Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
CNS Neurosci Ther ; 29(2): 646-658, 2023 02.
Article in English | MEDLINE | ID: mdl-36510669

ABSTRACT

AIMS: Central melanocortin 4 receptor (MC4R) has been reported to induce anhedonia via eliciting dysfunction of excitatory synapses. It is evident that metabolic signals are closely related to chronic stress-induced depression. Here, we investigated that a neural circuit is involved in melanocortin signaling contributing to susceptibility to stress. METHODS: Chronic social defeat stress (CSDS) was used to develop depressive-like behavior. Electrophysiologic and chemogenetic approaches were performed to evaluate the role of paraventricular thalamus (PVT) glutamatergic to nucleus accumbens shell (NAcsh) circuit in stress susceptibility. Pharmacological and genetic manipulations were applied to investigate the molecular mechanisms of melanocortin signaling in the circuit. RESULTS: CSDS increases the excitatory neurotransmission in NAcsh through MC4R signaling. The enhanced excitatory synaptic input in NAcsh is projected from PVT glutamatergic neurons. Moreover, chemogenetic manipulation of PVTGlu -NAcsh projection mediates the susceptibility to stress, which is dependent on MC4R signaling. Overall, these results reveal that the strengthened excitatory neurotransmission in NAcsh originates from PVT glutamatergic neurons, facilitating the susceptibility to stress through melanocortin signaling. CONCLUSIONS: Our results make a strong case for harnessing a thalamic circuit to reorganize excitatory synaptic transmission in relieving stress susceptibility and provide insights gained on metabolic underpinnings of protection against stress-induced depressive-like behavior.


Subject(s)
Nucleus Accumbens , Receptor, Melanocortin, Type 4 , Nucleus Accumbens/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Thalamus , Neurons/metabolism , Synaptic Transmission
2.
Mol Metab ; 55: 101401, 2022 01.
Article in English | MEDLINE | ID: mdl-34823066

ABSTRACT

OBJECTIVE: The paraventricular nucleus of hypothalamus (PVN), an integrative center in the brain, orchestrates a wide range of physiological and behavioral responses. While the PVN melanocortin 4 receptor (MC4R) signaling (PVNMC4R+) is involved in feeding regulation, the neuroanatomical organization of PVNMC4R+ connectivity and its role in other physiological regulations are incompletely understood. Here we aimed to better characterize the input-output organization of PVNMC4R+ neurons and test their physiological functions beyond feeding. METHODS: Using a combination of viral tools, we mapped PVNMC4R+ circuits and tested the effects of chemogenetic activation of PVNMC4R+ neurons on thermoregulation, cardiovascular control, and other behavioral responses beyond feeding. RESULTS: We found that PVNMC4R+ neurons innervate many different brain regions that are known to be important not only for feeding but also for neuroendocrine and autonomic control of thermoregulation and cardiovascular function, including but not limited to the preoptic area, median eminence, parabrachial nucleus, pre-locus coeruleus, nucleus of solitary tract, ventrolateral medulla, and thoracic spinal cord. Contrary to these broad efferent projections, PVNMC4R+ neurons receive monosynaptic inputs mainly from other hypothalamic nuclei (preoptic area, arcuate and dorsomedial hypothalamic nuclei, supraoptic nucleus, and premammillary nucleus), the circumventricular organs (subfornical organ and vascular organ of lamina terminalis), the bed nucleus of stria terminalis, and the parabrachial nucleus. Consistent with their broad efferent projections, chemogenetic activation of PVNMC4R+ neurons not only suppressed feeding but also led to an apparent increase in heart rate, blood pressure, and brown adipose tissue temperature. These physiological changes accompanied acute transient hyperactivity followed by hypoactivity and resting-like behavior. CONCLUSIONS: Our results elucidate the neuroanatomical organization of PVNMC4R+ circuits and shed new light on the roles of PVNMC4R+ pathways in autonomic control of thermoregulation, cardiovascular function, and biphasic behavioral activation.


Subject(s)
Paraventricular Hypothalamic Nucleus/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Body Temperature Regulation/physiology , Brain/metabolism , Dorsomedial Hypothalamic Nucleus/metabolism , Gene Knock-In Techniques/methods , Hypothalamus/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Neurons/metabolism , Receptor, Melanocortin, Type 4/physiology , Spinal Cord/metabolism
3.
Mol Metab ; 53: 101317, 2021 11.
Article in English | MEDLINE | ID: mdl-34400348

ABSTRACT

OBJECTIVE: Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally alters the normal functioning of these receptors and mediates their responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system (CNS). However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS: We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS: Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS: This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.


Subject(s)
Melanocortins/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Cells, Cultured , HEK293 Cells , Humans , Hypothalamus/metabolism , Mice , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/genetics , Signal Transduction
4.
Diabetes ; 70(9): 2081-2091, 2021 09.
Article in English | MEDLINE | ID: mdl-34183373

ABSTRACT

Work in recent decades has established that metabolic hormones released by endocrine cells and diverse other cell types serve to regulate nutrient intake and energy homeostasis. Tsukushi (TSK) is a leucine-rich repeat-containing protein secreted primarily by the liver that exerts an inhibitory effect on brown fat sympathetic innervation and thermogenesis. Despite this, physiological regulation of TSK and the mechanisms underlying its effects on energy balance remain poorly understood. Here we show that hepatic expression and plasma concentrations of TSK are induced by feeding and regulated by melanocortin-4 receptor (MC4R) signaling. We generated TSK and MC4R-double-knockout mice to elucidate the nature of cross talk between TSK and the central regulatory circuit of energy balance. Remarkably, TSK inactivation restores energy balance, ameliorates hyperphagia, and improves metabolic health in MC4R-deficient mice. TSK ablation enhances thermogenic gene expression in brown fat, dampens obesity-association inflammation in the liver and adipose tissue, and protects MC4R-null mice from diet-induced nonalcoholic steatohepatitis. At the cellular level, TSK deficiency augments feeding-induced c-Fos expression in the paraventricular nucleus of the hypothalamus. These results illustrate physiological cross talk between TSK and the central regulatory circuit in maintaining energy balance and metabolic homeostasis.


Subject(s)
Energy Metabolism/physiology , Obesity/metabolism , Proteoglycans/metabolism , Receptor, Melanocortin, Type 4/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Anti-Obesity Agents/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/genetics , Proteoglycans/genetics , Receptor, Melanocortin, Type 4/genetics , Signal Transduction/physiology , Thermogenesis/physiology , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
5.
Nat Commun ; 12(1): 3525, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112797

ABSTRACT

Contrasting to the established role of the hypothalamic agouti-related protein (AgRP) neurons in feeding regulation, the neural circuit and signaling mechanisms by which they control energy expenditure remains unclear. Here, we report that energy expenditure is regulated by a subgroup of AgRP neurons that send non-collateral projections to neurons within the dorsal lateral part of dorsal raphe nucleus (dlDRN) expressing the melanocortin 4 receptor (MC4R), which in turn innervate nearby serotonergic (5-HT) neurons. Genetic manipulations reveal a bi-directional control of energy expenditure by this circuit without affecting food intake. Fiber photometry and electrophysiological results indicate that the thermo-sensing MC4RdlDRN neurons integrate pre-synaptic AgRP signaling, thereby modulating the post-synaptic serotonergic pathway. Specifically, the MC4RdlDRN signaling elicits profound, bi-directional, regulation of body weight mainly through sympathetic outflow that reprograms mitochondrial bioenergetics within brown and beige fat while feeding remains intact. Together, we suggest that this AgRP neural circuit plays a unique role in persistent control of energy expenditure and body weight, hinting next-generation therapeutic approaches for obesity and metabolic disorders.


Subject(s)
Agouti-Related Protein/metabolism , Energy Metabolism/physiology , Hypothalamus/metabolism , Neural Conduction/physiology , Serotonergic Neurons/physiology , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Weight , Chromatography, Liquid , Eating/physiology , Energy Metabolism/genetics , Male , Mice , Neural Conduction/drug effects , Neural Conduction/radiation effects , Obesity/metabolism , Optogenetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Serotonergic Neurons/drug effects , Serotonergic Neurons/radiation effects , Serotonin/metabolism , Serotonin/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Tandem Mass Spectrometry , Temperature
6.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33978701

ABSTRACT

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Subject(s)
Antipsychotic Agents/pharmacology , Receptor, Melanocortin, Type 4/metabolism , Risperidone/pharmacology , Weight Gain/drug effects , Animals , Female , Hyperphagia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Neurons/drug effects , Neurons/metabolism , Obesity/metabolism , Olanzapine/pharmacology , Potassium/metabolism , Synaptic Potentials/drug effects , Transcriptome/drug effects , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
7.
Endocrinology ; 162(6)2021 06 01.
Article in English | MEDLINE | ID: mdl-33834205

ABSTRACT

The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcRPVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR2Acre mice to activate, silence, and trace CalcRPVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labeled CalcRPVH neurons demonstrates that CalcRPVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcRPVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor signaling. These data show that CalcRPVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcRPVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.


Subject(s)
Energy Metabolism/physiology , Paraventricular Hypothalamic Nucleus/physiology , Receptors, Calcitonin/physiology , Animals , Eating/physiology , Energy Metabolism/genetics , Feeding Behavior/physiology , Homeostasis/physiology , Hypothalamus/metabolism , Hypothalamus/physiology , Male , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/physiology , Receptors, Calcitonin/genetics , Receptors, Calcitonin/metabolism
8.
Sci China Life Sci ; 64(3): 419-433, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32803714

ABSTRACT

Cenpj is a centrosomal protein located at the centrosomes and the base of cilia, it plays essential roles in regulating neurogenesis and cerebral cortex development. Although centrosomal and cilium dysfunction are one of the causes of obesity, insulin resistance, and type 2 diabetes, the role that Cenpj plays in the regulation of body weight remains unclear. Here, we deleted Cenpj by crossing Cenpjflox/flox mice with Nkx2.1-Cre mice. Loss of the centrosomal protein Cenpj in Nkx2.1-expressing cells causes morbid obesity in mice at approximately 4 months of age with expended brain ventricles but no change of brain size. We found that hypothalamic cells exhibited reduced proliferation and increased apoptosis upon Cenpj depletion at the embryonic stages, resulting in a dramatic decrease in the number of Proopiomelanocortin (POMC) neurons and electrophysiological dysfunction of NPY neurons in the arcuate nucleus (ARC) in adults. Furthermore, depletion of Cenpj also reduced the neuronal projection from the ARC to the paraventricular nucleus (PVN), with decreased melanocortin-4 receptors (MC4R) expression in PVN neurons. The study defines the roles that Cenpj plays in regulating hypothalamus development and body weight, providing a foundation for further understanding of the pathological mechanisms of related diseases.


Subject(s)
Gene Knockdown Techniques , Hypothalamus/physiopathology , Microtubule-Associated Proteins/genetics , Obesity, Morbid/physiopathology , Animals , Apoptosis , Cell Line , Cell Proliferation , Hypothalamus/embryology , Hypothalamus/metabolism , Mice , Neurons/metabolism , Obesity, Morbid/genetics , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/metabolism , Thyroid Nuclear Factor 1/genetics
9.
Nutrients ; 12(11)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202557

ABSTRACT

The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation.


Subject(s)
Bulimia/genetics , Eating/genetics , Feeding Behavior , Hyperphagia/genetics , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Body Mass Index , Eating/psychology , Humans , Hypothalamus/metabolism , Motivation , Mutation , Obesity/psychology , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Reward
10.
Int J Mol Sci ; 21(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987823

ABSTRACT

The melanocortin receptor 4 (MC4R) signaling system consists of MC4R, MC4R ligands [melanocyte-stimulating hormone (MSH), adrenocorticotropin (ACTH), agouti-related protein (AgRP)], and melanocortin-2 receptor accessory protein 2 (MRAP2), and it has been proposed to play important roles in feeding and growth in vertebrates. However, the expression and functionality of this system have not been fully characterized in teleosts. Here, we cloned tilapia MC4R, MRAP2b, AgRPs (AgRP, AgRP2), and POMCs (POMCa1, POMCb) genes and characterized the interaction of tilapia MC4R with MRAP2b, AgRP, α-MSH, and ACTH in vitro. The results indicate the following. (1) Tilapia MC4R, MRAP2b, AgRPs, and POMCs share high amino acid identity with their mammalian counterparts. (2) Tilapia MRAP2b could interact with MC4R expressed in CHO cells, as demonstrated by Co-IP assay, and thus decrease MC4R constitutive activity and enhance its sensitivity to ACTH1-40. (3) As in mammals, AgRP can function as an inverse agonist and antagonist of MC4R, either in the presence or absence of MRAP2b. These data, together with the co-expression of MC4R, MRAP2b, AgRPs, and POMCs in tilapia hypothalamus, suggest that as in mammals, ACTH/α-MSH, AgRP, and MRAP2 can interact with MC4R to control energy balance and thus play conserved roles in the feeding and growth of teleosts.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cichlids/metabolism , Hypothalamus/metabolism , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction , Animals
11.
Biochim Biophys Acta Mol Basis Dis ; 1866(8): 165835, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32423884

ABSTRACT

Mutations in the melanocortin-4 receptor (MC4R) in humans are the single most common cause of rare monogenic 1severe obesity, and polymorphisms in this gene are also associated with obesity in the general population. The MC4R is a G-protein coupled receptor, and in vitro analysis suggests that MC4R can signal through several different G-protein subtypes. In vivo studies show complex outcomes, with different G-proteins in different cells responsible for different physiological responses linked to obesity. There is an emerging consensus that Gαq-linked signals in the paraventricular nucleus of the hypothalamus are essential for normal satiety and the control of feeding behavior. Many MC4R mutations have been analyzed for the molecular defect underlying their association with obesity, which has revealed a group - referred to as class V mutants - with no measurable change in receptor function. However, Gαq-linked signaling leading to Ca2+ release has only been examined for a few MC4R mutations. In this study, we have examined seven MC4R class V mutants, as well as two other well-characterized signal-defective mutants as controls, with respect to G-protein signaling coupled to cAMP production, mitogen-activated protein kinase (MAPK) activation, and Ca2+ release. These data confirm, with one exception (E308K), the expected pattern of cAMP and MAPK signaling for wild type and mutant MC4R. Our results also demonstrate normal MSH-induced Ca2+ signals for wild type as well as all the class V mutants, but not the signal-defective controls. Thus, the means by which class V MC4R mutations lead to obesity remains an open question.


Subject(s)
Calcium/metabolism , Cyclic AMP/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-myc/genetics , Receptor, Melanocortin, Type 4/metabolism , Signal Transduction/genetics , Amino Acid Sequence , Animals , Cell Line , Gene Expression , HEK293 Cells , Humans , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Mutation , Neurons/cytology , Neurons/drug effects , Obesity/genetics , Obesity/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptor, Melanocortin, Type 4/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection , alpha-MSH/pharmacology
12.
Mol Metab ; 36: 100969, 2020 06.
Article in English | MEDLINE | ID: mdl-32229422

ABSTRACT

OBJECTIVE: Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS: We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS: The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS: BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.


Subject(s)
Energy Metabolism/physiology , Neurons/metabolism , Receptors, Bombesin/metabolism , Adiposity/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Temperature/physiology , Body Weight , Brain/metabolism , Eating/physiology , Female , Homeostasis/physiology , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Receptor, Melanocortin, Type 4/metabolism , Receptors, Bombesin/genetics , Repressor Proteins/metabolism
13.
Metabolism ; 102: 153990, 2020 01.
Article in English | MEDLINE | ID: mdl-31666192

ABSTRACT

OBJECTIVE: Rates of overweight and obesity epidemic have risen significantly in the past few decades, and 34% of adults and 15-20% of children and adolescents in the United States are now obese. Melanocortin receptor 4 (MC4R), contributes to appetite control in hypothalamic neurons and is a target for future anti-obesity treatments (such as setmelanotide) or novel drug development effort. Proper MC4R trafficking regulation in hypothalamic neurons is crucial for normal neural control of homeostasis and is altered in obesity and in presence of lipids. The mechanisms underlying altered MC4R trafficking in the context of obesity is still unclear. Here, we discovered that C2CD5 expressed in the hypothalamus is involved in the regulation of MC4R endocytosis. This study unmasked a novel trafficking protein nutritionally regulated in the hypothalamus providing a novel target for MC4R dependent pathways involved in bodyweight homeostasis and Obesity. METHODS: To evaluate the expression of C2cd5, we first used in situ hybridization and RNAscope technology in combination with electronic microscopy. For in vivo, we characterized the energy balance of wild type (WT) and C2CD5 whole-body knockout (C2CD5KO) mice fed normal chow (NC) and/or western-diet (high-fat/high-sucrose/cholesterol) (WD). To this end, we performed comprehensive longitudinal assessment of bodyweight, energy balance (food intake, energy expenditure, locomotor activity using TSE metabolic cages), and glucose homeostasis. In addition, we evaluated the consequence of loss of C2CD5 on feeding behavior changes normally induced by MC4R agonist (Melanotan, MTII) injection in the paraventricular hypothalamus (PVH). For in vitro approach, we tease out the role of C2CD5 and its calcium sensing domain C2 in MC4R trafficking. We focused on endocytosis of MC4R using an antibody feeding experiment (in a neuronal cell line - Neuro2A (N2A) stably expressing HA-MC4R-GFP; against HA-tag and analyzed by flux cytometry). RESULTS: We found that 1) the expression of hypothalamic C2CD5 is decreased in diet-induced obesity models compared to controls, 2) mice lacking C2CD5 exhibit an increase in food intake compared to WT mice, 3) C2CD5 interacts with endocytosis machinery in hypothalamus, 4) loss of functional C2CD5 (lacking C2 domain) blunts MC4R endocytosis in vitro and increases MC4R at the surface that fails to respond to MC4R ligand, and, 5) C2CD5KO mice exhibit decreased acute responses to MTII injection into the PVH. CONCLUSIONS: Based on these, we conclude that hypothalamic C2CD5 is involved in MC4R endocytosis and regulate bodyweight homeostasis. These studies suggest that C2CD5 represents a new protein regulated by metabolic cues and involved in metabolic receptor endocytosis. C2CD5 represent a new target and pathway that could be targeted in Obesity.


Subject(s)
Calcium-Binding Proteins/metabolism , Energy Metabolism/genetics , Hypothalamus/metabolism , Membrane Proteins/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Body Weight/genetics , Calcium-Binding Proteins/genetics , Cells, Cultured , Feeding Behavior/physiology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Protein Transport/genetics
14.
Food Funct ; 10(9): 5752-5758, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31453624

ABSTRACT

Phloretin, abundantly present in apples, pears and other fruits, has been found to have antioxidant, immunosuppressive and anti-inflammatory activities. It has been reported that oral administration of phloretin dose-dependently increased feed intake in mice, but the mechanism is unclear yet. The aim of this study was to investigate the effect of dietary phloretin supplementation on the feed intake in C57BL/6J mice and to identify its mechanism. Here, sixty C57BL/6J mice (28-day age) were randomly chosen for four dietary treatments and fed a basal diet or a basal diet supplemented with 0.1%, 0.2%, and 0.3% phloretin, respectively, in a 6-week trial. We showed that mice in the 0.1%, 0.2%, and 0.3% phloretin-supplemented groups had increased accumulative feed intake compared with the control group. Furthermore, dietary phloretin supplementation significantly increased the ghrelin mRNA level in the stomach and hypothalamus, and decreased the cholecystokinin (CCK) mRNA level in the duodenum in a dose-dependent manner. The mRNA levels of neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin and melanocortin receptors 4 (MC4R), and pro-opiomelanocortin (POMC) in the hypothalamus were altered in response to dietary phloretin supplementation. Moreover, we confirmed that dietary phloretin supplementation reduced the expressions of miR-488 and miR-103, two feed intake-related miRNAs. Our present study provides evidence that dietary phloretin supplementation could increase feed intake in mice, which might be attributed to the stimulation of the hypothalamic feeding center via ghrelin, miRNAs (miR-103 and miR-488) and feeding signal factor-related genes (NPY, AgRP, MC4R and POMC), and to the inhibition of CCK to increase gastric emptying.


Subject(s)
Dietary Supplements/analysis , Eating/drug effects , Phloretin/administration & dosage , Animals , Cholecystokinin/genetics , Cholecystokinin/metabolism , Duodenum/drug effects , Duodenum/metabolism , Gene Expression/drug effects , Ghrelin/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
15.
Peptides ; 119: 170080, 2019 09.
Article in English | MEDLINE | ID: mdl-31260713

ABSTRACT

Nesfatin-1 is an anorexic peptide derived from nucleobindin 2 (NUCB2). An increase in hypothalamic nesfatin-1 inhibits feeding behavior and promotes weight loss. However, the effects of weight loss on hypothalamic nesfatin-1 levels are unclear. In this study, obese rats lost weight in three ways: Calorie Restriction diet (CRD), Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB). We found an increase in nesfatin-1 serum and cerebrospinal fluid levels after weight loss in obese Sprague-Dawley (SD) rats. Moreover, weight loss also increased hypothalamic melanocortin 3/4 receptor (MC3/4R) and extracellular regulated kinase phosphorylation (p-ERK) signaling. Third ventricle administration of antisense morpholino oligonucleotide (MON) against the gene encoding NUCB2 inhibited hypothalamic nesfatin-1 and p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. Third ventricle administration of SHU9119 (MC3/4R blocker) blocked hypothalamic MC3/4R, inhibited p-ERK signaling, increased food intake and reduced body weight loss in SG and RYGB obese rats. These findings indicate that weight loss leads to an increase in hypothalamic nesfatin-1. The increase in hypothalamic nesfatin-1 participates in regulating feeding behavior through the MC3/4R-ERK signaling especially after SG and RYGB.


Subject(s)
Feeding Behavior , Hypothalamus/metabolism , MAP Kinase Signaling System , Nucleobindins/metabolism , Obesity/metabolism , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Hypothalamus/pathology , Male , Morpholinos/genetics , Morpholinos/pharmacology , Nucleobindins/antagonists & inhibitors , Nucleobindins/genetics , Obesity/genetics , Obesity/pathology , Rats , Rats, Sprague-Dawley , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 4/genetics
16.
Pharmacol Biochem Behav ; 181: 28-36, 2019 06.
Article in English | MEDLINE | ID: mdl-30991059

ABSTRACT

A fixed dose combination of bupropion (BPP) and naltrexone (NTX), Contrave®, is an FDA approved pharmacotherapy for the treatment of obesity. A recent study found that combining BPP with low-dose NTX reduced alcohol drinking in alcohol-preferring male rats. To explore potential pharmacological effects of the BPP + NTX combination on alcohol drinking, both male and female C57Bl/6J mice were tested on one-week drinking-in-the dark (DID) and three-week intermittent access (IA) models. Neuronal proopiomelanocortin (POMC) enhancer knockout (nPE-/-) mice with hypothalamic-specific deficiency of POMC, and its bioactive peptides melanocyte stimulating hormone and beta-endorphin, were used as a genetic control for the effects of the BPP + NTX. A single administration of BPP + NTX (10 mg/kg + 1 mg/kg) decreased alcohol intake after DID in C57Bl/6J males, but not females. Also in C57Bl/6J males, BPP + NTX reduced intake of the caloric reinforcer sucrose, but not the non-caloric reinforcer saccharin. In contrast, BPP + NTX had no effect on alcohol DID in nPE-/- males. Pretreatment with the selective melanocortin 4 receptor (MC4R) antagonist HS014 reversed the anti-dipsogenic effect of BPP + NTX on alcohol DID in C57Bl/6J males. In the 3-week chronic IA model, single or repeated administrations for four days of BPP + NTX reduced alcohol intake and preference in C57Bl/6J males only. The behavioral measures observed in C57Bl/6J mice provide clear evidence that BPP + NTX profoundly reduced alcohol drinking in males, but the doses tested were not effective in females. Furthermore, our results suggest a hypothalamic POMC/MC4R-dependent mechanism for the observed BPP + NTX effects on alcohol drinking in male mice.


Subject(s)
Alcohol Drinking/drug therapy , Alcoholism/drug therapy , Bupropion/pharmacology , Bupropion/therapeutic use , Drug Evaluation, Preclinical/methods , Naltrexone/pharmacology , Naltrexone/therapeutic use , Animals , Behavior, Animal/drug effects , Bupropion/administration & dosage , Drug Combinations , Drug Synergism , Ethanol/administration & dosage , Female , Gene Knockout Techniques , Hypothalamus/metabolism , Injections, Intraperitoneal , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Naltrexone/administration & dosage , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Photoperiod , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/metabolism , Saccharin/pharmacology , Sex Factors , Sucrose/pharmacology
17.
Brain Res ; 1717: 136-146, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31009611

ABSTRACT

The central melanocortin system is composed of neurons that express either the proopiomelanocortin (POMC) or the agouti-related protein (AgRP). POMC is cleaved in bioactive peptides, including the α-melanocyte-stimulating hormone (α-MSH). α-MSH activates the melanocortin-4 receptor (MC4R) inducing satiety, whereas AgRP acts as an inverse agonist of MC4R. However, only limited information is available regarding possible area-specific differences in the interaction between α-MSH and AgRP terminals on MC4R-expressing cells. Therefore, the objective of the present study was to compare the distribution pattern of α-MSH and AgRP terminals on the perikarya of MC4R-expressing neurons. We performed a triple-label immunofluorescence reaction in brain series of MC4R-reporter mice to visualize MC4R-expressing neurons together with AgRP and α-MSH terminals. POMC and AgRP neurons project to areas that contain MC4R-expressing cells, although several brain nuclei exhibit AgRP and α-MSH terminals, but they do no express MC4R, while other brain areas contain MC4R-expressing cells and receive no apparent innervation of AgRP and POMC neurons. AgRP terminals make more presumptive appositions than α-MSH on the soma of MC4R-expressing neurons of the medial preoptic area and paraventricular nucleus of the hypothalamus (Pa). Additionally, a higher percentage of MC4R cells receive at least one presumptive apposition from AgRP terminals in the median preoptic nucleus and Pa, compared to α-MSH appositions. Thus, our study revealed area-specific differences in the interaction between α-MSH and AgRP terminals and the soma of MC4R-expressing neurons. These findings provide new insights about the relationship between first- and second-order neurons of the central melanocortin system.


Subject(s)
Agouti-Related Protein/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , Animals , Axons/metabolism , Brain/metabolism , Eating/physiology , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
18.
Mol Metab ; 25: 142-153, 2019 07.
Article in English | MEDLINE | ID: mdl-31014927

ABSTRACT

OBJECTIVE: Gsα couples multiple receptors, including the melanocortin 4 receptor (MC4R), to intracellular cAMP generation. Germline inactivating Gsα mutations lead to obesity in humans and mice. Mice with brain-specific Gsα deficiency also develop obesity with reduced energy expenditure and locomotor activity, and impaired adaptive thermogenesis, but the underlying mechanisms remain unclear. METHODS: We created mice (DMHGsKO) with Gsα deficiency limited to the dorsomedial hypothalamus (DMH) and examined the effects on energy balance and thermogenesis. RESULTS: DMHGsKO mice developed severe, early-onset obesity associated with hyperphagia and reduced energy expenditure and locomotor activity, along with impaired brown adipose tissue thermogenesis. Studies in mice with loss of MC4R in the DMH suggest that defective DMH MC4R/Gsα signaling contributes to abnormal energy balance but not to abnormal locomotor activity or cold-induced thermogenesis. Instead, DMHGsKO mice had impaired leptin signaling along with increased expression of the leptin signaling inhibitor protein tyrosine phosphatase 1B in the DMH, which likely contributes to the observed hyperphagia and reductions in energy expenditure, locomotor activity, and cold-induced thermogenesis. CONCLUSIONS: DMH Gsα signaling is critical for energy balance, thermogenesis, and leptin signaling. This study provides insight into how distinct signaling pathways can interact to regulate energy homeostasis and temperature regulation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/metabolism , Hyperphagia/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Obesity/metabolism , Signal Transduction/physiology , Thermogenesis/physiology , Adipose Tissue, Brown/metabolism , Animals , Energy Metabolism/physiology , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Glucose/metabolism , Homeostasis/physiology , Male , Mice , Mice, Knockout , Obesity/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Receptor, Melanocortin, Type 4/metabolism , Sympathetic Nervous System/metabolism
19.
Mol Metab ; 20: 194-204, 2019 02.
Article in English | MEDLINE | ID: mdl-30503832

ABSTRACT

OBJECTIVE: Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation. METHODS: To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes. RESULTS: Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice. CONCLUSION: In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.


Subject(s)
Hypoglycemia/metabolism , Hypothalamus/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Melanocortin, Type 4/metabolism , Animals , Epinephrine/metabolism , Glucagon/metabolism , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pro-Opiomelanocortin/deficiency , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/deficiency , Receptor, Melanocortin, Type 4/genetics
20.
Int J Mol Sci ; 19(7)2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29997323

ABSTRACT

The obesity epidemic is well recognized as a significant global health issue. A better understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing energy balance. The hypothalamus consists of tightly interconnected and specialized neurons that permit the sensing and integration of several peripheral inputs, including metabolic and hormonal signals for an appropriate physiological response. Current evidence shows that thyroid hormones (THs) constitute one of the key endocrine factors governing the regulation and the integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R (Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs). Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge on the important role of THs integration of metabolic pathways in the central regulation of metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in controlling energy homeostasis. This could be an important track for the development of attractive therapeutic compounds.


Subject(s)
Hypothalamus/metabolism , Obesity/metabolism , Receptors, Thyroid Hormone/metabolism , Thyroid Hormones/metabolism , Animals , Energy Metabolism , Homeostasis , Humans , Receptor, Melanocortin, Type 4/metabolism , Thyrotropin-Releasing Hormone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL