWS. Chicks were divided into four groups: stressed LWS and HWS on day of hatch, and control LWS and HWS. The stressor was a combination of food deprivation and cold exposure. On day 5 post-hatch, each chick received an i.c.v. injection of vehicle or 0.2 nmol of NPY. Only the LWS stressed group did not increase food intake in response to i.c.v. NPY. Hypothalamic mRNA abundance of appetite-associated factors was measured at 1 h post-injection. Interactions of genetic line, stress and NPY treatment were observed for the mRNA abundance of agouti-related peptide (AgRP) and synaptotagmin 1 (SYT1). Intracerebroventricular injection of NPY decreased and increased AgRP and SYT1 mRNA, respectively, in the stressed LWS and increased AgRP mRNA in stressed HWS chicks. Stress was associated with increased NPY, orexin receptor 2, corticotrophin-releasing factor receptor 1, melanocortin receptor 3 (MC3R) and growth hormone secretagogue receptor expression. In conclusion, the loss of responsiveness to exogenous NPY in stressed LWS chicks may be a result of the decreased and increased hypothalamic expression of AgRP and MC3R, respectively. This may induce an intensification of anorexigenic melanocortin signalling pathways in LWS chicks that block the orexigenic effect of exogenous NPY. These results provide insights onto the anorexic condition across species, and especially for forms of inducible anorexia such as human anorexia nervosa.


Subject(s)
Anorexia/metabolism , Avian Proteins/metabolism , Hypothalamus/metabolism , Neuropeptide Y/metabolism , Stress, Psychological/metabolism , Agouti-Related Protein/metabolism , Animals , Anorexia/genetics , Chickens , Drinking/drug effects , Eating/drug effects , Female , Food Deprivation , Hypothalamic Hormones/metabolism , Hypothalamus/drug effects , Male , Neuropeptide Y/administration & dosage , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 3/metabolism
16.
Hypertension ; 66(6): 1191-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26483343

ABSTRACT

Pregnancy increases sympathetic nerve activity (SNA), but the mechanisms are unknown. Here, we investigated the contributions of the hypothalamic paraventricular and arcuate nuclei in α-chloralose-anesthetized pregnant and nonpregnant rats. Baseline arterial pressure (AP) was lower, and heart rate (HR), lumbar sympathetic activity, and splanchnic SNA were higher in pregnant rats compared with nonpregnant rats. Inhibition of the paraventricular nucleus via bilateral muscimol nanoinjections decreased AP and HR more in pregnant rats than in nonpregnant rats and decreased lumbar SNA only in pregnant rats. Similarly, after arcuate muscimol nanoninjections, the decreases in AP, HR, and lumbar, renal, and splanchnic sympathetic nerve activities were greater in pregnant rats than in nonpregnant rats. Major arcuate neuronal groups that project to the paraventricular nucleus express inhibitory neuropeptide Y (NPY) and excitatory α-melanocyte-stimulating hormone. Inhibition of paraventricular melanocortin 3/4 receptors with SHU9119 also decreased AP, HR, and lumbar SNA in pregnant rats but not in nonpregnant rats. Conversely, paraventricular nucleus NPY expression was reduced in pregnant animals, and although blockade of paraventricular NPY Y1 receptors increased AP, HR, and lumbar sympathetic activity in nonpregnant rats, it had no effects in pregnant rats. Yet, the sympathoinhibitory, depressor, and bradycardic effects of paraventricular NPY nanoinjections were similar between groups. In conclusion, the paraventricular and arcuate nuclei contribute to increased basal SNA during pregnancy, likely due in part to decreased tonic NPY inhibition and increased tonic α-melanocyte-stimulating hormone excitation of presympathetic neurons in the paraventricular nucleus.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Hypothalamus/physiology , Paraventricular Hypothalamic Nucleus/physiology , Sympathetic Nervous System/physiology , Analysis of Variance , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Female , GABA-A Receptor Agonists/administration & dosage , GABA-A Receptor Agonists/pharmacology , Heart Rate/drug effects , Heart Rate/physiology , Kidney/innervation , Lumbar Vertebrae/innervation , Melanocyte-Stimulating Hormones/pharmacology , Microinjections , Muscimol/administration & dosage , Muscimol/pharmacology , Neuropeptide Y/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Pregnancy , Rats , Receptor, Melanocortin, Type 3/antagonists & inhibitors , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Sympathetic Nervous System/drug effects , Viscera/innervation , alpha-MSH/metabolism
17.
J Immunol ; 194(7): 3381-8, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25725103

ABSTRACT

There is a need for novel approaches to control pathologies with overexuberant inflammatory reactions. Targeting melanocortin (MC) receptors represents a promising therapy for obesity and chronic inflammation, but lack of selectivity and safety concerns limit development. A new way to increase selectivity of biological effects entails the identification of biased agonists. In this study, we characterize the small molecule AP1189 as a biased agonist at receptors MC1 and MC3. Although not provoking canonical cAMP generation, AP1189 addition to MC1 or MC3, but not empty vector, transfected HEK293 cells caused ERK1/2 phosphorylation, a signaling responsible for the proefferocytic effect evoked in mouse primary macrophages. Added to macrophage cultures, AP1189 reduced cytokine release, an effect reliant on both MC1 and MC3 as evident from the use of Mc1r(-/-) and Mc3r(-/-) macrophages. No melanogenesis was induced by AP1189 in B16-F10 melanocytes. In vivo, oral AP1189 elicited anti-inflammatory actions in peritonitis and, upon administration at the peak of inflammation, accelerated the resolution phase by ∼3-fold. Finally, given the clinical efficacy of adrenocorticotropin in joint diseases, AP1189 was tested in experimental inflammatory arthritis, where this biased agonist afforded significant reduction of macroscopic and histological parameters of joint disruption. These proof-of-concept analyses with AP1189, an active oral anti-inflammatory and resolution-promoting compound, indicate that biased agonism at MC receptors is an innovative, viable approach to yield novel anti-inflammatory molecules endowed with a more favorable safety profile.


Subject(s)
Guanidines/pharmacology , Pyrroles/pharmacology , Receptors, Melanocortin/agonists , Receptors, Melanocortin/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Calcium/metabolism , Disease Models, Animal , Gene Knockout Techniques , Guanidines/administration & dosage , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Melanins/metabolism , Melanoma, Experimental , Mice , Neutrophils/immunology , Neutrophils/metabolism , Peritonitis/chemically induced , Peritonitis/drug therapy , Peritonitis/genetics , Peritonitis/metabolism , Peritonitis/pathology , Phagocytosis/immunology , Pyrroles/administration & dosage , Receptor, Melanocortin, Type 1/agonists , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism , Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptors, Melanocortin/genetics , Signal Transduction/drug effects
18.
ACS Chem Neurosci ; 5(10): 1020-31, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25141170

ABSTRACT

The melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors are expressed in the brain and are implicated in the regulation of food intake and energy homeostasis. The endogenous agonist ligands for these receptors (α-, ß-, γ-MSH and ACTH) are linear peptides with limited receptor subtype selectivity and metabolic stability, thus minimizing their use as probes to characterize the overlapping pharmacological and physiological functions of the melanocortin receptor subtypes. In the present study, an engineered template, in which the peptide backbone was modified by a heterocyclic reverse turn mimetic at the Trp(7) residue, was synthesized using solid phase peptide synthesis and characterized by a ß-galactosidase cAMP based reporter gene assay. The functional assay identified a ∼5 nM mouse MC4R agonist (AST3-88) with more than 50-fold selectivity over the mMC3R. Biophysical studies (2D (1)H NMR spectroscopy and molecular dynamics) of AST3-88 identified a type VIII ß-turn secondary structure spanning the pharmacophore domain stabilized by the intramolecular interactions between the side chains of the His and Trp residues. Enzymatic studies of AST3-88 revealed enhanced stability of AST3-88 over the α-MSH endogenous peptide in rat serum. Upon central administration of AST3-88 into rats, a decreased food intake response was observed. This is the first study to probe the in vivo physiological activity of this engineered peptide-heterocycle template. These findings advance the present knowledge of pharmacophore design for potent, selective, and metabolically stable melanocortin ligands.


Subject(s)
Neurotransmitter Agents/pharmacology , Peptides, Cyclic/pharmacology , Receptor, Melanocortin, Type 4/agonists , Animals , Chromatography, Liquid , Drug Evaluation, Preclinical , Eating/drug effects , HEK293 Cells , Humans , Male , Mass Spectrometry , Mice , Molecular Dynamics Simulation , Molecular Structure , Neurotransmitter Agents/chemical synthesis , Peptides, Cyclic/chemical synthesis , Proton Magnetic Resonance Spectroscopy , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Transfection , alpha-MSH/metabolism
19.
Neuropharmacology ; 85: 357-66, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24923239

ABSTRACT

The melanocortin receptor (MCR) system has been studied extensively for its role in feeding and sexual behavior, but effects on social behavior have received little attention. α-MSH interacts with neural systems involved in sociality, including oxytocin, dopamine, and opioid systems. Acute melanotan-II (MTII), an MC3/4R agonist, potentiates brain oxytocin (OT) release and facilitates OT-dependent partner preference formation in socially monogamous prairie voles. Here we examined the long-term impact of early-life MCR stimulation on hypothalamic neuronal activity and social development in prairie voles. Male and female voles were given daily subcutaneous injections of 10 mg/kg MTII or saline between postnatal days (PND) 1-7. Neonatally-treated males displayed a reduction in initiated play fighting bouts as juveniles compared to control males. Neonatal exposure to MTII facilitated partner preference formation in adult females, but not males, after a brief cohabitation with an opposite-sex partner. Acute MTII injection elicited a significant burst of the immediate early gene EGR-1 immunoreactivity in hypothalamic OT, vasopressin, and corticotrophin releasing factor neurons, when tested in PND 6-7 animals. Daily neonatal treatment with 1 mg/kg of a more selective, brain penetrant MC4R agonist, PF44687, promoted adult partner preferences in both females and males compared with vehicle controls. Thus, developmental exposure to MCR agonists lead to a persistent change in social behavior, suggestive of structural or functional changes in the neural circuits involved in the formation of social relationships.


Subject(s)
Aggression/drug effects , Hypothalamus/drug effects , Pair Bond , Psychotropic Drugs/pharmacology , Receptor, Melanocortin, Type 3/agonists , Receptor, Melanocortin, Type 4/agonists , Sex Characteristics , Aggression/physiology , Animals , Animals, Newborn , Arvicolinae , Behavior, Animal/drug effects , Behavior, Animal/physiology , Early Growth Response Protein 1/metabolism , Female , Hypothalamus/growth & development , Hypothalamus/physiology , Male , Neurons/drug effects , Neurons/physiology , Peptides, Cyclic/pharmacology , Play and Playthings , Random Allocation , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
20.
Handb Exp Pharmacol ; (209): 47-75, 2012.
Article in English | MEDLINE | ID: mdl-22249810

ABSTRACT

Obesity is one of the most challenging health problems worldwide. Over the past few decades, our knowledge concerning mechanisms of weight regulation has increased tremendously leading to the identification of the leptin-melanocortin pathway. The filling level of energy stores is signaled to the brain, and the information is integrated by hypothalamic nuclei, resulting in a well-orchestrated response to food intake and energy expenditure to ensure constant body weight. One of the key players in this system is proopiomelanocortin (POMC), a precursor of a variety of neuropeptides. POMC-derived alpha- and beta-MSH play an important role in energy homeostasis by activating melanocortin receptors expressed in the arcuate nucleus (MC3R) and in the nucleus paraventricularis (MC4R). Activation of these two G protein-coupled receptors is antagonized by agouti-related peptide (AgRP). Naturally occurring mutations in this system were identified in patients suffering from common obesity as well as in patients demonstrating a phenotype of severe early-onset obesity, adrenal insufficiency, red hair, and pale skin. Detailed understanding of the complex system of POMC-AgRP-MC3R-MC4R and their interaction with other hypothalamic as well as peripheral signals is a prerequisite to combat the obesity epidemic.


Subject(s)
Agouti-Related Protein/metabolism , Hypothalamus/metabolism , Melanocyte-Stimulating Hormones/metabolism , Pro-Opiomelanocortin/metabolism , Signal Transduction , Animals , Body Weight , Eating , Energy Metabolism , Humans , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamus/physiopathology , Mutation , Obesity/metabolism , Obesity/physiopathology , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL