Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Phytomedicine ; 116: 154865, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37201365

ABSTRACT

BACKGROUND: Subretinal fibrosis (SF) accounts for vision loss in patients with neovascular age-related macular degeneration (nAMD) even treated with adequate intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) drugs. Currently, there is no treatment available to prevent or treat SF caused by nAMD. PURPOSE: This study aims to investigate the potential effects of luteolin on SF and epithelial-mesenchymal transition (EMT) as well as the underlying molecular pathways both in vivo and in vitro. METHODS: Seven-week-old male C57BL/6J mice were employed to establish laser-induced choroidal neovascularization (CNV) and SF. One day after the laser induction, luteolin was administered intravitreally. SF and CNV were assessed with the immunolabeling of collagen type I (collagen I) and isolectin B4 (IB4), respectively. RPE65 and α-SMA colocalization in the lesions was used to evaluate the extent of EMT in retinal pigment epithelial (RPE) cells by using immunofluorescence. In vitro, luteolin was administered to TGFß1-treated primary human RPE (phRPE) cells. RT-qPCR, Western blot and immunofluorescence were employed to evaluate the change of EMT-related molecules, epithelial markers, and relevant signaling pathways. The functional changes associated with EMT were investigated using the scratch assay, Transwell migration assay, and collagen gel contraction assay. CCK-8 was used to determine the cell viability of phRPE cells. RESULTS: On day 7 and 14 after laser induction in mice, intravitreal injection of luteolin dramatically decreased the immunolabeled sizes of both collagen I and IB4, as well as the amount of colocalized double immunostaining of α-SMA and RPE65 in laser-induced SF lesions. In vitro, TGFß1-treated phRPE cells demonstrated increased cell migration and contraction capacity, accompanied with considerable overexpression of fibronectin, α-SMA, N-cadherin and vimentin, as well as downregulation of E-cadherin and ZO-1. The above changes were largely inhibited by luteolin co-incubation. Mechanistically, luteolin could evidently decrease the phosphorylation of Smad2/3, whereas increase the phosphorylation of YAP in TGFß1-treated phRPE cells. CONCLUSION: This study demonstrates that luteolin exhibits the anti-fibrotic effect in a laser-induced mouse model by inhibiting EMT of RPE cells via deactivating Smad2/3 and YAP signaling, which provides a potential natural compound for the prevention and treatment of SF and fibrosis-related diseases.


Subject(s)
Epithelial-Mesenchymal Transition , Retinal Pigment Epithelium , Humans , Male , Animals , Mice , Retinal Pigment Epithelium/pathology , Luteolin/pharmacology , Mice, Inbred C57BL , Fibrosis , Collagen/metabolism , Collagen Type I/metabolism , Lasers
2.
BMC Complement Med Ther ; 23(1): 55, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36800952

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is a leading cause of vision loss in elderly people, and dry AMD is the most common type of AMD. Oxidative stress and alternative complement pathway activation may play essential roles in the pathogenesis of dry AMD. There are no available drugs for dry AMD. Qihuang Granule (QHG) is an herbal formula for the treatment of dry AMD, and it achieves a good clinical effect in our hospital. However, its potential mechanism is unclear. Our study investigated the effects of QHG on oxidative stress-associated retinal damage to reveal its underlying mechanism. METHODS: Oxidative stress models were established using H2O2 and NaIO3 in ARPE-19 cells and C57BL/6 mice. Cell apoptosis and viability were assessed using phase contrast microscopy and flow cytometry, respectively. Alterations in the mouse retinal structure were evaluated using Masson staining and transmission electron microscopy (TEM). The expression of complement factor H (CFH), complement component 3a (C3a) and complement component 5a (C5a) in retinal pigment epithelium (RPE) cells and mice was measured using RT‒PCR, Western blot analysis and ELISA. RESULTS: Pretreatment with QHG significantly prevented cell apoptosis and disorder of the RPE and inner segment/outer segment (IS/OS) in H2O2-treated RPE cells and NaIO3-injected mice. QHG alleviated mitochondrial damage in mouse RPE cells, as shown by TEM. QHG also promoted CFH expression and inhibited the expression of C3a and C5a. CONCLUSIONS: The results suggest that QHG protects the retinal pigment epithelium from oxidative stress, likely by regulating the alternative complement pathway.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Animals , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Complement Pathway, Alternative , Hydrogen Peroxide/pharmacology , Mice, Inbred C57BL , Oxidative Stress , Macular Degeneration/drug therapy , Macular Degeneration/metabolism , Macular Degeneration/pathology
3.
Acta Ophthalmol ; 100 Suppl 273: 3-59, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36343937

ABSTRACT

Age-related macular degeneration (AMD) is an eye disease, which causes impaired vision that can lead to blindness. The incidence of AMD increases with age. Retinal pigment epithelial (RPE) cells maintain retinal homeostasis and support the functionality of photoreceptors. In the pathogenesis of AMD, the degeneration of the RPE cells precedes photoreceptor cell death. RPE cells are susceptible to oxidative stress, and chronic inflammation involving nucleotide-binding domain, leucine-rich repeat and pyrin domain 3 (NLRP3) inflammasome activation and impaired autophagy are challenges faced by aged RPE cells in AMD. There are two types of AMD, dry (85-90%) and wet (10-15%) disease forms. Choroidal neovascularization is typical for wet AMD, and anti-vascular endothelial growth factor (anti-VEGF) injections are used to prevent the progression of the disease but there is no curative treatment. There is no cure for the dry disease form, but antioxidants have been proposed as a potential treatment option. Ageing is the most important risk factor of AMD, and tobacco smoke is the most important environmental risk factor that can be controlled. Hydroquinone is a cytotoxic, immunotoxic, carcinogenic and pro-oxidative component of tobacco smoke. The aim of this PhD thesis was to study hydroquinone-induced oxidative stress and NLRP3 inflammasome activation in human RPE cells (ARPE-19 cells). An age-related eye disease study (AREDS) formulation (incl. omega-3 fatty acids, vitamin C and E, copper, zinc, lutein and zeaxanthin), which is clinically investigated p.o. dosing combination of dietary supplements for AMD patients, has been evaluated as a possible treatment and restraining option for AMD. Resvega (4.1.1, Table 2) is a similar kind of product to AREDS with added resveratrol, and many of the components incorporated within Resvega can be considered as belonging to the normal antioxidative defence system of the retina. Another aim was to evaluate the effects of Resvega on hydroquinone-induced oxidative stress or NLRP3 inflammasome activation induced by impaired protein clearance. The results of this study reveal that hydroquinone elevated the activity of NADPH oxidase which subsequently mediated the production of reactive oxygen species (ROS) and predisposed RPE cells to degeneration by reducing levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Hydroquinone induced an NLRP3-independent IL-18 release and NLRP3 accumulation inside the IL-1α-primed cells. Resvega treatment reduced the extent of hydroquinone-induced ROS production and NLRP3 inflammasome activation evoked by impaired protein clearance. Thus, Resvega alleviated hydroquinone- and impaired protein clearance-induced stress in human RPE cells, but more studies are needed, for example, to reveal the most optimal route of administration for targeting the cells in the retina, since both oxidative stress and NLRP3 inflammasome activation are important contributors to the development of AMD and represent significant treatment targets.


Subject(s)
Epithelial Cells , Oxidative Stress , Tobacco Smoke Pollution , Wet Macular Degeneration , Humans , Antioxidants/metabolism , Endothelial Growth Factors/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Hydroquinones , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/pathology , Tobacco Smoke Pollution/adverse effects , Wet Macular Degeneration/metabolism
4.
Eye (Lond) ; 36(2): 266-272, 2022 02.
Article in English | MEDLINE | ID: mdl-34531552

ABSTRACT

Age-related macular degeneration (AMD), a degenerative disease affecting the retinal pigment epithelium (RPE) and photoreceptors in the macula, is the leading cause of central blindness in the elderly. AMD progresses to advanced stages of the disease, atrophic AMD (aAMD), or in 15% of cases "wet" or neovascular AMD (nAMD), associated with substantial vision loss. Whilst there has been advancement in therapies treating nAMD, to date, there are no licenced effective treatments for the 85% affected by aAMD, with disease managed by changes to diet, vitamin supplements, and regular monitoring. AMD has a complex pathogenesis, involving highly integrated and common age-related disease pathways, including dysregulated complement/inflammation, impaired autophagy, and oxidative stress. The intricacy of AMD pathogenesis makes therapeutic development challenging and identifying a target that combats the converging disease pathways is essential to provide a globally effective treatment. Interleukin-33 is a cytokine, classically known for the proinflammatory role it plays in allergic disease. Recent evidence across degenerative and inflammatory disease conditions reveals a diverse immune-modulatory role for IL-33, with promising therapeutic potential. Here, we will review IL-33 function in disease and discuss the future potential for this homeostatic cytokine in treating AMD.


Subject(s)
Geographic Atrophy , Wet Macular Degeneration , Aged , Angiogenesis Inhibitors , Cytokines/metabolism , Geographic Atrophy/pathology , Humans , Interleukin-33/metabolism , Retinal Pigment Epithelium/pathology , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism
5.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769404

ABSTRACT

Age-related macular degeneration (AMD) is a common blinding disease in the western world that is linked to the loss of fenestration in the choriocapillaris that sustains the retinal pigment epithelium and photoreceptors in the back of the eye. Changes in ocular and systemic zinc concentrations have been associated with AMD; therefore, we hypothesized that these changes might be directly involved in fenestrae formation. To test this hypothesis, an endothelial cell (bEND.5) model for fenestrae formation was treated with different concentrations of zinc sulfate (ZnSO4) solution for up to 20 h. Fenestrae were visualized by staining for Plasmalemmal Vesicle Associated Protein-1 (PV-1), the protein that forms the diaphragms of the fenestrated endothelium. Size and distribution were monitored by transmission electron microscopy (TEM). We found that zinc induced the redistribution of PV-1 into areas called sieve plates containing ~70-nm uniform size and typical morphology fenestrae. As AMD is associated with reduced zinc concentrations in the serum and in ocular tissues, and dietary zinc supplementation is recommended to slow disease progression, we propose here that the elevation of zinc concentration may restore choriocapillaris fenestration resulting in improved nutrient flow and clearance of waste material in the retina.


Subject(s)
Choroid/pathology , Endothelial Cells/pathology , Macular Degeneration/pathology , Membrane Proteins/metabolism , Photoreceptor Cells/pathology , Retinal Pigment Epithelium/pathology , Zinc/metabolism , Animals , Cells, Cultured , Choroid/metabolism , Endothelial Cells/metabolism , Macular Degeneration/metabolism , Mice , Microscopy, Electron, Transmission/methods , Photoreceptor Cells/metabolism , Retinal Pigment Epithelium/metabolism
6.
Cell Death Dis ; 12(7): 708, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267179

ABSTRACT

The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin-eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.


Subject(s)
Diabetic Retinopathy/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , MicroRNAs/metabolism , Retinal Pigment Epithelium/metabolism , Ubiquitin-Protein Ligases/metabolism , YY1 Transcription Factor/metabolism , Animals , Cell Line , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Disease Models, Animal , Epithelial Cells/pathology , Glucose/metabolism , Humans , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Permeability , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Retinal Pigment Epithelium/pathology , Signal Transduction , Snail Family Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , YY1 Transcription Factor/genetics
7.
Phytomedicine ; 88: 153604, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34130054

ABSTRACT

BACKGROUND: Blue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear. PURPOSE: This study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo. STUDY DESIGN/METHODS: Blue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn. RESULTS: Cyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 µg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo. CONCLUSION: Cyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.


Subject(s)
Apoptosis/drug effects , Glucosides/pharmacology , Luteolin/pharmacology , Protective Agents/pharmacology , Retinal Degeneration/drug therapy , Animals , Apoptosis/physiology , Autophagy/drug effects , Cell Line , Glucosides/administration & dosage , Humans , Inflammasomes/metabolism , Intravitreal Injections , Light/adverse effects , Luteolin/administration & dosage , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Protective Agents/administration & dosage , Rats, Sprague-Dawley , Retinal Degeneration/etiology , Retinal Degeneration/pathology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology
8.
Aging (Albany NY) ; 13(8): 10866-10890, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33872219

ABSTRACT

Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation product ß-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for dry AMD.


Subject(s)
Autophagy/drug effects , Geographic Atrophy/drug therapy , Mebendazole/analogs & derivatives , Aborted Fetus , Cells, Cultured , Drug Evaluation, Preclinical , Geographic Atrophy/pathology , Humans , Lipofuscin/metabolism , Mebendazole/pharmacology , Mebendazole/therapeutic use , Primary Cell Culture , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , TOR Serine-Threonine Kinases/metabolism
9.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572787

ABSTRACT

Age-related macular degeneration (AMD) is the progressive degeneration of the retinal pigment epithelium (RPE), retina, and choriocapillaris among elderly individuals and is the leading cause of blindness worldwide. Thus, a better understanding of the underlying mechanisms in retinal tissue activated by blue light exposure is important for developing novel treatment and intervention strategies. In this study, blue-light-emitting diodes with a wavelength of 440 nm were applied to RPE cells at a dose of 3.7 ± 0.75 mW/cm2 for 24 h. ARPE-19 cells were used to investigate the underlying mechanism induced by blue light exposure. A trypan blue exclusion assay was used for the cell viability determination. Flow cytometry was used for apoptosis rate detection and autophagy analysis. An immunofluorescence microscopy analysis was used to investigate cellular oxidative stress and DNA damage using DCFDA fluorescence staining and an anti-γH2AX antibody. Blue light exposure of zebrafish larvae was established to investigate the effect on retinal tissue development in vivo. To further demonstrate the comprehensive effect of blue light on ARPE-19 cells, next-generation sequencing (NGS) was performed for an ingenuity pathway analysis (IPA) to reveal additional related mechanisms. The results showed that blue light exposure caused a decrease in cell proliferation and an increase in apoptosis in ARPE-19 cells in a time-dependent manner. Oxidative stress increased during the early stage of 2 h of exposure and activated DNA damage in ARPE-19 cells after 8 h. Furthermore, autophagy was activated in response to blue light exposure at 24-48 h. The zebrafish larvae model showed the unfavorable effect of blue light in prohibiting retinal tissue development. The RNA-Seq results confirmed that blue light induced cell death and participated in tissue growth inhibition and maturation. The current study reveals the mechanisms by which blue light induces cell death in a time-dependent manner. Moreover, both the in vivo and NGS data uncovered blue light's effect on retinal tissue development, suggesting that exposing children to blue light could be relatively dangerous. These results could benefit the development of preventive strategies utilizing herbal medicine-based treatments for eye diseases or degeneration in the future.


Subject(s)
Autophagy/radiation effects , DNA Damage/radiation effects , Light/adverse effects , Macular Degeneration/etiology , Oxidative Stress/radiation effects , Retinal Pigment Epithelium/radiation effects , Animals , Cell Line , Disease Models, Animal , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Zebrafish
10.
Aging (Albany NY) ; 13(8): 11010-11025, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33535179

ABSTRACT

Ultra-violet (UV) radiation (UVR) causes significant oxidative injury to retinal pigment epithelium (RPE) cells. Obacunone is a highly oxygenated triterpenoid limonoid compound with various pharmacological properties. Its potential effect in RPE cells has not been studied thus far. Here in ARPE-19 cells and primary murine RPE cells, obacunone potently inhibited UVR-induced reactive oxygen species accumulation, mitochondrial depolarization, lipid peroxidation and single strand DNA accumulation. UVR-induced RPE cell death and apoptosis were largely alleviated by obacunone. Obacunone activated Nrf2 signaling cascade in RPE cells, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation. It promoted transcription and expression of antioxidant responsive element-dependent genes. Nrf2 silencing or CRISPR/Cas9-induced Nrf2 knockout almost reversed obacunone-induced RPE cytoprotection against UVR. Forced activation of Nrf2 cascade, by Keap1 knockout, similarly protected RPE cells from UVR. Importantly, obacunone failed to offer further RPE cytoprotection against UVR in Keap1-knockout cells. In vivo, intravitreal injection of obacunone largely inhibited light-induced retinal damage. Collectively, obacunone protects RPE cells from UVR-induced oxidative injury through activation of Nrf2 signaling cascade.


Subject(s)
Benzoxepins/pharmacology , Limonins/pharmacology , Macular Degeneration/drug therapy , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Ultraviolet Rays/adverse effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Benzoxepins/therapeutic use , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , DNA, Single-Stranded/drug effects , DNA, Single-Stranded/radiation effects , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Humans , Intravitreal Injections , Kelch-Like ECH-Associated Protein 1/metabolism , Limonins/therapeutic use , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects , Macular Degeneration/etiology , Macular Degeneration/pathology , Mice , Mitochondrial Membranes/drug effects , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Oxidative Stress/radiation effects , Primary Cell Culture , Reactive Oxygen Species/metabolism , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/radiation effects , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects
11.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008772

ABSTRACT

We investigate glial cell activation and oxidative stress induced by taurine deficiency secondary to ß-alanine administration and light exposure. Two months old Sprague-Dawley rats were divided into a control group and three experimental groups that were treated with 3% ß-alanine in drinking water (taurine depleted) for two months, light exposed or both. Retinal and external thickness were measured in vivo at baseline and pre-processing with Spectral-Domain Optical Coherence Tomography (SD-OCT). Retinal cryostat cross sections were immunodetected with antibodies against various antigens to investigate microglial and macroglial cell reaction, photoreceptor outer segments, synaptic connections and oxidative stress. Taurine depletion caused a decrease in retinal thickness, shortening of photoreceptor outer segments, microglial cell activation, oxidative stress in the outer and inner nuclear layers and the ganglion cell layer and synaptic loss. These events were also observed in light exposed animals, which in addition showed photoreceptor death and macroglial cell reactivity. Light exposure under taurine depletion further increased glial cell reaction and oxidative stress. Finally, the retinal pigment epithelial cells were Fluorogold labeled and whole mounted, and we document that taurine depletion impairs their phagocytic capacity. We conclude that taurine depletion causes cell damage to various retinal layers including retinal pigment epithelial cells, photoreceptors and retinal ganglion cells, and increases the susceptibility of the photoreceptor outer segments to light damage. Thus, beta-alanine supplements should be used with caution.


Subject(s)
Light , Neuroglia/pathology , Neuroglia/radiation effects , Oxidative Stress/radiation effects , Retinal Degeneration/pathology , Taurine/metabolism , Animals , Cell Count , Cell Survival , Female , Glial Fibrillary Acidic Protein/metabolism , Microglia/pathology , Neuroglia/metabolism , Photoreceptor Cells, Vertebrate/pathology , Rats, Sprague-Dawley , Retinal Degeneration/blood , Retinal Degeneration/diagnostic imaging , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/pathology , Synapses/metabolism , Taurine/blood , Tomography, Optical Coherence , beta-Alanine
12.
Eur J Ophthalmol ; 31(2): 630-637, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31847593

ABSTRACT

PURPOSE: Light-induced damage to retinal pigment epithelium during pars plana vitrectomy remains a hot topic in ophthalmology. Improvements in technology led to a change of light sources, selective filters, and shorter light exposure time. Currently, there is no satisfying solution to the problem. The aim of the study was to investigate the cytoprotective effects of crocin and resveratrol on light-induced damage to primary human retinal pigment epithelial cells in vitro. METHODS: Primary human retinal pigment epithelial cells were exposed to light analogous to the illumination during pars plana vitrectomy. To evaluate the cytoprotective effects and potential toxicity of resveratrol and crocin, human retinal pigment epithelial cells were incubated with varying concentrations of both before 3-[4,5-dimethylthiazol-2-yl] tetrazolium bromide (MTT) viability assay. Furthermore, glutathione levels were measured to investigate synergistic antioxidant potential. Apoptosis of human retinal pigment epithelial cells was determined by a nucleosome detection enzyme-linked immunosorbent assay. RESULTS: Crocin and resveratrol improved cell viability in photodamaged human retinal pigment epithelial cells significantly from 40.65 ± 21.99% in illuminated human retinal pigment epithelial cells and reached a peak viability of 85.64 ± 11.37% in crocin and resveratrol pretreated cells (for all: p < 0.001). In line, the combination of the supplements increased glutathione levels significantly from 39.35 ± 21.96% to 80.74 ± 10.32% (p = 0.017). No toxic effects were detected (p > 0.99). However, no change in apoptosis rates could be observed following pretreatment with crocin and resveratrol (p > 0.99). CONCLUSION: Crocin and trans-resveratrol revealed cytoprotective effects on human retinal pigment epithelial cells supporting both supplement's development as potential perioperative treatments in light-induced retinal pigment epithelial damage.


Subject(s)
Carotenoids/pharmacology , Eye Burns/drug therapy , Resveratrol/pharmacology , Retinal Pigment Epithelium/drug effects , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Condiments , Dietary Supplements , Eye Burns/pathology , Humans , Retinal Pigment Epithelium/pathology
13.
Cutan Ocul Toxicol ; 40(1): 7-13, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33283549

ABSTRACT

Purpose: This study aimed to investigate the protective effects of quercetin on the tight junction proteins of human retinal pigment epithelial cells (ARPE-19 cells) suffering from oxidative stress injury and explore the possible mechanism.Methods: H2O2 (300 µM) was used to establish an oxidative stress model of ARPE-19 cells. ARPE-19 cells were pretreated with different concentrations (0-80 µM) of quercetin before H2O2 exposure. The expression and distribution of tight junction proteins and autophagy-related proteins were detected by Western blot and immunostaining. ARPE-19 cells were pretreated with 5 mM 3-methyladenine (3-MA).Results: The cell viability weakened in the H2O2 group compared with the control group. However, it was preserved after pretreatment with quercetin. It was observed that the expression levels of occludin, claudin-1 were decreased in the H2O2 group. Quercetin treatment significantly enhanced the expression levels of them as compared to the H2O2 group. H2O2 alone strongly decreased the Zonula occludens protein 1 (ZO-1) expression in the cytomembrane. Quercetin supplementation enhanced the accumulation of ZO-1 in ARPE-19 cells. The expression levels of Beclin-1 and Microtubule associated protein light chain 3 II (LC-3II) increased, and that of P62 decreased in the quercetin protection group. The appearance of LC-3II, which examined by immunofluorescence experiments, enhanced in the quercetin protection group as compared with the control group. The expression levels of beclin-1 and LC-3II increased, and that of P62 increased in the autophagy-inhibited group compared with the quercetin protection group. The levels of occludin and claudin-1 also decreased.Conclusion: Quercetin prevents the loss of tight junction proteins by upregulating autophagy after oxidative stress in ARPE-19 cells.


Subject(s)
Autophagy/drug effects , Hydrogen Peroxide/metabolism , Macular Degeneration/prevention & control , Protective Agents/pharmacology , Quercetin/pharmacology , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Humans , Macular Degeneration/pathology , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Quercetin/therapeutic use , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Tight Junctions/drug effects , Tight Junctions/pathology
14.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255657

ABSTRACT

Pathological neovascularization in the eye is a leading cause of blindness in all age groups from retinopathy of prematurity (ROP) in children to age-related macular degeneration (AMD) in the elderly. Inhibiting neovascularization via antivascular endothelial growth factor (VEGF) drugs has been used for the effective treatment. However, anti-VEGF therapies may cause development of chorioretinal atrophy as they affect a physiological amount of VEGF essential for retinal homeostasis. Furthermore, anti-VEGF therapies are still ineffective in some cases, especially in patients with AMD. Hypoxia-inducible factor (HIF) is a strong regulator of VEGF induction under hypoxic and other stress conditions. Our previous reports have indicated that HIF is associated with pathological retinal neovascularization in murine models of ROP and AMD, and HIF inhibition suppresses neovascularization by reducing an abnormal increase in VEGF expression. Along with this, we attempted to find novel effective HIF inhibitors from natural foods of our daily lives. Food ingredients were screened for prospective HIF inhibitors in ocular cell lines of 661W and ARPE-19, and a murine AMD model was utilized for examining suppressive effects of the ingredients on retinal neovascularization. As a result, rice bran and its component, vitamin B6 showed inhibitory effects on HIF activation and suppressed VEGF mRNA induction under a CoCl2-induced pseudo-hypoxic condition. Dietary supplement of these significantly suppressed retinal neovascularization in the AMD model. These data suggest that rice bran could have promising therapeutic values in the management of pathological ocular neovascularization.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Macular Degeneration/drug therapy , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/genetics , Vitamin B 6/pharmacology , Aged , Animals , Cobalt/toxicity , Disease Models, Animal , Humans , Hypoxia/chemically induced , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Infant, Newborn , Macular Degeneration/genetics , Macular Degeneration/pathology , Mice , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Oryza/chemistry , Retina/drug effects , Retina/pathology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Rice Bran Oil/chemistry , Rice Bran Oil/pharmacology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vitamin B 6/genetics
15.
Turk J Ophthalmol ; 50(4): 255-257, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32854472

ABSTRACT

Potassium iodide is used as an iodine supplement in salt as part of a national program in Turkey. An overdose of iodine has a toxic effect on the retinal pigment epithelium and photoreceptors. The case presented here is a patient who developed retinopathy following consumption of an excessive dose of iodine.


Subject(s)
Iodine/adverse effects , Retinal Diseases/chemically induced , Retinal Pigment Epithelium/pathology , Adult , Fluorescein Angiography/methods , Fundus Oculi , Humans , Male , Retinal Diseases/diagnosis , Tomography, Optical Coherence/methods
16.
Theranostics ; 10(16): 7260-7272, 2020.
Article in English | MEDLINE | ID: mdl-32641991

ABSTRACT

Rationale: Mitochondrial disorders preferentially affect tissues with high energy requirements, such as the retina and corneal endothelium, in human eyes. Mesenchymal stem cell (MSC)-based treatment has been demonstrated to be beneficial for ocular degeneration. However, aside from neuroprotective paracrine actions, the mechanisms underlying the beneficial effect of MSCs on retinal and corneal tissues are largely unknown. In this study, we investigated the fate and associated characteristics of mitochondria subjected to intercellular transfer from MSCs to ocular cells. Methods: MSCs were cocultured with corneal endothelial cells (CECs), 661W cells (a photoreceptor cell line) and ARPE-19 cells (a retinal pigment epithelium cell line). Immunofluorescence, fluorescence activated cell sorting and confocal microscopy imaging were employed to investigate the traits of intercellular mitochondrial transfer and the fate of transferred mitochondria. The oxygen consumption rate of recipient cells was measured to investigate the effect of intercellular mitochondrial transfer. Transcriptome analysis was performed to investigate the expression of metabolic genes in recipient cells with donated mitochondria. Results: Mitochondrial transport is a ubiquitous intercellular mechanism between MSCs and various ocular cells, including the corneal endothelium, retinal pigmented epithelium, and photoreceptors. Additionally, our results indicate that the donation process depends on F-actin-based tunneling nanotubes. Rotenone-pretreated cells that received mitochondria from MSCs displayed increased aerobic capacity and upregulation of mitochondrial genes. Furthermore, living imaging determined the ultimate fate of transferred mitochondria through either degradation by lysosomes or exocytosis as extracellular vesicles. Conclusions: For the first time, we determined the characteristics and fate of mitochondria undergoing intercellular transfer from MSCs to various ocular cells through F-actin-based tunneling nanotubes, helping to characterize MSC-based treatment for ocular tissue regeneration.


Subject(s)
Cell Communication , Energy Metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Actins/metabolism , Animals , Cell Line , Cell Movement , Coculture Techniques , Cornea/cytology , Cornea/metabolism , Cornea/pathology , DNA, Mitochondrial/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/pathology , Fuchs' Endothelial Dystrophy/therapy , Humans , Injections, Intraocular , Mesenchymal Stem Cells/cytology , Mice , Mitochondria/genetics , Models, Animal , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/pathology , Optic Atrophy, Autosomal Dominant/therapy , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Optic Atrophy, Hereditary, Leber/therapy , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology
17.
Int J Mol Sci ; 21(14)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708511

ABSTRACT

Lactobacillus paracasei KW3110 (KW3110) has anti-inflammatory effects and mitigates retinal pigment epithelium (RPE) cell damage caused by blue-light exposure. We investigated whether KW3110 suppresses chronic inflammatory stress-induced RPE cell damage by modulating immune cell activity and whether it improves ocular disorders in healthy humans. First, we showed that KW3110 treatment of mouse macrophages (J774A.1) produced significantly higher levels of interleukin-10 as compared with other lactic acid bacterium strains (all p < 0.01). Transferring supernatant from KW3110- and E. coli 0111:B4 strain and adenosine 5'-triphosphate (LPS/ATP)-stimulated J774A.1 cells to human retinal pigment epithelium (ARPE-19) cells suppressed senescence-associated phenotypes, including proliferation arrest, abnormal appearance, cell cycle arrest, and upregulation of cytokines, and also suppressed expression of tight junction molecule claudin-1. A randomized, double-blind, placebo-controlled parallel-group study of healthy subjects (n = 88; 35 to below 50 years) ingesting placebo or KW3110-containing supplements for 8 weeks showed that changes in critical flicker frequency, an indicator of eye fatigue, from the week-0 value were significantly larger in the KW3110 group at weeks 4 (p = 0.040) and 8 (p = 0.036). These results suggest that KW3110 protects ARPE-19 cells against premature senescence and aberrant expression of tight junction molecules caused by chronic inflammatory stress, and may improve chronic eye disorders including eye fatigue.


Subject(s)
Cellular Senescence/drug effects , Eye Diseases/drug therapy , Inflammation/drug therapy , Lacticaseibacillus paracasei , Probiotics/therapeutic use , Retinal Pigment Epithelium/drug effects , Adenosine Triphosphate/toxicity , Adult , Animals , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , Cytokines/metabolism , Escherichia coli , Female , Humans , Inflammation/immunology , Interleukin-10/metabolism , Lipopolysaccharides/toxicity , Macrophages/drug effects , Male , Mice , Middle Aged , Retina/drug effects , Retina/immunology , Retina/pathology , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/pathology , Tight Junctions/metabolism
18.
Molecules ; 25(11)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503323

ABSTRACT

The accumulation and formation of advanced glycation end products (AGEs) are related to diabetes and age-related disease. Osteomeles schwerinae C. K. Schneid. (Rosaceae, OSSC) is used traditionally for the treatment of various diseases in Asia. Previous studies have shown that OSSC elicits preventive effects in an in vivo model of diabetes. This study was to evaluate the antiapoptotic effects of dried leaves and twigs of OSSC extract and its major compounds in ARPE-19 cells-spontaneously arising human retinal pigment epithelial cells-under diabetic conditions. To examine the effects of an OSSC extract and its active compounds (acetylvitexin, hyperoside and quercitrin) on apoptosis in methylglyoxal (MG, the active precursor in the formation of AGEs)-treated ARPE-19 cells and the mechanism by which these effects occur, apoptosis was measured using flow cytometry analysis. Protein expression levels of phospho-p53 (p-p53), Bax and Bcl-2 were determined by western blot analyses. The OSSC extract inhibited apoptosis in MG-treated ARPE-19 cells in a dose-dependent manner. The major compounds also reduced the rate of apoptosis. Both the extract and major compounds also inhibited the expression of p-p53 and Bax and increased the levels of Bcl-2 that had been previously reduced by MG treatment. The OSSC extract (0.1 µg/mL) and its major compounds (0.01 µM) attenuated apoptosis in ARPE-19 cells under toxic diabetic conditions by downregulating of expression of p-p53 and Bax. OSSC may serve as an alternative therapy to retard the development of diabetic retinopathy.


Subject(s)
Apoptosis/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Pyruvaldehyde/pharmacology , Retinal Pigment Epithelium/drug effects , Rosaceae/chemistry , Apoptosis Regulatory Proteins/metabolism , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165883, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32592935

ABSTRACT

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.


Subject(s)
Blindness/genetics , Membrane Glycoproteins/deficiency , Neuronal Ceroid-Lipofuscinoses/genetics , Retinal Pigment Epithelium/pathology , Animals , Atrophy/genetics , Atrophy/pathology , Autophagy , Blindness/pathology , Cell Line , Disease Models, Animal , Gene Knock-In Techniques , Gene Knockdown Techniques , Glycogen/metabolism , Humans , Lysosomes/pathology , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Microscopy, Electron , Molecular Chaperones/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/pathology , RNA, Small Interfering/metabolism , Retinal Pigment Epithelium/ultrastructure
20.
Molecules ; 25(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283798

ABSTRACT

Age-related macular degeneration (AMD) is a major cause of irreversible loss of vision with 80-90% of patients demonstrating dry type AMD. Dry AMD could possibly be prevented by polyphenol-rich medicinal foods by the inhibition of N-retinylidene-N-retinylethanolamine (A2E)-induced oxidative stress and cell damage. Arctium lappa L. (AL) leaves are medicinal and have antioxidant activity. The purpose of this study was to elucidate the protective effects of the extract of AL leaves (ALE) on dry AMD models, including in vitro A2E-induced damage in ARPE-19 cells, a human retinal pigment epithelial cell line, and in vivo light-induced retinal damage in BALB/c mice. According to the total phenolic contents (TPCs), total flavonoid contents (TFCs) and antioxidant activities, ALE was rich in polyphenols and had antioxidant efficacies on 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2',7'-dichlorofluorescin diacetate (DCFDA) assays. The effects of ALE on A2E accumulation and A2E-induced cell death were also monitored. Despite continued exposure to A2E (10 µM), ALE attenuated A2E accumulation in APRE-19 cells with levels similar to lutein. A2E-induced cell death at high concentration (25 µM) was also suppressed by ALE by inhibiting the apoptotic signaling pathway. Furthermore, ALE could protect the outer nuclear layer (ONL) in the retina from light-induced AMD in BALB/c mice. In conclusion, ALE could be considered a potentially valuable medicinal food for dry AMD.


Subject(s)
Arctium/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Retina/drug effects , Retina/pathology , Retinoids/adverse effects , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Immunohistochemistry , Macular Degeneration/drug therapy , Macular Degeneration/etiology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL