Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(15): e2122512119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35380904

ABSTRACT

We identified the anti-Mullerian hormone (also known as Müllerian inhibiting substance or MIS) as an inhibitory hormone that induces long-term contraception in mammals. The type II receptor to this hormone, AMHR2 (also known as MISR2), represents a promising druggable target for the modulation of female reproduction with a mechanism of action distinct from steroidal contraceptives. We designed an in vitro platform to screen and validate small molecules that can activate MISR2 signaling and suppress ovarian folliculogenesis. Using a bone morphogenesis protein (BMP)­response element luciferase reporter cell­based assay, we screened 5,440 compounds from a repurposed drug library. Positive hits in this screen were tested for specificity and potency in luciferase dose­response assays, and biological activity was tested in ex vivo Mullerian duct regression bioassays. Selected candidates were further evaluated in ex vivo follicle/ovary culture assays and in vivo in mice and rats. Here, we report that SP600125, CYC-116, gandotinib, and ruxolitinib can specifically inhibit primordial follicle activation and repress folliculogenesis by stimulating the MISR2 pathway.


Subject(s)
Contraceptive Agents , Drug Repositioning , Ovarian Follicle , Receptors, Peptide , Receptors, Transforming Growth Factor beta , Small Molecule Libraries , Animals , Anthracenes/chemistry , Anthracenes/pharmacology , Contraceptive Agents/chemistry , Contraceptive Agents/pharmacology , Drug Evaluation, Preclinical , Female , Humans , Mice , Nitriles/chemistry , Nitriles/pharmacology , Ovarian Follicle/drug effects , Ovarian Follicle/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Receptors, Peptide/agonists , Receptors, Transforming Growth Factor beta/agonists , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology
2.
Chem Biol Drug Des ; 73(3): 339-45, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19207470

ABSTRACT

We synthesized 2-substituted 2H-chromene derivatives from salicylaldehyde using potassium vinylic borates in the presence of secondary amines. Our goal was to generate novel compounds that might modulate transforming growth factor-beta signaling, based on limited rational design. Potassium vinyl trifluoroborates react with salicylaldehydes at 80 degrees C in the presence of a secondary amine and produce 2-substituted 2H-chromene derivatives with a 70-90% yield. A small library of these compounds, predicted to potentially interact with transforming growth factor-beta receptors, was screened for bioactivity in living zebrafish embryos. We found that the related compounds differentially affect development, and demonstrate one compound that produces severe body axis alterations in early embryogenesis and at lower doses affects specifically cardiovascular development. This compound modulates specifically a Smad-independent transforming growth factor-beta-regulated mitogen-activated protein kinase pathway, namely p-SAPK/JNK. These compounds, as suggested by our biological assays, may prove useful to manipulate developmental programs and develop therapeutic tools.


Subject(s)
Benzopyrans/pharmacology , Receptors, Transforming Growth Factor beta/agonists , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Zebrafish/embryology , Animals , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Drug Evaluation, Preclinical/methods , Embryonic Development/drug effects , MAP Kinase Signaling System , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL