Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Gynecol Pathol ; 43(2): 190-199, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37922887

ABSTRACT

Melatonin has antiproliferative, antiangiogenic, apoptotic, and immunomodulatory properties in ovarian cancer. Considering those, we evaluated the relationship between melatonin 1 (MT1) and melatonin 2 receptor (MT2) expression in tumor tissues of patients with epithelial ovarian cancer, disease-free survival (DFS), and overall survival (OS). Patients who received primary surgical treatment for epithelial ovarian cancer in our clinic between 2000 and 2019 were retrospectively scanned through patient files, electronic databases, and telephone calls. One hundred forty-two eligible patients were included in the study, their tumoral tissues were examined to determine MT1 and MT2 expression by immunohistochemical methods. The percentage of receptor-positive cells and intensity of staining were determined. MT1 receptor expression ( P = 0.002 for DFS and P = 0.002 for OS) showed a significant effect on DFS and OS. MT2 expression had no effect on survival ( P = 0.593 for DFS and P = 0.209 for OS). The results showed that the higher the MT1 receptor expression, the longer the DFS and OS. It is suggested that melatonin should be considered as adjuvant therapy for ovarian cancer patients in addition to standard treatment, and clinical progress should be observed.


Subject(s)
Melatonin , Ovarian Neoplasms , Humans , Female , Melatonin/metabolism , Receptor, Melatonin, MT1/metabolism , Carcinoma, Ovarian Epithelial , Receptor, Melatonin, MT2/metabolism , Retrospective Studies
2.
Sci Rep ; 12(1): 17539, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266374

ABSTRACT

Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.


Subject(s)
Melatonin , Receptor, Melatonin, MT1 , Humans , Female , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Melatonin/pharmacology , Melatonin/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Granulosa Cells/metabolism , Genomics
3.
Nature ; 579(7800): 609-614, 2020 03.
Article in English | MEDLINE | ID: mdl-32040955

ABSTRACT

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Subject(s)
Circadian Rhythm/physiology , Ligands , Receptors, Melatonin/agonists , Receptors, Melatonin/metabolism , Animals , Circadian Rhythm/drug effects , Darkness , Drug Evaluation, Preclinical , Drug Inverse Agonism , Female , Humans , Light , Male , Mice , Mice, Knockout , Molecular Docking Simulation , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/deficiency , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/agonists , Receptor, Melatonin, MT2/deficiency , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Receptors, Melatonin/deficiency , Receptors, Melatonin/genetics , Small Molecule Libraries/pharmacology , Substrate Specificity/genetics
4.
Nutrients ; 11(7)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319549

ABSTRACT

The prevalence of cognitive impairments and circadian disturbances increases in the elderly and Alzheimer's disease (AD) patients. This study investigated the effects of a standardized extract of Asparagus officinalis stem, ETAS® on cognitive impairments and circadian rhythm status in senescence-accelerated mice prone 8 (SAMP8). ETAS® consists of two major bioactive constituents: 5-hydroxymethyl-2-furfural (HMF), an abundant constituent, and (S)-asfural, a novel constituent, which is a derivative of HMF. Three-month-old SAMP8 male mice were divided into a control, 200 and 1000 mg/kg BW ETAS® groups, while senescence-accelerated resistant mice (SAMR1) were used as the normal control. After 12-week feeding, ETAS® significantly enhanced cognitive performance by an active avoidance test, inhibited the expressions of amyloid-beta precursor protein (APP) and BACE-1 and lowered the accumulation of amyloid ß (Aß) in the brain. ETAS® also significantly increased neuron number in the suprachiasmatic nucleus (SCN) and normalized the expressions of the melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). In conclusion, ETAS® enhances the cognitive ability, inhibits Aß deposition and normalizes circadian rhythm signaling, suggesting it is beneficial for preventing cognitive impairments and circadian rhythm disturbances in aging.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Asparagus Plant/chemistry , Aspartic Acid Endopeptidases/metabolism , Plant Extracts/pharmacology , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Circadian Rhythm , Cognition/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred Strains , Plant Extracts/chemistry , Receptor, Melatonin, MT2/genetics
5.
Int J Mol Sci ; 20(10)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108968

ABSTRACT

Melatonin (MLT) is a neurohormone that regulates many physiological functions including sleep, pain, thermoregulation, and circadian rhythms. MLT acts mainly through two G-protein-coupled receptors named MT1 and MT2, but also through an MLT type-3 receptor (MT3). However, the role of MLT receptor subtypes in thermoregulation is still unknown. We have thus investigated the effects of selective and non-selective MLT receptor agonists/antagonists on body temperature (Tb) in rats across the 12/12-h light-dark cycle. Rectal temperature was measured every 15 min from 4:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 9:30 p.m., following subcutaneous injection of each compound at either 5:00 a.m. or 5:00 p.m. MLT (40 mg/kg) had no effect when injected at 5 a.m., whereas it decreased Tb during the light phase only when injected at 5:00 p.m. This effect was blocked by the selective MT2 receptor antagonist 4P-PDOT and the non-selective MT1/MT2 receptor antagonist, luzindole, but not by the α1/MT3 receptors antagonist prazosin. However, unlike MLT, neither the selective MT1 receptor partial agonist UCM871 (14 mg/kg) nor the selective MT2 partial agonist UCM924 (40 mg/kg) altered Tb during the light phase. In contrast, UCM871 injected at 5:00 p.m. increased Tb at the beginning of the dark phase, whereas UCM924 injected at 5:00 a.m. decreased Tb at the end of the dark phase. These effects were blocked by luzindole and 4P-PDOT, respectively. The MT3 receptor agonist GR135531 (10 mg/kg) did not affect Tb. These data suggest that the simultaneous activation of both MT1 and MT2 receptors is necessary to regulate Tb during the light phase, whereas in a complex but yet unknown manner, they regulate Tb differently during the dark phase. Overall, MT1 and MT2 receptors display complementary but also distinct roles in modulating circadian fluctuations of Tb.


Subject(s)
Body Temperature/drug effects , Melatonin/administration & dosage , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/agonists , Acetamides/administration & dosage , Acetamides/pharmacology , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Injections, Subcutaneous , Male , Melatonin/pharmacology , Photoperiod , Rats , Rats, Wistar , Receptor, Melatonin, MT1/antagonists & inhibitors , Receptor, Melatonin, MT2/antagonists & inhibitors , Receptor, Melatonin, MT2/metabolism , Tetrahydronaphthalenes/administration & dosage , Tetrahydronaphthalenes/pharmacology , Tryptamines/administration & dosage , Tryptamines/pharmacology
6.
Poult Sci ; 98(9): 4172-4181, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31001634

ABSTRACT

Precise natural anti-oxidative compounds have facilitated the research of infertile gametes and the development of novel bio-therapeutics, especially the molecules that are based on the reduction of oxidative stress, such as L-carnitine (LC). In addition to, the defect in the functioning of sperm mitochondrial and the decreasing seminal antioxidant ability due to aging, its essential role in permitting the mitochondrial import and oxidation of long chain fatty acids is worthy. Therefore, current study was designed to investigate the effects of dietary LC on semen quality, seminal antioxidant activity, and their implications for the fertility in aged cocks for 12 wk. Supplementation of the feed with two different doses of LC (50 and 150 mg/kg body weight/day) for 12 wk showed significantly increased in the reproductive activity of cock, in comparison to the control group. Seminal analysis showed that supplementation of LC significantly increased (P < 0.05) the sperm motility, concentration, livability, semen quality factor, seminal malondialdehyde concentration, catalase, and glutathione peroxidase activities. In addition, addition of LC significantly increased (P < 0.05) the plasma concentration of testosterone and prostaglandin E2 but posed no significant effect on the concentration of follicle-stimulating hormone. Furthermore, the findings of artificial insemination showed significant increased (P < 0.05) in the percentage of fertility in LC groups, while the percentage hatchability and mortality remained unchanged. Immunohistochemistry analysis revealed that LC significantly increased (P < 0.05) the testicular immunopositivity of MT1 and MT2. Moreover, the administration of LC to the aged cocks enhanced (P < 0.05) GnRH1 and GnRHR mRNA levels when compared with untreated cocks. The results of the present study suggest that LC treatment of aged cocks increases the seminal antioxidant enzymes and sexual hormones levels, which may improve the semen quality by increasing the expression of GnRH1 and melatonin receptors (MT1 and MT2) activities. Collectively, LC could be a suitable feed supplementation to increase reproductive activities through enhancing semen quality in aging cocks.


Subject(s)
Antioxidants/metabolism , Avian Proteins/genetics , Carnitine/metabolism , Chickens/physiology , Gene Expression/drug effects , Spermatozoa/drug effects , Aging/drug effects , Animal Feed/analysis , Animals , Antioxidants/administration & dosage , Avian Proteins/metabolism , Carnitine/administration & dosage , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Male , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Receptor, Melatonin, MT2/metabolism , Receptors, LHRH/genetics , Receptors, LHRH/metabolism , Semen Analysis/veterinary , Spermatozoa/physiology , Testis/metabolism
7.
Free Radic Biol Med ; 131: 345-355, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30553970

ABSTRACT

Traumatic brain injury (TBI) is a principal cause of death and disability worldwide. Melatonin, a hormone made by the pineal gland, is known to have anti-inflammatory and antioxidant properties. In this study, using a weight-drop model of TBI, we investigated the protective effects of ramelteon, a melatonin MT1/MT2 receptor agonist, and its underlying mechanisms of action. Administration of ramelteon (10 mg/kg) daily at 10:00 a.m. alleviated TBI-induced early brain damage on day 3 and long-term neurobehavioral deficits on day 28 in C57BL/6 mice. Ramelteon also increased the protein levels of interleukin (IL)-10, IL-4, superoxide dismutase (SOD), glutathione, and glutathione peroxidase and reduced the protein levels of IL-1ß, tumor necrosis factor, and malondialdehyde in brain tissue and serum on days 1, 3, and 7 post-TBI. Similarly, ramelteon attenuated microglial and astrocyte activation in the perilesional cortex on day 3. Furthermore, ramelteon decreased Keap 1 expression, promoted nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation, and increased levels of downstream proteins, including SOD-1, heme oxygenase-1, and NQO1 on day 3 post-TBI. However, in Nrf2 knockout mice with TBI, ramelteon did not decrease the lesion volume, neuronal degeneration, or myelin loss on day 3; nor did it mitigate depression-like behavior or most motor behavior deficits on day 28. Thus, timed ramelteon treatment appears to prevent inflammation and oxidative stress via the Nrf2-antioxidant response element pathway and might represent a potential chronotherapeutic strategy for treating TBI.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Brain Edema/drug therapy , Brain Injuries, Traumatic/drug therapy , Indenes/pharmacology , NF-E2-Related Factor 2/genetics , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Brain Edema/genetics , Brain Edema/metabolism , Brain Edema/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Gene Expression Regulation , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Inflammation , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-4/genetics , Interleukin-4/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/agonists , Receptor, Melatonin, MT2/metabolism , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
8.
J Pineal Res ; 64(4): e12476, 2018 May.
Article in English | MEDLINE | ID: mdl-29437250

ABSTRACT

Recent studies implicate melatonin in the antinociceptive activity of sensory neurons. However, the underlying mechanisms are still largely unknown. Here, we identify a critical role of melatonin in functionally regulating Cav3.2 T-type Ca2+ channels (T-type channel) in trigeminal ganglion (TG) neurons. Melatonin inhibited T-type channels in small TG neurons via the melatonin receptor 2 (MT2 receptor) and a pertussis toxin-sensitive G-protein pathway. Immunoprecipitation analyses revealed that the intracellular subunit of the MT2 receptor coprecipitated with Gαo . Both shRNA-mediated knockdown of Gαo and intracellular application of QEHA peptide abolished the inhibitory effects of melatonin. Protein kinase C (PKC) antagonists abolished the melatonin-induced T-type channel response, whereas inhibition of conventional PKC isoforms elicited no effect. Furthermore, application of melatonin increased membrane abundance of PKC-eta (PKCη ) while antagonism of PKCη or shRNA targeting PKCη prevented the melatonin-mediated effects. In a heterologous expression system, activation of MT2 receptor strongly inhibited Cav3.2 T-type channel currents but had no effect on Cav3.1 and Cav3.3 current amplitudes. The selective Cav3.2 response was PKCη dependent and was accompanied by a negative shift in the steady-state inactivation curve. Furthermore, melatonin decreased the action potential firing rate of small TG neurons and attenuated the mechanical hypersensitivity in a mouse model of complete Freund's adjuvant-induced inflammatory pain. These actions were inhibited by T-type channel blockade. Together, our results demonstrated that melatonin inhibits Cav3.2 T-type channel activity through the MT2 receptor coupled to novel Gßγ -mediated PKCη signaling, subsequently decreasing the membrane excitability of TG neurons and pain hypersensitivity in mice.


Subject(s)
Calcium Channels, T-Type/drug effects , Melatonin/pharmacology , Protein Kinase C/metabolism , Sensory Receptor Cells/drug effects , Animals , Calcium Channels, T-Type/metabolism , Hyperalgesia/metabolism , Membrane Potentials/drug effects , Mice, Inbred ICR , Receptor, Melatonin, MT2/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction/drug effects , Trigeminal Ganglion/drug effects , Trigeminal Ganglion/metabolism
9.
Sci Rep ; 7(1): 15080, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118419

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is a derivative of tryptophan which is produced and secreted mainly by the pineal gland and regulates a variety of important central and peripheral actions. To examine the potential effects of melatonin on the proliferation and differentiation of bovine intramuscular preadipocytes (BIPs), BIPs were incubated with different concentrations of melatonin. Melatonin supplementation at 1 mM significantly increased peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein (C/EBP) ß, and C/EBPα expression and promoted the differentiation of BIPs into adipocytes with large lipid droplets and high cellular triacylglycerol (TAG) levels. Melatonin also significantly enhanced lipolysis and up-regulated the expression of lipolytic genes and proteins, including hormone sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and perilipin 1 (PLIN1). Moreover, melatonin reduced intracellular reactive oxygen species (ROS) levels by increasing the expression levels and activities of superoxide dismutase 1 (SOD1) and glutathione peroxidase 4 (GPX4). Finally, the positive effects of melatonin on adipogenesis, lipolysis, and redox status were reversed by treatment with luzindole, anantagonist of nonspecific melatonin receptors 1 (MT1) and 2 (MT2), and 4-phenyl-2-propionamidotetraline (4P-PDOT), a selective MT2 antagonist. These results reveal that melatonin promotes TAG accumulation via MT2 receptor during differentiation in BIPs.


Subject(s)
Adipocytes/drug effects , Cell Differentiation/drug effects , Melatonin/pharmacology , Receptor, Melatonin, MT2/metabolism , Triglycerides/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Cattle , Cell Differentiation/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Lipase/genetics , Lipase/metabolism , Lipolysis/genetics , Male , Perilipin-1/genetics , Perilipin-1/metabolism , Receptor, Melatonin, MT2/antagonists & inhibitors , Tetrahydronaphthalenes/pharmacology
10.
Neurosci Lett ; 650: 18-24, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28377323

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a devastating and costly acquired condition that affects individuals of all ages, races, and geographies via a number of mechanisms. The effects of TBI on melatonin receptors remain unknown. PURPOSE: The purpose of this study is to explore whether endogenous changes in two melatonin receptor subtypes (MT1 and MT2) occur after experimental TBI. SAMPLE: A total of 25 adult male Sprague Dawley rats were used with 6 or 7 rats per group. METHODS: Rats were randomly assigned to receive either TBI modeled using controlled cortical impact or sham surgery and to be sacrificed at either 6- or 24-h post-operatively. Brains were harvested, dissected, and flash frozen until whole cell lysates were prepared, and the supernatant fluid aliquoted and used for western blotting. Primary antibodies were used to probe for melatonin receptors (MT1 and MT2), and beta actin, used for a loading control. ImageJ and Image Lab software were used to quantify the data which was analyzed using t-tests to compare means. RESULTS: Melatonin receptor levels were reduced in a brain region- and time point- dependent manner. Both MT1 and MT2 were reduced in the frontal cortex at 24h and in the hippocampus at both 6h and 24h. DISCUSSION: MT1 and MT2 are less abundant after injury, which may alter response to MEL therapy. Studies characterizing MT1 and MT2 after TBI are needed, including exploration of the time course and regional patterns, replication in diverse samples, and use of additional variables, especially sleep-related outcomes. CONCLUSION: TBI in rats resulted in lower levels of MT1 and MT2; replication of these findings is necessary as is evaluation of the consequences of lower receptor levels.


Subject(s)
Brain Injuries, Traumatic/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Brain Injuries, Traumatic/pathology , Down-Regulation , Frontal Lobe/injuries , Frontal Lobe/pathology , Hippocampus/injuries , Hippocampus/pathology , Male , Rats , Rats, Sprague-Dawley , Tissue Distribution
11.
Anim Reprod Sci ; 172: 164-72, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27477115

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is documented as a hormone involved in the circadian regulation of physiological and neuroendocrine function in mammals. Herein, the effects of melatonin on the functions of porcine granulosa cells in vitro were investigated. Porcine granulosa cells were cultivated with variable concentrations of melatonin (0, 0.001, 0.01, 0.1, 1.0, and 10ng/mL) for 48h. Melatonin receptor agonist (IIK7) and antagonist (Luzindole, 4P-PDOT) were used to further examine the action of melatonin. The results showed optimum cell viability and colony-forming efficiency of porcine granulosa cells at 0.01ng/mL melatonin for 48-h incubation period. The percentage of apoptotic granulosa cells was significantly reduced by 0.01 and 0.1ng/mL melatonin within the 48-h incubation period as compared with the rest of the treatments. Estradiol biosynthesis was significantly stimulated by melatonin supplementation and suppressed for the progesterone secretion; the minimum ratio of progesterone to estradiol was 1.82 in 0.01ng/mL melatonin treatment after 48h of cultivation. Moreover, the expression of BCL-2, CYP17A1, CYP19A1, SOD1, and GPX4 were up-regulated by 0.01ng/mL melatonin or combined with IIK7, but decreased for the mRNA levels of BAX, P53, and CASPASE-3, as compared with control or groups treated with Luzindole or 4P-PDOT in the presence of melatonin. In conclusion, the study demonstrated that melatonin mediated proliferation, apoptosis, and steroidogenesis in porcine granulosa cells predominantly through the activation of melatonin receptor MT2 in vitro, which provided evidence of the beneficial role of melatonin as well as its functional mechanism in porcine granulosa cells in vitro.


Subject(s)
Granulosa Cells/physiology , Melatonin/pharmacology , Receptor, Melatonin, MT2/metabolism , Swine/physiology , Animals , Apoptosis , Cells, Cultured , Female , Gene Expression Regulation , Isoindoles/pharmacology , Receptor, Melatonin, MT2/genetics , Tryptamines/pharmacology
12.
Biochem Biophys Res Commun ; 465(4): 719-24, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26296463

ABSTRACT

We have recently discovered that melatonin, given acutely and directly to the isolated heart at the concentration found in wine, confers cardioprotection against ischemia-reperfusion (I/R). However, whether the presence of melatonin in wine contributes to the cardioprotective effect of chronic and moderate consumption of wine and its signalling mechanisms of protection are unknown. We therefore used both in vivo and in vitro models of I/R to investigate whether the presence of melatonin in red wine may contribute to the cardioprotective effect of chronic and moderate consumption of red wine. Wistar rats and C57black6 mice (WT) received drinking water supplemented daily with a moderate amount of red wine or melatonin given at the concentration found in the red wine. Rats were also pretreated with luzindole, a specific inhibitor of melatonin receptors 1 and 2 (2.3 mg/kg/day, intraperitoneally) or prazosin, a specific inhibitor of melatonin receptor type 3 (2.5 mg/kg/day, intraperitoneally). After 14 days, hearts were subjected to I/R in vivo or ex vivo. Red wine reduced the infarct size in both rats and WT mice (p < 0.001). Luzindole did not affect wine-induced cardioprotection, while prazosin reduced the infarct sparing effect of red wine (p < 0.05). Furthermore, red wine or melatonin failed to protect tumor necrosis factor alpha (TNF) receptor 2 knockout or cardiomyocyte specific signal transducer and activator of transcription 3 (STAT3) deficient mice (n.s. vs. control). Our novel findings suggest that the presence of melatonin in red wine contributes to the cardioprotective effect of chronic and moderate consumption of red wine against lethal I/R injuries. This effect is most likely mediated, at least in part, via melatonin receptor 3 and the activation of TNF and STAT3, both key players of the prosurvival and well described SAFE pathway.


Subject(s)
Cardiotonic Agents/administration & dosage , Melatonin/administration & dosage , Melatonin/metabolism , Receptors, Melatonin/metabolism , STAT3 Transcription Factor/metabolism , Wine/analysis , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/diet therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Prazosin/pharmacology , Rats , Rats, Wistar , Receptor, Melatonin, MT1/antagonists & inhibitors , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/antagonists & inhibitors , Receptor, Melatonin, MT2/metabolism , Receptors, Melatonin/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/genetics , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics , Tryptamines/pharmacology , Tyrphostins/pharmacology
13.
J Pineal Res ; 58(4): 397-417, 2015 May.
Article in English | MEDLINE | ID: mdl-25726952

ABSTRACT

The involvement of melatonin in mammalian brain pathophysiology has received growing interest, but information about the anatomical distribution of its two G-protein-coupled receptors, MT1 and MT2 , remains elusive. In this study, using specific antibodies, we examined the precise distribution of both melatonin receptors immunoreactivity across the adult rat brain using light, confocal, and electron microscopy. Our results demonstrate a selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of the rat telencephalon, diencephalon, and mesencephalon. Confocal and ultrastructural examination confirmed the somatodendritic nature of MT1 and MT2 receptors, both being localized on neuronal membranes. Overall, striking differences were observed in the anatomical distribution pattern of MT1 and MT2 proteins, and the labeling often appeared complementary in regions displaying both receptors. Somadendrites labeled for MT1 were observed for instance in the retrosplenial cortex, the dentate gyrus of the hippocampus, the islands of Calleja, the medial habenula, the suprachiasmatic nucleus, the superior colliculus, the substantia nigra pars compacta, the dorsal raphe nucleus, and the pars tuberalis of the pituitary gland. Somadendrites endowed with MT2 receptors were mostly observed in the CA3 field of the hippocampus, the reticular thalamic nucleus, the supraoptic nucleus, the inferior colliculus, the substantia nigra pars reticulata, and the ventrolateral periaqueductal gray. Together, these data provide the first detailed neurocytological mapping of melatonin receptors in the adult rat brain, an essential prerequisite for a better understanding of melatonin distinct receptor function and neurophysiology.


Subject(s)
Brain/anatomy & histology , Brain/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Blotting, Western , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley
14.
Pain ; 156(2): 305-317, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25599452

ABSTRACT

Neuropathic pain is an important public health problem for which only a few treatments are available. Preclinical studies show that melatonin (MLT), a neurohormone acting on MT1 and MT2 receptors, has analgesic properties, likely through MT2 receptors. Here, we determined the effects of the novel selective MLT MT2 receptor partial agonist N-{2-([3-bromophenyl]-4-fluorophenylamino)ethyl}acetamide (UCM924) in 2 neuropathic pain models in rats and examined its supraspinal mechanism of action. In rat L5-L6 spinal nerve ligation and spared nerve injury models, UCM924 (20-40 mg/kg, subcutaneously) produced a prolonged antinociceptive effect that is : (1) dose-dependent and blocked by the selective MT2 receptor antagonist 4-phenyl-2-propionamidotetralin, (2) superior to a high dose of MLT (150 mg/kg) and comparable with gabapentin (100 mg/kg), but (3) without noticeable motor coordination impairments in the rotarod test. Using double staining immunohistochemistry, we found that MT2 receptors are expressed by glutamatergic neurons in the rostral ventrolateral periaqueductal gray. Using in vivo electrophysiology combined with tail flick, we observed that microinjection of UCM924 into the ventrolateral periaqueductal gray decreased tail flick responses, depressed the firing activity of ON cells, and activated the firing of OFF cells; all effects were MT2 receptor-dependent. Altogether, these data demonstrate that selective MT2 receptor partial agonists have analgesic properties through modulation of brainstem descending antinociceptive pathways, and MT2 receptors may represent a novel target in the treatment of neuropathic pain.


Subject(s)
Acetamides/metabolism , Aniline Compounds/metabolism , Brain Stem/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Pyramidal Tracts/metabolism , Receptor, Melatonin, MT2/metabolism , Acetamides/pharmacology , Acetamides/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , Brain Stem/drug effects , Ligands , Male , Pain Measurement/drug effects , Pain Measurement/methods , Pyramidal Tracts/drug effects , Rats , Rats, Wistar , Receptor, Melatonin, MT2/agonists
15.
J Bone Joint Surg Am ; 96(13): e108, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24990982

ABSTRACT

BACKGROUND: Nocturnal pain is commonly observed in patients with shoulder disorders such as a rotator cuff tear or frozen shoulder. This study was conducted to explore the possibility that melatonin plays a role as a mediator of nocturnal pain in patients with a rotator cuff tear or frozen shoulder. METHODS: Subacromial bursa and joint capsule samples were collected from sixty-three patients: twenty-one patients with a rotator cuff tear, twenty-two with frozen shoulder, and twenty with shoulder instability (control group). The expression of melatonin receptor 1A (MTNR1A) and 1B (MTNR1B) and of acid-sensing ion channel 3 (ASIC3) in the subacromial bursa and the joint capsule were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. The protein level of ASIC3 was measured by immunoblot analysis. To determine the effect of melatonin as a pain mediator, an in vitro study with use of primary cultured fibroblast-like synoviocytes was performed by semiquantitative RT-PCR analysis, immunoblot analysis, and enzyme-linked immunosorbent assay (ELISA). RESULTS: MTNR1A, MTNR1B, and ASIC3 expression was significantly increased in both the rotator cuff tear and frozen shoulder groups compared with the control group of patients with shoulder instability. Interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) significantly stimulated the expression of MTNR1A and MTNR1B in primary cultured fibroblast-like synoviocytes treated with proinflammatory cytokines. Melatonin treatment at a physiological concentration (10 nM) induced ASIC3 expression and IL-6 production. Treatment with luzindole, a melatonin-receptor antagonist, reversed melatonin-stimulated ASIC3 expression and IL-6 production. CONCLUSIONS: Our study suggests that melatonin may play a role as a mediator of nocturnal pain with a rotator cuff tear or frozen shoulder, and this effect may be mediated via melatonin receptors. CLINICAL RELEVANCE: Melatonin may be a therapeutic target of chronotherapy.


Subject(s)
Bursitis/metabolism , Joint Instability/metabolism , Melatonin/metabolism , Rotator Cuff Injuries/metabolism , Shoulder Joint/metabolism , Acid Sensing Ion Channels/metabolism , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Synovial Fluid/metabolism , Synovial Membrane/metabolism
16.
Anim Reprod Sci ; 147(1-2): 10-6, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24768045

ABSTRACT

Melatonin and its receptors are found in the testis of many species, where they mediate testicular functions. The present study aimed to investigate the expression of melatonin receptors (MT1 and MT2) in bovine Sertoli cells (SCs), using reverse transcription polymerase chain reaction (RT-PCR) and western blot. In addition, we assessed the mRNA levels of spermatogenesis-related genes (real-time PCR) and secretion of inhibin B after treatment with various concentrations (0, 80, 160, and 320 pg/mL) of melatonin at different time points (24, 48, or 72 h). We found that bovine SCs express MT1 and MT2 receptors, which were regulated by melatonin in time- and dose-dependent manners after treatment with melatonin. Exogenous melatonin up-regulated the expression of spermatogenesis-related genes, including Cyclin D1, Cyclin E, Pdgfa, Dhh, Occludin, and Claudin, and decreased the mRNA levels of P21 and Kit1 in a time or dose-dependent manner. Meanwhile, melatonin supplementation significantly affected Inhba, Inhbb and Inha mRNA expression. These findings were consistent with inhibin B levels detected in the culture medium. In conclusion, exogenous melatonin acts via its receptors and appears to play regulatory roles in the development and function of bovine SCs.


Subject(s)
Melatonin/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Sertoli Cells/metabolism , Animals , Cattle , Cells, Cultured , Gene Expression Regulation , Inhibins/genetics , Inhibins/metabolism , Male , Melatonin/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Spermatogenesis/physiology
17.
Reprod Biol Endocrinol ; 10: 103, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23207065

ABSTRACT

BACKGROUND: Melatonin inclusion into in vitro oocyte maturation (IVM) protocols has been suggested because it possesses a powerful free radical scavenger capability that improves the quality of the oocyte used in in vitro embryo production (IVP). The aim of our study was to investigate the presence of melatonin membrane receptors (MT1and MT2) and MT3, which is the melatonin binding site of NQO2 enzyme, in both oocytes and hatched blastocysts to consider an additional subcellular mechanism responsible for the effects of melatonin on IVP. METHODS: The presence of the high affinity melatonin receptors was investigated through an autoradiographic binding assay, using the non-permeable ligand [125I]-iodomelatonin (17 pM) in embryos. The kind of melatonin site was investigated in oocytes and embryos by immunocytochemistry. In vitro fertilized bovine embryos produced from in vitro maturated oocytes supplemented with melatonin (0.0001 to 1000 nM) were analysed to determine their cleavage and blastocyst formation rates. RESULTS: The [125I]-iodomelatonin (17 pM) binding in blastocysts was blocked by pre-incubation with melatonin (30000 nM), showing the presence of the high affinity melatonin receptors. MT1, MT2 and NQO2 immunoreactivity was observed in oocytes. MT1 immunoreactivity was observed in hatched blastocysts, however MT2 and NQO2 were not observed in this embryonic stage. Melatonin (pM) triggered significant difference in both cleavage and blastocysts formation rates. CONCLUSIONS: The high affinity MT1 melatonin receptor must be taking part in IVM events; furthermore it is the first melatonin receptor to appear during bovine embryo development in vitro.


Subject(s)
Blastocyst/metabolism , Cattle/embryology , Oocytes/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Receptors, Melatonin/metabolism , Animals , Antioxidants/pharmacology , Blastocyst/drug effects , Embryo Culture Techniques , Female , Fertilization in Vitro/veterinary , Melatonin/pharmacology , Oocytes/drug effects , Quinone Reductases/metabolism
18.
J Neurosci ; 31(50): 18439-52, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22171046

ABSTRACT

Melatonin activates two brain G-protein coupled receptors, MT(1) and MT(2), whose differential roles in the sleep-wake cycle remain to be defined. The novel MT(2) receptor partial agonist, N-{2-[(3-methoxyphenyl) phenylamino] ethyl} acetamide (UCM765), is here shown to selectively promote non-rapid eye movement sleep (NREMS) in rats and mice. The enhancement of NREMS by UCM765 is nullified by the pharmacological blockade or genetic deletion of MT(2) receptors. MT(2), but not MT(1), knock-out mice show a decrease in NREMS compared to the wild strain. Immunohistochemical labeling reveals that MT(2) receptors are localized in sleep-related brain regions, and notably the reticular thalamic nucleus (Rt). Microinfusion of UCM765 in the Rt promotes NREMS, and its systemic administration induces an increase in firing and rhythmic burst activity of Rt neurons, which is blocked by the MT(2) antagonist 4-phenyl-2-propionamidotetralin. Since developing hypnotics that increase NREMS without altering sleep architecture remains a medical challenge, MT(2) receptors may represent a novel target for the treatment of sleep disorders.


Subject(s)
Acetamides/pharmacology , Aniline Compounds/pharmacology , Neurons/drug effects , Receptor, Melatonin, MT2/metabolism , Sleep/drug effects , Thalamus/drug effects , Animals , Female , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptor, Melatonin, MT2/agonists , Receptor, Melatonin, MT2/genetics
19.
Anaesth Intensive Care ; 39(2): 171-81, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21485664

ABSTRACT

Melatonin is a substance chiefly produced by the pineal gland and has a key role in the sleep-wake cycle. It also has an important antioxidant role. Exogenous melatonin has a short half-life and is available in a range of preparations. Newer analogues targeted for the recently discovered melatonin MT1 and MT2 receptors have also been developed. Exogenous melatonin is used as a resynchronisation agent in jet lag and for other sleep disturbances. Perioperatively, melatonin has been used as a premedicant, sedative and analgesic. It decreases paediatric emergence delirium. The antioxidant properties of melatonin are being investigated for use in sepsis and reperfusion injuries. It would appear that patients on melatonin supplements should continue taking them perioperatively because there may be benefits. Melatonin and its analogues will be increasingly encountered in the perioperative setting.


Subject(s)
Antioxidants/therapeutic use , Drug Delivery Systems , Melatonin/therapeutic use , Animals , Antioxidants/pharmacology , Humans , Melatonin/analogs & derivatives , Melatonin/pharmacology , Perioperative Care/methods , Receptor, Melatonin, MT1/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/drug effects , Receptor, Melatonin, MT2/metabolism
20.
Bioorg Med Chem Lett ; 20(8): 2582-5, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20227878

ABSTRACT

A series of substituted N-[3-(3-methoxyphenyl)propyl] amides were synthesized and their binding affinities towards human melatonin MT(1) and MT(2) receptors were evaluated. It was discovered that a benzyloxyl substituent incorporated at C6 position of the 3-methoxyphenyl ring dramatically enhanced the MT(2) binding affinity and at the same time decreased MT(1) binding affinity.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Melatonin/metabolism , Receptor, Melatonin, MT2/metabolism , Amides/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Evaluation, Preclinical , Ligands , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL