Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
Add more filters

Publication year range
1.
Plant Physiol Biochem ; 208: 108452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442624

ABSTRACT

Delayed growth period and nature of woody stems are challenges for the urgent economic needs of rosemary plant culturing in the winter season. Different concentrations of biofertilizer initiated from Spirulina maxima, marine Lactobacillus plantarum, molasses and industrial organic waste (IOW) were subjected to freshly cut cuttings of the Rosmarinus officinalis L. (rosemary) plant to study the impact of this biofertilizer on the growth performance of the plant. The present work explored the potential of this biofertilizer in concentrations of 0.5%-1% and achieved a significant impact on the growth parameters and biochemical constituents of R. officinalis, a 27-day-old plant. The development of adventitious roots was earlier within one week, particularly at 0.5% and 1%. It can be concluded that the application of this biofertilizer at the lower concentrations enhanced the production of bioactive substances such as phytohormones (auxin, cytokinin, and gibberellins), carbohydrates, and vitamins; moreover, through controlling a range of physiological and biochemical processes, it can promote the intake of nutrients. Thus, this biofertilizer (Spirulina maxima, marine Lactobacillus plantarum, molasses and IOW) at a concentration of 1% is the recommended dose for application to agriculture sustainability.


Subject(s)
Rosmarinus , Spirulina , Plant Extracts/chemistry , Rosmarinus/chemistry
2.
Acta Parasitol ; 69(1): 951-999, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38492183

ABSTRACT

PURPOSE: The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS: Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1ß and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-ß4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS: The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1ß, IL-6 and anti-inflammatory cytokines as TGF-ß4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION: The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.


Subject(s)
Chickens , Chitosan , Coccidiosis , Cytokines , Eimeria tenella , Nanoparticles , Plant Extracts , Poultry Diseases , Rosmarinus , Animals , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/prevention & control , Coccidiosis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control , Eimeria tenella/drug effects , Cytokines/metabolism , Rosmarinus/chemistry , Oocysts/drug effects , Feces/parasitology , Animal Feed/analysis
3.
J Sci Food Agric ; 104(7): 4465-4472, 2024 May.
Article in English | MEDLINE | ID: mdl-38345147

ABSTRACT

BACKGROUND: Minimizing food oxidation remains a challenge in several environments. The addition of rosemary extract (150 mg kg-1) and lyophilized parsley (7.1 g kg-1) at equivalent antioxidant activity (5550 µg Trolox equivalents kg-1) to meat patties was assessed in terms of their effect during microwave cooking and after being subjected to an in vitro digestion process. RESULTS: Regardless of the use of antioxidants, cooking caused a decrease of the fat content as compared to raw samples, without noticing statistical differences in the fatty acid distribution between raw and cooked samples [44%, 47% and 6.8%, of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), respectively]. However, the bioaccessible lipid fraction obtained after digestion was less saturated (around 34% SFA) and more unsaturated (35% MUFA +30% PUFA). Cooking caused, in all types of samples, an increased lipid [thiobarbituric acid reactive substances (TBARS)] and protein (carbonyls) oxidation values. The increase of TBARS during in vitro digestion was around 7 mg malondialdehyde (MDA) kg-1 for control and samples with parsley and 4.8 mg MDA kg-1 with rosemary. The addition of parsley, and particularly of rosemary, significantly increased the antioxidant activity (DPPH) of cooked and digested microwaved meat patties. CONCLUSION: Whereas rosemary was effective in minimizing protein oxidation during cooking and digestion as compared to control samples, parsley could only limit it during digestion. Lipid oxidation was only limited by rosemary during in vitro digestion. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Antioxidants , Rosmarinus , Antioxidants/chemistry , Rosmarinus/chemistry , Petroselinum/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Microwaves , Plant Extracts/pharmacology , Meat/analysis , Cooking , Fatty Acids , Fatty Acids, Unsaturated , Digestion
4.
Fitoterapia ; 174: 105866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38378134

ABSTRACT

A total of 12 abietane diterpenoids were isolated and identified from Rosmarinus officinalis in which 6 ones were undescribed compounds. Their structures were illuminated by the HRESIMS, NMR, and ECD methods and named as rosmarinusin Q-V (1-6). It worthy mentioned that rosmarinusin Q was a novel abietane diterpenoid with 6/6/5 skeleton whose C ring was an α,ß-unsaturated five-element ketone. All the compounds and four compounds (13-16) reported in our previous paper were evaluated their anti-neuroinflammatory activities on the LPS-induced BV2 cells. Compounds 5, 8, 9, 11, and 15 displayed significant anti-neuroinflammatory activity at the concentration of 10, 20, and 40 µM respectively. These results confirmed that R. officinalis contained abundant abietane diterpenoids and these compounds showed potential values of anti-neuroinflammation which could be developed as neuroprotective agents for the treatment of nerve damage caused by inflammation.


Subject(s)
Diterpenes , Rosmarinus , Abietanes/pharmacology , Abietanes/chemistry , Rosmarinus/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Diterpenes/pharmacology , Diterpenes/chemistry
5.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338370

ABSTRACT

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Subject(s)
Diterpenes , Rosmarinus , Salvia , Abietanes/chemistry , Rosmarinus/chemistry , Salvia/chemistry , Greece , Plant Extracts/chemistry , Solvents , Diterpenes/analysis
6.
Compr Rev Food Sci Food Saf ; 23(1): e13273, 2024 01.
Article in English | MEDLINE | ID: mdl-38284599

ABSTRACT

Rosemary (Rosmarinus officinalis L.) is one of the most famous spice plants belonging to the Lamiaceae family as a remarkably beautiful horticultural plant and economically agricultural crop. The essential oil of rosemary has been enthusiastically welcome in the whole world for hundreds of years. Now, it is wildly prevailing as a promising functional food additive for human health. More importantly, due to its significant aroma, food, and nutritional value, rosemary also plays an essential role in the food/feed additive and food packaging industries. Modern industrial development and fundamental scientific research have extensively revealed its unique phytochemical constituents with biologically meaningful activities, which closely related to diverse human health functions. In this review, we provide a comprehensively systematic perspective on rosemary by summarizing the structures of various pharmacological and nutritional components, biologically functional activities and their molecular regulatory networks required in food developments, and the recent advances in their applications in the food industry. Finally, the temporary limitations and future research trends regarding the development of rosemary components are also discussed and prospected. Hence, the review covering the fundamental research advances and developing prospects of rosemary is a desirable demand to facilitate their better understanding, and it will also serve as a reference to provide many insights for the future promotion of the research and development of functional foods related to rosemary.


Subject(s)
Oils, Volatile , Rosmarinus , Humans , Plant Extracts/chemistry , Rosmarinus/chemistry , Food Additives , Functional Food , Oils, Volatile/pharmacology , Plants
7.
Molecules ; 28(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38005236

ABSTRACT

In dead biological tissues such as human hair, the ability of antioxidants to minimise autoxidation is determined by their chemical reactions with reactive oxygen species. In order to improve our understanding of factors determining such antioxidant properties, the mechanistic chemistry of four phenolic antioxidants found in tea and rosemary extracts (epicatechin, epigallocatechin gallate, rosmarinic and carnosic acids) has been investigated. The degradation of N-acetyl alanine by photochemically generated hydroxyl radicals was used as a model system. A relatively high concentration of the antioxidants (0.1 equivalent with respect to the substrate) tested the ability of the antioxidants to intercept both initiating hydroxyl radicals (preventive action) and propagating peroxyl radicals (chain-breaking action). LC-MS data showed the formation of hydroxylated derivatives, quinones and hydroperoxides of the antioxidants. The structure of the assignment was aided by deuterium exchange experiments. Tea polyphenolics (epicatechin and epigallocatechin gallate) outperformed the rosemary compounds in preventing substrate degradation and were particularly effective in capturing the initiating radicals. Carnosic acid was suggested to act mostly as a chain-breaking antioxidant. All of the antioxidants except for rosmarinic acid generated hydroperoxides which was tentatively ascribed to the insufficient lability of the benzylic C-H bond of rosmarinic acid.


Subject(s)
Catechin , Rosmarinus , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Hydroxyl Radical , Rosmarinus/chemistry , Catechin/chemistry , Oxidation-Reduction , Tea/chemistry , Rosmarinic Acid
8.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511428

ABSTRACT

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Subject(s)
Lamiaceae , Rosmarinus , Thymus Plant , Humans , Antioxidants/chemistry , Thymus Plant/chemistry , Rosmarinus/chemistry , Lamiaceae/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Polyphenols/chemistry , Basic-Leucine Zipper Transcription Factors
9.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513364

ABSTRACT

Rosmarinus officinalis leaves (ROLs) are widely used in the food and cosmetics industries due to their high antioxidant activity and fascinating flavor properties. Carnosic acid (CA) and rosmarinic acid (RA) are regarded as the characteristic antioxidant components of ROLs, and the selective separation of CA and RA remains a significant challenge. In this work, the feasibility of achieving the selective separation of CA and RA from ROLs by solid-phase extraction (SPE) and liquid-liquid extraction (LLE) was studied and compared. The experiments suggested that SPE with CAD-40 macroporous resin as the adsorbent was a good choice for selectively isolating CA from the extracts of ROLs and could produce raw CA with purity levels as high as 76.5%. The LLE with ethyl acetate (EA) as the extraction solvent was more suitable for extracting RA from the diluted extracts of ROLs and could produce raw RA with a purity level of 56.3%. Compared with the reported column chromatography and LLE techniques, the developed SPE-LLE method not only exhibited higher extraction efficiency for CA and RA, but can also produce CA and RA with higher purity.


Subject(s)
Plant Extracts , Rosmarinus , Plant Extracts/chemistry , Solid Phase Extraction/methods , Cinnamates/chemistry , Liquid-Liquid Extraction/methods , Rosmarinus/chemistry , Antioxidants/analysis , Chromatography, High Pressure Liquid , Rosmarinic Acid
10.
Int J Cosmet Sci ; 45(6): 749-760, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37461190

ABSTRACT

Extracts from rosemary (Salvia Rosmarinus) are analysed for their phytochemistry using LC-MS and the phytochemistry identified. The same extracts were tested for their efficacy to act as antioxidants by both hydrogen-atom transfer (ORAC) and single electron transfer (FRAP). A correlation analysis was performed to identify the key phytochemistry responsible for antioxidant efficacy. The top performing extracts were then tested in a peptide model and in hair with the presence of UV to measure ability to protect against UV-induced peptide and protein damage. Polyphenols (e.g. rosmarinic acid, glycosides of selgin) and abietane diterpenes (e.g. carnosic acid) in rosemary were identified as the principal compounds which enables the extracts to protect hair from UV. OBJECTIVE: The objective of this work was to correlate the phytochemistry of rosemary (Salvia rosmarinus), a botanical with known antioxidant properties, to a UV protection benefit in hair. These data will give insights into mechanisms of UV damage, the ROS formed and their reactivity. METHODS: LC-MS was used to compare the compounds in 10 commercial extracts of rosemary. ORAC (oxygen radical antioxidant capacity) and FRAP (ferric reducing antioxidant power) were used to measure the antioxidant capacity of the rosemary extracts. The ORAC assay measures ability of an antioxidant to react with a peroxyl radical via hydrogen atom extraction and FRAP measures electron transfer through reduction of ferric iron (Fe3+ ) to ferrous iron (Fe2+ ) by antioxidants present in the samples. Correlation of extract composition with antioxidant measures was performed using principal component analysis. Selected extracts were assessed for their ability to protect hair from UV damage in a model peptide system and on hair. In addition, the same methods were used to test rosmarinic acid and carnosic acid, key phytochemistries in the rosemary extracts. The model system was a peptide and its decomposition on exposure to UV was monitored by LC-MS in the absence and presence of the rosemary extracts. Hair degradation in the presence of UV was measured by exposure of UV in an Atlas weatherometer followed by extraction of degraded protein in water. A fragment of the S100A3 protein was used as a marker of UV damage (m/z = 1278) and quantified via LC-MS. RESULTS: Ten rosemary extracts were assessed for antioxidant performance and correlated with their compositions. The phytochemistry in each extract varied widely with a total of 33 individual compounds identified. The differences were most likely driven by the solvent and extraction method used by the supplier with extracts varying in the proportion of polar or non-polar compounds. This did influence their reactivity in the ORAC and FRAP assays and their efficacy in preventing protein damage. Two of the key compounds identified were rosmarinic acid and carnosic acid, with rosmarinic acid dominating in extracts with mainly polar compounds and carnosic acid dominating in extracts with mainly nonpolar compounds. Extracts with higher rosmarinic acid correlated with ORAC and FRAP scores, with UV protection on hair and in the peptide model system. The extracts chosen for hair experiments showed hair protection. UV protection was also measured for rosmarinic and carnosic acid. CONCLUSIONS: Despite the variation in the profile of phytochemistries in the 10 rosemary extracts, likely driven by the chosen extraction method, all rosemary extracts had antioxidant activity measured. This study suggests that the polyphenols (e.g. rosmarinic acid, glycosides of selgin) and abietane diterpenes (e.g. carnosic acid) are the principal compounds which enables the extracts to protect hair from UV.


INTRODUCTION: Les extraits de romarin (Salvia Rosmarinus) sont analysés par LC-MS pour établir et identifier leur profil phytochimique. Les mêmes extraits ont été testés pour leur efficacité à agir comme antioxydants à la fois par transfert d'atome d'hydrogène (ORAC) et par transfert d'électrons uniques (FRAP). Une analyse de corrélation a été réalisée pour identifier les propriétés phytochimiques clés responsables de l'efficacité antioxydante. Les extraits les plus performants ont ensuite été testés dans un modèle peptidique et sur les cheveux en présences d'UV pour mesurer la capacité à protéger contre les dommages induits par les UV su les peptides et protéines. Les polyphénols (par ex. acide rosmarinique, glycosides de selgin) et les diterpènes d'abiétine (par ex. acide carnosique) dans le romarin ont été identifiés comme les principaux composés permettant aux extraits de protéger les cheveux des UV. OBJECTIF: L'objectif de ce travail était de mettre en corrélation la phytochimie du romarin (Salvia rosmarinus), une plante aux propriétés antioxydantes connues, et les bénéfices d'une protection contre les UV dans les cheveux. Ces données fourniront des informations sur les mécanismes des dommages causés par les UV, la formation du ROS et leur réactivité. MÉTHODES: La LC-MS a été utilisée pour comparer les composés de 10 extraits commerciaux de romarin. L'ORAC (Oxygen Radical Antioxidant Capacity/Capacité d'absorption des radicaux d'oxygène) et la FRAP (Ferric Reduction Antioxidant Power/Pouvoir antioxydant de réduction ferrique) ont été utilisés pour mesurer la capacité antioxydante des extraits de romarin. Le dosage ORAC mesure la capacité d'un antioxydant à réagir avec un radical peroxyl par extraction d'atome d'hydrogène et la FRAP mesure le transfert d'électrons par réduction du fer ferrique (Fe3+ ) en fer ferreux (Fe2+ ) par les antioxydants présents dans les échantillons. La corrélation entre la composition de l'extrait et les mesures des antioxydants a été effectuée en analysant les composants principaux. Les extraits sélectionnés ont été évalués pour leur capacité à protéger les cheveux des dommages causés par les UV dans un modèle de système peptidique et sur les cheveux. En outre, les mêmes méthodes ont été utilisées pour tester l'acide rosmarinique et l'acide carnosique, principales caractéristiques phytochimiques dans les extraits de romarin. Le système modèle était un peptide et sa décomposition à l'exposition aux UV a été suivie par LC-MS en l'absence et en présence des extraits de romarin. La dégradation des cheveux en présence d'UV a été mesurée par l'exposition aux UV dans un indicateur de désagrégation Atlas suivi de l'extraction de protéines dégradées dans l'eau. Un fragment de la protéine S100A3 a été utilisé comme marqueur de dommage UV (m/z = 1278) et quantifié par LC-MS. RÉSULTATS: Dix extraits de romarin ont été évalués en termes de performance antioxydante et mis en corrélation avec leurs compositions. La phytochimie de chaque extrait variait considérablement, avec un total de 33 composés individuels identifiés. Les différences étaient très probablement dues à la méthode du solvant et de l'extraction utilisée par le fournisseur avec des extraits variant dans la proportion de composés polaires ou non polaires. Cela a effectivement influencé leur réactivité dans les dosages ORAC et FRAP et leur efficacité dans la prévention des dommages protéiques. Deux des composés clés identifiés étaient l'acide rosmarinique et l'acide carnosique, l'acide rosmarinique dominant dans les extraits contenant principalement des composés polaires et l'acide carnosique dominant dans les extraits contenant principalement des composés non polaires. Les extraits avec un taux d'acide rosmarinique plus élevé étaient mis en corrélation avec les scores ORAC et FRAP, avec une protection UV sur les cheveux et dans le système de modèle peptidique. Les extraits choisis pour les expériences sur les cheveux ont montré une protection des cheveux. La protection contre les UV a également été mesurée pour l'acide rosmarinique et l'acide carnosique. CONCLUSIONS: Malgré la variation des profils phytochimiques dans les dix extraits de romarin, probablement induite par la méthode d'extraction choisie, l'activité antioxydante de tous les extraits de romarin a été mesurée. Les polyphénols (par ex. acide rosmarinique, glycosides de selgin) et les diterpènes d'abiétane (par ex. acide carnosique) dans le romarin ont été identifiés comme les principaux composés permettant aux extraits de protéger les cheveux contre les UV.


Subject(s)
Rosmarinus , Salvia , Antioxidants/pharmacology , Abietanes/analysis , Abietanes/chemistry , Abietanes/pharmacology , Rosmarinus/chemistry , Polyphenols , Glycosides , Plant Extracts/pharmacology , Plant Extracts/chemistry , Iron , Peptides , Hydrogen/analysis , Rosmarinic Acid
11.
Nutrients ; 15(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36986277

ABSTRACT

Alzheimer's disease is regarded as a common neurodegenerative disease that may lead to dementia and the loss of memory. We report here the nootropic and anti-amnesic effects of both peppermint and rosemary oils using a rat model of scopolamine-induced amnesia-like AD. Rats were administered orally with two doses (50 and 100 mg/kg) of each single oil and combined oils. The positive group used donepezil (1 mg/kg). In the therapeutic phase, rats were administered scopolamine (1 mg/kg) through the oral administration of oils. During the nootropic phase, both oils showed a significant (p < 0.05) decrease in radial arm maze latency times, working memory, and reference memory errors compared with the normal group, along with significant (p < 0.05) enhancements of long-term memory during the passive avoidance test. Therapeutic phase results revealed significant enhancements of memory processing compared with the positive groups. In the hippocampus, oils exhibited an elevation of BDNF levels in a dose-dependent manner. Immunohistochemistry findings showed increased hippocampal neurogenesis suppressed by scopolamine in the sub-granular zone, and the anti-amnesic activity of single oil was enhanced when the two oils combined. Gas chromatography-mass spectrometry (GCMS) of the two oils revealed sufficient compounds (1,8-Cineole, α-Pinene, menthol and menthone) with potential efficacy in the memory process and cognitive defects. Our work suggests that both oils could enhance the performance of working and spatial memory, and when combined, more anti-amnesic activity was produced. A potential enhancement of hippocampal growth and neural plasticity was apparent with possible therapeutic activity to boost memory in AD patients.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Nootropic Agents , Oils, Volatile , Rosmarinus , Rats , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Scopolamine/adverse effects , Mentha piperita , Rosmarinus/chemistry , Nootropic Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Spatial Memory , Dietary Supplements , Hippocampus
12.
Tissue Cell ; 81: 102016, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36640564

ABSTRACT

Rosemary (Rosmarinus officinalis L.) is a shrub used to treat hepatic, intestinal, renal, respiratory, and reproductive failures. Etoposide a plant-based compound derived from Podophyllum pelltatum, has been used for human malignancies treatment. However, it induces testis, and hepatic failures. In the present study, impact of rosemary essential oil against testis failure, lipid parameters, and hepatic enzymes in male rats has been studied. Forty male Wistar albino rats were grouped in a completely randomized design with Etoposide injection (ETO), rosemary supplementation (ROS), with Etoposide injection and rosemary supplement (ETO+ROS), and control rats with no Etoposide injection and no rosemary (CON). The experiment lasted for seven consecutive weeks including one week as acclimatization time. At the end of the experiment, rats were sacrificed by cervical dislocation, and blood samples were analyzed for serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), low-density lipoprotein-Cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), total cholesterol (TC), total Protein (TP), glucose (GLU) and testosterone. The left testis was harvested for histological examination. Results showed that rats with Etoposide injection had higher ALT, AST, and ALP the control rats. No significant difference was found among treatments in terms of glucose concentration in blood. Rosemary supplemntaion decreased cholesterol and TG concentration and increased HDL concentration in male rats. Furthermore, administration of rosemary essential oil increased blood testosterone but decreased ALT and AST. The epithelial height of seminiferous tubules was decreased significantly in ET as compared with CON. Rosemary essential oil lessened the adverse effect of Etopside on epithelial height in rat testis as it is shown in ET+ROS. In conclusion, dietary supplementation of rosemary essential oil alleviated liver toxicity and functional testis damage induced by Etopside.


Subject(s)
Genital Diseases, Male , Oils, Volatile , Rosmarinus , Animals , Male , Rats , Cholesterol/metabolism , Cholesterol/pharmacology , Etoposide/pharmacology , Etoposide/toxicity , Genital Diseases, Male/chemically induced , Genital Diseases, Male/drug therapy , Glucose/metabolism , Liver/pathology , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/pharmacology , Rats, Wistar , Rosmarinus/chemistry , Testis/metabolism , Testis/pathology , Testosterone/pharmacology
13.
Environ Sci Pollut Res Int ; 30(16): 46175-46184, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36715796

ABSTRACT

Today, the lack of quality water supply has led to the tendency to use unconventional water to irrigate agricultural products. Considering the importance and application of essential oils of mint plants in various pharmaceutical, food, and health industries and also considering the approach of using unconventional waters in the cultivation of medicinal plants, the present study aimed to investigate and compare the chemical composition of essential oils of two species of Mentha spicata L. and Rosmarinus officinalis L. which was designed and implemented for the first time under the influence of different treatments of municipal and industrial wastewater. For this purpose, first R. officinalis cuttings and roots of M. spicata were prepared and after preparing and leveling the ground, in the spring of 2020, it was transferred to the planting site and planted in the form of creek and ridges. The treatments studied in this study included well water (WW), treated municipal wastewater (TMW), untreated municipal wastewater (UMW), treated industrial wastewater (TIW), and untreated industrial wastewater (UIW) in a randomized complete block design with four repeat runs. After watering the plants continuously for 3 months, the plant branches were collected and transferred to the laboratory for drying. After extracting the essential oil by water distillation (Clevenger) method, the analysis and identification of the compounds were performed by a chromatograph coupled with a mass spectrometer (GC/MS). The results showed that the highest and lowest yields of M. spicata belonged to the samples treated with UMW and WW, respectively. Also, R. officinalis essential oil irrigated with UMW and UIW had the highest and lowest yields, respectively. The number of essential oil compounds in of M. spicata was between 5 and 19 and in R. officinalis between 14 and 23 under different treatments. The results of the analysis of essential oil compounds showed that D-carvone (57.77-57.44%) and D-limonene (8.70-26.65%) for M. spicata and α-pinene (26.12-34.85%), 1,8-cineole (18.95-23.70%), and camphene (9.93-12.80%) for R. officinalis were predominant compounds in all studied treatments. The results show that UMW is a suitable and efficient treatment to have the best quantity of M. spicata essential oil and the best quality and quantity of R. officinalis essential oil.


Subject(s)
Agricultural Irrigation , Mentha spicata , Oils, Volatile , Rosmarinus , Eucalyptol/pharmacology , Mentha spicata/chemistry , Oils, Volatile/chemistry , Rosmarinus/chemistry , Wastewater , Random Allocation , Agricultural Irrigation/methods
14.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558189

ABSTRACT

By-products of essential oils (EOs) in the industry represent an exploitable material for natural and safe antioxidant production. One representative group of such by-products is distilled solid residues, whose composition is properly modulated by the distillation method applied for the recovery of EOs. Recently, in terms of Green Chemistry principles, conventional extraction and distillation processes are considered outdated and tend to be replaced by more environmentally friendly ones. In the present study, microwave-assisted hydro-distillation (MAHD) was employed as a novel and green method for the recovery of EOs from three aromatic plants (rosemary, Greek sage and spearmint). The method was compared to conventional ones, hydro-distillation (HD) and steam-distillation (SD), in terms of phytochemical composition of distilled solid residues, which was estimated by spectrophotometric and chromatographic methods. Total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity (ABTS, DPPH and FRAP) results highlighted the distilled solid residues as good sources of antioxidants. Moreover, higher antioxidant activity was achieved for MAHD extracts of solid residues in comparison to HD and SD extracts. A metabolomics approach was carried out on the methanolic extracts of solid residues obtained by different distillation methods using LC-MS analysis followed by multivariate data analysis. A total of 29 specialized metabolites were detected, and 26 of them were identified and quantified, presenting a similar phenolic profile among different treatments, whereas differences were observed among different species. Rosmarinic acid was the most abundant phenolic compound in all extracts, being higher in MAHD extracts. In rosemary and Greek sage extracts, carnosol and carnosic acid were quantified in significant amounts, while trimers and tetramers of caffeic acid (salvianolic acids isomers) were identified and quantified in spearmint extracts, being higher in MAHD extracts. The obtained results pointed out that MAHD extracts of distilled solid by-products could be a good source of bioactives with potential application in the food, pharmaceutical and cosmetic industries, contributing to the circular economy.


Subject(s)
Mentha spicata , Rosmarinus , Antioxidants/chemistry , Distillation/methods , Rosmarinus/chemistry , Greece , Phenols/chemistry , Plant Extracts/chemistry
15.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232763

ABSTRACT

Biodeterioration of cultural heritage is caused by different organisms capable of inducing complex alteration processes. The present study aimed to evaluate the efficiency of Rosmarinus officinalis hydro-alcoholic extract to inhibit the growth of deteriogenic microbial strains. For this, the physico-chemical characterization of the vegetal extract by UHPLC-MS/MS, its antimicrobial and antibiofilm activity on a representative number of biodeteriogenic microbial strains, as well as the antioxidant activity determined by DPPH, CUPRAC, FRAP, TEAC methods, were performed. The extract had a total phenol content of 15.62 ± 0.97 mg GAE/mL of which approximately 8.53% were flavonoids. The polyphenolic profile included carnosic acid, carnosol, rosmarinic acid and hesperidin as major components. The extract exhibited good and wide spectrum antimicrobial activity, with low MIC (minimal inhibitory concentration) values against fungal strains such as Aspergillus clavatus (MIC = 1.2 mg/mL) and bacterial strains such as Arthrobacter globiformis (MIC = 0.78 mg/mL) or Bacillus cereus (MIC = 1.56 mg/mL). The rosemary extract inhibited the adherence capacity to the inert substrate of Penicillium chrysogenum strains isolated from wooden objects or textiles and B. thuringiensis strains. A potential mechanism of R. officinalis antimicrobial activity could be represented by the release of nitric oxide (NO), a universal signalling molecule for stress management. Moreover, the treatment of microbial cultures with subinhibitory concentrations has modulated the production of microbial enzymes and organic acids involved in biodeterioration, with the effect depending on the studied microbial strain, isolation source and the tested soluble factor. This paper reports for the first time the potential of R. officinalis hydro-alcoholic extract for the development of eco-friendly solutions dedicated to the conservation/safeguarding of tangible cultural heritage.


Subject(s)
Anti-Infective Agents , Hesperidin , Rosmarinus , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Flavonoids/pharmacology , Nitric Oxide , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosmarinus/chemistry , Tandem Mass Spectrometry
16.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234882

ABSTRACT

Rosmarinus officinalis is a well-studied plant, known for its therapeutic properties. However, its biological activity against several diseases is not known in detail. The aim of this study is to present new data regarding the cytotoxic activity of a hydroethanolic extract of Rosmarinus officinalis on glioblastoma (A172) and rhabdomyosarcoma (TE671) cancer cell lines. The chemical composition of the extract is evaluated using liquid chromatography combined with time-of-flight mass spectrometry, alongside its total phenolic content and antioxidant activity. The extract showed a promising time- and dose-dependent cytotoxic activity against both cell lines. The lowest IC50 values for both cell lines were calculated at 72 h after treatment and correspond to 0.249 ± 1.09 mg/mL for TE671 cell line and 0.577 ± 0.98 mg/mL for A172 cell line. The extract presented high phenolic content, equal to 35.65 ± 0.03 mg GAE/g of dry material as well as a strong antioxidant activity. The IC50 values for the antioxidant assays were estimated at 12.8 ± 2.7 µg/mL (DPPH assay) and 6.98 ± 1.9 µg/mL (ABTS assay). The compound detected in abundance was carnosol, a phenolic diterpene, followed by the polyphenol rosmarinic acid, while the presence of phenolic compounds such as rhamnetin glucoside, hesperidin, cirsimaritin was notable. These preliminary results suggest that R. officinalis is a potential, alternative source of bioactive compounds to further examine for abilities against glioblastoma and rhabdomyosarcoma.


Subject(s)
Antipsychotic Agents , Glioblastoma , Hesperidin , Rhabdomyosarcoma , Rosmarinus , Antioxidants/chemistry , Cell Line , Glioblastoma/drug therapy , Glucosides , Humans , Phenols/analysis , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Rosmarinus/chemistry
17.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014289

ABSTRACT

Rosmarinus officinalis belongs to the Lamiaceae family, and its constituents show antioxidant, anti-inflammatory, antidepressant, antinociceptive, and antibacterial properties. The aim of this study was to develop a topical formulation with R. officinalis extract that had antimicrobial and antioxidant activity. Maceration, infusion, Soxhlet, and ultrasound were used to produce rosemary extracts, which were submitted to antioxidant, compound quantification, cell viability, and antimicrobial assays. Infusion and Soxhlet showed better results in the DPPH assay. During compound quantification, infusion showed promising metabolite extraction in phenolic compounds and tannins, although maceration was able to extract more flavonoids. The infusion and ultrasound extracts affected more strains of skin bacteria in the disk diffusion assays. In the minimum inhibitory concentration assay, the infusion extract showed results against S. aureus, S. oralis, and P. aeruginosa, while ultrasound showed effects against those three bacteria and E. coli. The infusion extract was chosen to be incorporated into a green emulsion. The infusion extract promoted lower spreadability and appropriated the texture, and the blank formulation showed high levels of acceptance among the volunteers. According to the results, the rosemary extract showed promising antioxidant and antimicrobial activity, and the developed formulations containing this extract were stable for over 90 days and had acceptable characteristics, suggesting its potential use as a phytocosmetic. This paper reports the first attempt to produce an oil-in-water emulsion using only natural excipients and rosemary extract, which is a promising novelty, as similar products cannot be found on the market or in the scientific literature.


Subject(s)
Anti-Infective Agents , Rosmarinus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Emulsions , Escherichia coli , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rosmarinus/chemistry , Staphylococcus aureus
18.
Sci Rep ; 12(1): 13102, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907916

ABSTRACT

A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55-66.13 nm), homogenous distribution (PDI of 0.207-0.249), and negatively charged Zeta potential (- 13.4 to - 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.


Subject(s)
Nanocapsules , Rosmarinus , Animals , Antioxidants/pharmacology , Hexanes , Lipids , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Rosmarinus/chemistry
19.
Food Chem ; 395: 133582, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35779509

ABSTRACT

This study aimed to investigate the individual effects of rosemary extract and green tea polyphenols on the stability of the soybean oil-myosin emulsions with l-arginine or l-lysine. The results showed that l-arginine or l-lysine increased the physical stability of emulsion in all cases. In the presence of metallic cations, rosemary extract increased the physical stability, while green tea polyphenols decreased the physical stability. l-Arginine or l-lysine retarded the lipid and protein oxidation of emulsion in the absence of metallic cations during storage, but accelerated it in the presence of metallic cations. The two antioxidants delayed l-arginine- or l-lysine-induced lipid and protein oxidation in the presence of metallic cations. The results provide a new method for improving the physical and chemical stability of emulsion sausages in which l-arginine or l-lysine is applied to improve the quality attributes of emulsion sausage.


Subject(s)
Antioxidants , Rosmarinus , Antioxidants/chemistry , Arginine , Emulsions/chemistry , Lysine , Myosins , Plant Extracts/chemistry , Polyphenols/chemistry , Rosmarinus/chemistry , Soybean Oil/chemistry , Tea/chemistry
20.
Braz J Biol ; 84: e258234, 2022.
Article in English | MEDLINE | ID: mdl-35830129

ABSTRACT

The present work was showed to assess the effect of administration of rosemary extract on etoposide-induced toxicity, injury and proliferation in male rats were investigated. Forty male albino rats were arranged into four equal groups. 1st group, control; 2nd group, etoposide; 3rd group, co-treated rosemary & etoposide; 4th group, rosemary alone. In comparison to the control group, etoposide administration resulted in a significant increase in serum ALT, AST, ALP, total bilirubin, total protein, and gamma GT. In contrast; a significant decrease in albumin level in etoposide group as compared to G1. G3 revealed a significant decrease in AST, ALT, ALP, total protein and total bilirubin levels and a significant rise in albumin level when compared with G2. Serum levels of urea, creatinine, potassium ions, and chloride ions significantly increased; while sodium ions were significantly decreased in G2 when compared with G1. Also, there was an increase of MDA level for etoposide treated group with corresponding control rats. However, there was a remarkable significant decrease in SOD, GPX and CAT levels in G2 as compared to G1. There was a significant increase in serum hydrogen peroxide (H2O2) and Nitric oxide (NO) levels in group treated with etoposide when compared to control group. It was noticeable that administrated by rosemary alone either with etoposide had not any effect on the levels of H2O2 and Nitric oxide. Serum level of T3 and T4 was significantly increased in etoposide-administered rats in comparison with G1. The administration of rosemary, either alone or with etoposide, increased the serum levels of T3 and T4 significantly when compared to control rats. The gene expression analysis showed significant downregulation of hepatic SOD and GPx in (G2) when compared with (G1). The treatment with rosemary extract produced significant upregulation of the antioxidant enzymes mRNA SOD and GPx. MDA gene was increased in (G2) when contrasted with (G1). Treatment of the etoposide- induced rats with rosemary extract delivered significant decrease in MDA gene expression when compared with etoposide group. Rats treated with etoposide showed significant decline in hepatic Nrf2 protein expression, when compared with G1. While, supplementation of Etoposide- administered rats with the rosemary produced a significant elevation in hepatic Nrf2 protein levels. Additionally, the liver histological structure displayed noticeable degeneration and cellular infiltration in liver cells. It is possible to infer that rosemary has a potential role and that it should be researched as a natural component for etoposide-induced toxicity protection.


Subject(s)
Rosmarinus , Albumins/metabolism , Albumins/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Bilirubin/metabolism , Bilirubin/pharmacology , Etoposide/metabolism , Etoposide/toxicity , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Oxidative Stress , Plant Extracts/pharmacology , Rats , Rosmarinus/chemistry , Rosmarinus/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL