Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Biomol Struct Dyn ; 41(6): 2382-2397, 2023 04.
Article in English | MEDLINE | ID: mdl-35098887

ABSTRACT

Coronaviruses (CoVs) belong to a group of RNA viruses that cause diseases in vertebrates including. Newer and deadlier than SARS CoV-2 are sought to appear in future for which the scientific community must be prepared with the strategies for their control. Spike protein (S-protein) of all the CoVs require angiotensin-converting enzyme2 (ACE2), while CoVs also require hemagglutinin-acetylesterase (HE) glycoprotein receptor to simultaneously interact with O-acetylated sialic acids on host cells, both these interactions enable viral particle to enter host cell leading to its infection. Target inhibition of viral S-protein and HE glycoprotein receptor can lead to a development of therapy against the SARS CoV-2. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask the active site of, HE glycoprotein which would ideally bind to O-acetylated sialic acids on human host cells. Such molecules can be addressed as 'HE glycoprotein blockers'. A library of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica was constructed and was used under present study. In silico analysis was employed with plant-derived phytochemicals. The molecular docking, molecular dynamics simulations over the scale of 1000 ns (1 µs) and ADMET prediction revealed that the Withania somnifera (ashwagandha) and Asparagus racemosus (shatavari) plants possessed various steroidal saponins and alkaloids which could potentially inhibit the COVID-19 virus and even other CoVs targeted HE glycoprotein receptor.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Animals , Humans , Hemagglutinins , Molecular Docking Simulation , Receptors, Virus/chemistry , Antiviral Agents/pharmacology , Workflow , Spike Glycoprotein, Coronavirus/chemistry , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Molecular Dynamics Simulation , Esterases , Phytochemicals/pharmacology
2.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577194

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially appeared in Wuhan, China, in December 2019. Elderly individuals and those with comorbid conditions may be more vulnerable to this disease. Consequently, several research laboratories continue to focus on developing drugs to treat this infection because this disease has developed into a global pandemic with an extremely limited number of specific treatments available. Natural herbal remedies have long been used to treat illnesses in a variety of cultures. Modern medicine has achieved success due to the effectiveness of traditional medicines, which are derived from medicinal plants. The objective of this study was to determine whether components of natural origin from Iranian medicinal plants have an antiviral effect that can prevent humans from this coronavirus infection using the most reliable molecular docking method; in our case, we focused on the main protease (Mpro) and a receptor-binding domain (RBD). The results of molecular docking showed that among 169 molecules of natural origin from common Iranian medicinal plants, 20 molecules (chelidimerine, rutin, fumariline, catechin gallate, adlumidine, astragalin, somniferine, etc.) can be proposed as inhibitors against this coronavirus based on the binding free energy and type of interactions between these molecules and the studied proteins. Moreover, a molecular dynamics simulation study revealed that the chelidimerine-Mpro and somniferine-RBD complexes were stable for up to 50 ns below 0.5 nm. Our results provide valuable insights into this mechanism, which sheds light on future structure-based designs of high-potency inhibitors for SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Phytochemicals/therapeutic use , Viral Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Computer Simulation , Humans , Iran , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Phytochemicals/metabolism , Plants, Medicinal/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Thermodynamics , Viral Protease Inhibitors/metabolism , Viral Protease Inhibitors/pharmacology
3.
Cells ; 10(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34572076

ABSTRACT

Coronavirus disease 19 (COVID-19) is caused by an enveloped, positive-sense, single-stranded RNA virus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the realm Riboviria, order Nidovirales, family Coronaviridae, genus Betacoronavirus and the species Severe acute respiratory syndrome-related coronavirus. This viral disease is characterized by a myriad of varying symptoms, such as pyrexia, cough, hemoptysis, dyspnoea, diarrhea, muscle soreness, dysosmia, lymphopenia and dysgeusia amongst others. The virus mainly infects humans, various other mammals, avian species and some other companion livestock. SARS-CoV-2 cellular entry is primarily accomplished by molecular interaction between the virus's spike (S) protein and the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2), although other host cell-associated receptors/factors, such as neuropilin 1 (NRP-1) and neuropilin 2 (NRP-2), C-type lectin receptors (CLRs), as well as proteases such as TMPRSS2 (transmembrane serine protease 2) and furin, might also play a crucial role in infection, tropism, pathogenesis and clinical outcome. Furthermore, several structural and non-structural proteins of the virus themselves are very critical in determining the clinical outcome following infection. Considering such critical role(s) of the abovementioned host cell receptors, associated proteases/factors and virus structural/non-structural proteins (NSPs), it may be quite prudent to therapeutically target them through a multipronged clinical regimen to combat the disease.


Subject(s)
COVID-19 , Host Microbial Interactions , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Drug Delivery Systems , Furin/chemistry , Furin/metabolism , Humans , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Molecular Structure , Neuropilins/chemistry , Neuropilins/metabolism , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Treatment Outcome , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Internalization
4.
Biochem Biophys Res Commun ; 566: 45-52, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34116356

ABSTRACT

A newly-emergent beta-coronavirus, SARS-CoV-2, rapidly has become a pandemic since 2020. It is a serious respiratory disease and caused more than 100 million of deaths in the world. WHO named it COVIA-19 and there is no effective targeted drug for it. The main treatment strategies include chemical medicine, traditional Chinese medicine (TCM) and biologics. Due to SARS-CoV-2 uses the spike proteins (S proteins) on its envelope to infect human cells, monoclonal antibodies that neutralize the S protein have become one of the hot research areas in the current research and treatment of SARS-CoV-2. In this study, we reviewed the antibodies that have been reported to have neutralizing activity against the SARS-CoV-2 infection. According to their different binding epitope regions in RBD or NTD, they are classified, and the mechanism of the representative antibodies in each category is discussed in depth, which provides potential foundation for future antibody and vaccine therapy and the development of antibody cocktails against SARS-CoV-2 mutants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , COVID-19/therapy , COVID-19 Vaccines/immunology , Epitopes/immunology , Humans , Models, Molecular , Neutralization Tests , Pandemics , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , SARS-CoV-2/genetics , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Curr Top Med Chem ; 21(7): 571-596, 2021.
Article in English | MEDLINE | ID: mdl-33463470

ABSTRACT

Even after one year of its first outbreak reported in China, the coronavirus disease 2019 (COVID-19) pandemic is still sweeping the World, causing serious infections and claiming more fatalities. COVID-19 is caused by the novel coronavirus SARS-CoV-2, which belongs to the genus Betacoronavirus (ß-CoVs), which is of greatest clinical importance since it contains many other viruses that cause respiratory disease in humans, including OC43, HKU1, SARS-CoV, and MERS. The spike (S) glycoprotein of ß-CoVs is a key virulence factor in determining disease pathogenesis and host tropism, and it also mediates virus binding to the host's receptors to allow viral entry into host cells, i.e., the first step in virus lifecycle. Viral entry inhibitors are considered promising putative drugs for COVID-19. Herein, we mined the biomedical literature for viral entry inhibitors of other coronaviruses, with special emphasis on ß-CoVs entry inhibitors. We also outlined the structural features of SARS-CoV-2 S protein and how it differs from other ß-CoVs to better understand the structural determinants of S protein binding to its human receptor (ACE2). This review highlighted several promising viral entry inhibitors as potential treatments for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Receptors, Virus/antagonists & inhibitors , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , COVID-19/enzymology , COVID-19/virology , Cathepsin L/antagonists & inhibitors , Cathepsin L/chemistry , Cathepsin L/genetics , Cathepsin L/metabolism , Gene Expression , Humans , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , COVID-19 Drug Treatment
6.
Sci Signal ; 14(665)2021 01 12.
Article in English | MEDLINE | ID: mdl-33436497

ABSTRACT

The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the µ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin ß3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.


Subject(s)
COVID-19/virology , Host Microbial Interactions/physiology , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Virus Internalization , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/therapy , Conserved Sequence , Host Microbial Interactions/genetics , Humans , Integrins/chemistry , Integrins/genetics , Integrins/physiology , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Models, Biological , Models, Molecular , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/physiology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/physiology , Protein Sorting Signals/genetics , Protein Sorting Signals/physiology , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology
7.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1230-1233, 2021.
Article in English | MEDLINE | ID: mdl-32750889

ABSTRACT

Recently, it was confirmed that ACE2 is the receptor of SARS-CoV-2, the pathogen causing the recent outbreak of severe pneumonia around the world. It is confused that ACE2 is widely expressed across a variety of organs and is expressed moderately but not highly in lung, which, however, is the major infected organ. Therefore, we hypothesized that there could be some other genes playing key roles in the entry of SARS-CoV-2 into human cells. Here we found that AGTR2 (angiotensin II receptor type 2), a G-protein coupled receptor, has interaction with ACE2 and is highly expressed in lung with a high tissue specificity. More importantly, simulation of 3D structure based protein-protein interaction reveals that AGTR2 shows a higher binding affinity with the Spike protein of SARS-CoV-2 than ACE2 (energy: -8.2 vs. -5.1 [kcal/mol]). A number of compounds, biologics and traditional Chinese medicine that could decrease the expression level of AGTR2 were predicted. Finally, we suggest that AGTR2 could be a putative novel gene for the entry of SARS-CoV-2 into human cells, which could provide different insight for the research of SARS-CoV-2 proteins with their receptors.


Subject(s)
COVID-19/genetics , COVID-19/virology , Receptor, Angiotensin, Type 2/genetics , Receptors, Virus/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/pharmacology , COVID-19/physiopathology , Computational Biology , Computer Simulation , Drug Evaluation, Preclinical , Humans , Models, Molecular , Protein Interaction Maps , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/physiology , Receptors, Virus/chemistry , Receptors, Virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Transcriptome/drug effects , Virus Internalization
8.
Molecules ; 25(17)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842606

ABSTRACT

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cathepsin L/chemistry , Phytochemicals/chemistry , Protease Inhibitors/chemistry , Receptors, Virus/chemistry , Serine Endopeptidases/chemistry , Amino Acid Sequence , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Cathepsin L/antagonists & inhibitors , Cathepsin L/genetics , Cathepsin L/metabolism , Coronavirus Infections/drug therapy , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Gene Expression , High-Throughput Screening Assays , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , India , Molecular Docking Simulation , Molecular Dynamics Simulation , Monosaccharides/chemistry , Monosaccharides/isolation & purification , Monosaccharides/pharmacology , Pandemics , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Pneumonia, Viral/drug therapy , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Protease Inhibitors/isolation & purification , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quinazolines/chemistry , Quinazolines/isolation & purification , Quinazolines/pharmacology , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Thermodynamics , Virus Internalization/drug effects
9.
Infect Dis Poverty ; 9(1): 99, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32690096

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has caused a public catastrophe and global concern. The main symptoms of COVID-19 are fever, cough, myalgia, fatigue and lower respiratory tract infection signs. Almost all populations are susceptible to the virus, and the basic reproduction number (R0) is 2.8-3.9. The fight against COVID-19 should have two aspects: one is the treatment of infected patients, and the other is the mobilization of the society to avoid the spread of the virus. The treatment of patients includes supportive treatment, antiviral treatment, and oxygen therapy. For patients with severe acute respiratory distress syndrome (ARDS), extracorporeal membrane oxygenation (ECMO) and circulatory support are recommended. Plasma therapy and traditional Chinese medicine have also achieved good outcomes. This review is intended to summarize the research on this new coronavirus, to analyze the similarities and differences between COVID-19 and previous outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) and to provide guidance regarding new methods of prevention, diagnosis and clinical treatment based on autodock simulations. METHODS: This review compares the multifaceted characteristics of the three coronaviruses including COVID-19, SARS and MERS. Our researchers take the COVID-19, SARS, and MERS as key words and search literatures in the Pubmed database. We compare them horizontally and vertically which respectively means concluding the individual characteristics of each coronavirus and comparing the similarities and differences between the three coronaviruses. RESULTS: We searched for studies on each outbreak and their solutions and found that the main biological differences among SARS-CoV-2, SARS-CoV and MERS-CoV are in ORF1a and the sequence of gene spike coding protein-S. We also found that the types and severity of clinical symptoms vary, which means that the diagnosis and nursing measures also require differentiation. In addition to the common route of transmission including airborne transmission, these three viruses have their own unique routes of transmission such as fecal-oral route of transmission COVID-19. CONCLUSIONS: In evolutionary history, these three coronaviruses have some similar biological features as well as some different mutational characteristics. Their receptors and routes of transmission are not all the same, which makes them different in clinical features and treatments. We discovered through the autodock simulations that Met124 plays a key role in the efficiency of drugs targeting ACE2, such as remdesivir, chloroquine, ciclesonide and niclosamide, and may be a potential target in COVID-19.


Subject(s)
Antiviral Agents/chemistry , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral , Receptors, Virus/chemistry , Severe Acute Respiratory Syndrome , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/metabolism , Betacoronavirus/genetics , Betacoronavirus/physiology , Betacoronavirus/ultrastructure , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Reservoirs , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Middle East Respiratory Syndrome Coronavirus/ultrastructure , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Receptors, Coronavirus , Receptors, Virus/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/ultrastructure , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , COVID-19 Drug Treatment
10.
Elife ; 92020 05 28.
Article in English | MEDLINE | ID: mdl-32463365

ABSTRACT

The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.


Subject(s)
Coronavirus Infections/virology , Libraries, Medical , Pneumonia, Viral/virology , Receptors, Virus/metabolism , Animals , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Gene Expression Profiling , Humans , Knowledge Discovery , Mice , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Receptors, Coronavirus , Receptors, Virus/chemistry , Receptors, Virus/genetics , SARS-CoV-2
11.
Antiviral Res ; 133: 14-22, 2016 09.
Article in English | MEDLINE | ID: mdl-27421712

ABSTRACT

Human noroviruses are the leading causative agents of epidemic and sporadic viral gastroenteritis and childhood diarrhoea worldwide. Human histo-blood group antigens (HBGA) serve as receptors for norovirus capsid protein attachment and play a critical role in infection. This makes HBGA-norovirus binding a promising target for drug development. Recently solved crystal structures of norovirus bound to HBGA have provided a structural basis for identification of potential anti-norovirus drugs and subsequently performed in silico and in vitro drug screens have identified compounds that block norovirus binding and may thereby serve as structural templates for design of therapeutic norovirus inhibitors. This review explores norovirus therapeutic options based on the strategy of blocking norovirus-HBGA binding.


Subject(s)
Antiviral Agents/pharmacology , Blood Group Antigens/metabolism , Capsid Proteins/metabolism , Norovirus/drug effects , Norovirus/physiology , Antiviral Agents/chemistry , Binding Sites , Blood Group Antigens/chemistry , Computer Simulation , Drug Evaluation, Preclinical , Humans , Models, Molecular , Molecular Conformation , Protein Binding/drug effects , Receptors, Virus/chemistry , Receptors, Virus/metabolism
12.
J Biol Chem ; 276(46): 43205-15, 2001 Nov 16.
Article in English | MEDLINE | ID: mdl-11544254

ABSTRACT

Nectins are adhesion molecules that participate in the organization of epithelial and endothelial junctions and serve as receptors for herpes simplex virus entry. They belong to the immunoglobulin superfamily, are homologues of the poliovirus receptor (PVR/CD155), and were also named poliovirus receptor-related (PRR) proteins. We identify a new member of the nectin family named nectin4. Peptide sequences of human and murine nectin4 share 92% identity, and as for other members, the ectodomain is made of three immunoglobulin-like domains of V, C, C types. In contrast to other nectin molecules, detection of nectin4 transcripts is mainly restricted to placenta in human tissues. Expression is broader in mouse, and interestingly nectin4 is detected at days 11, 15, and 17 during murine embryogenesis. Nectin4 interacts with afadin, a F-actin-associated molecule, via its carboxyl-terminal cytoplasmic sequence. Both molecules co-localize at cadherin-based adherens junctions in the MDCKII epithelial cell line. Nectins are homophilic adhesion molecules, and recently heterophilic interactions have been described between nectin3/nectin1 and nectin3/nectin2. We confirmed these trans-interactions and also described nectin3 as the PVR/CD155 ligand. By means of several approaches, we report on the identification of nectin4 as a new ligand for nectin1. First, a soluble chimeric recombinant nectin4 ectodomain (nectin4-Fc) trans-interacts with cells expressing nectin1 but not with cells expressing nectin2, nectin3, or PVR/CD155. Conversely, nectin1-Fc binds to cells expressing nectin4. Second, nectin1-Fc precipitates nectin4 expressed in COS cells. Third, reciprocal in vitro physical interactions were detected between nectin4-Fc and nectin1-Fc. The nectin4-Fc/nectin4-Fc interaction was detected suggesting that nectin4 exhibits both homophilic and heterophilic properties. Using the same approaches we demonstrate, for the first time, that the V domain of nectin1 acts as a major functional region involved in trans-heterointeraction with nectin4 and also nectin3.


Subject(s)
Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/physiology , Membrane Proteins , Actins/chemistry , Amino Acid Sequence , Animals , Blotting, Northern , COS Cells , Calcium/metabolism , Cell Adhesion Molecules/metabolism , Cell Line , Cloning, Molecular , DNA, Complementary/metabolism , Dogs , Enzyme-Linked Immunosorbent Assay , Epithelial Cells , Exons , Humans , Immunoblotting , Immunohistochemistry , Kinesins , Ligands , Mice , Microfilament Proteins/metabolism , Models, Biological , Molecular Sequence Data , Myosins , Nectins , Peptides/chemistry , Placenta/metabolism , Precipitin Tests , Protein Binding , Protein Structure, Tertiary , Receptors, Virus/chemistry , Sequence Homology, Amino Acid , Time Factors , Tissue Distribution , Transfection
13.
J Virol ; 74(8): 3572-78, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10729132

ABSTRACT

Genetic and receptor interference data have indicated the presence of one or more cellular receptors for subgroup B, D, and E avian leukosis viruses (ALV) encoded by the s1 allele of the chicken tvb locus. Despite the prediction that these viruses use the same receptor, they exhibit a nonreciprocal receptor interference pattern: ALV-B and ALV-D can interfere with infection by all three viral subgroups, but ALV-E only interferes with infection by subgroup E viruses. We identified a tvb(s1) cDNA clone which encodes a tumor necrosis factor receptor-related receptor for ALV-B, -D, and -E. The nonreciprocal receptor interference pattern was reconstituted in transfected human 293 cells by coexpressing the cloned receptor with the envelope (Env) proteins of either ALV-B or ALV-E. This pattern of interference was also observed when soluble ALV surface (SU)-immunoglobulin fusion proteins were bound to this cellular receptor before viral challenge. These data demonstrate that viral Env-receptor interactions can account for the nonreciprocal interference between ALV subgroups B, D, and E. Furthermore, they indicate that a single chicken gene located at tvb(s1) encodes receptors for these three viral subgroups. The TVB(S1) protein differs exclusively at residue 62 from the published subgroup B- and D-specific receptor, encoded by the s3 allele of tvb. Residue 62 is a cysteine in TVB(S1) but is a serine in TVB(S3), giving TVB(S1) an even number of cysteines in the extracellular domain. We present evidence for a disulfide bond requirement in TVB(S1) for ALV-E infection but not for ALV-B infection. Thus, ALV-B and ALV-E interact in fundamentally different ways with this shared receptor, a finding that may account for the observed biological differences between these two ALV subgroups.


Subject(s)
Avian Leukosis Virus/physiology , Cysteine/chemistry , Receptors, Tumor Necrosis Factor/metabolism , Receptors, Virus/metabolism , Amino Acid Sequence , Animals , Avian Leukosis Virus/classification , Avian Leukosis Virus/genetics , Avian Leukosis Virus/metabolism , Cell Line , Chickens , Cloning, Molecular , DNA, Complementary/genetics , Humans , Molecular Sequence Data , Mutation , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/genetics , Receptors, Virus/chemistry , Receptors, Virus/genetics , Sequence Analysis, DNA , Viral Interference , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL