Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Country/Region as subject
Publication year range
1.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35408682

ABSTRACT

A new dicoumarin, jusan coumarin, (1), has been isolated from Artemisia glauca aerial parts. The chemical structure of jusan coumarin was estimated, by 1D, 2D NMR as well as HR-Ms spectroscopic methods, to be 7-hydroxy-6-methoxy-3-[(2-oxo-2H-chromen-6-yl)oxy]-2H-chromen-2-one. As the first time to be introduced in nature, its potential against SARS-CoV-2 has been estimated using various in silico methods. Molecular similarity and fingerprints experiments have been utilized for 1 against nine co-crystallized ligands of COVID-19 vital proteins. The results declared a great similarity between Jusan Coumarin and X77, the ligand of COVID-19 main protease (PDB ID: 6W63), Mpro. To authenticate the obtained outputs, a DFT experiment was achieved to confirm the similarity of X77 and 1. Consequently, 1 was docked against Mpro. The results clarified that 1 bonded in a correct way inside Mpro active site, with a binding energy of -18.45 kcal/mol. Furthermore, the ADMET and toxicity profiles of 1 were evaluated and showed the safety of 1 and its likeness to be a drug. Finally, to confirm the binding and understand the thermodynamic characters between 1 and Mpro, several molecular dynamics (MD) simulations studies have been administered. Additionally, the known coumarin derivative, 7-isopentenyloxycoumarin (2), has been isolated as well as ß-sitosterol (3).


Subject(s)
Artemisia , Coronavirus 3C Proteases , Coumarins , Protease Inhibitors , SARS-CoV-2 , Artemisia/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coumarins/chemistry , Coumarins/pharmacology , Dicumarol/chemistry , Dicumarol/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
2.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268738

ABSTRACT

A new flavonoid, Jusanin, (1) has been isolated from the aerial parts of Artemisia commutata. The chemical structure of Jusanin has been elucidated using 1D, 2D NMR, and HR-Ms spectroscopic methods to be 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone. Being new in nature, the inhibition potential of 1 has been estimated against SARS-CoV-2 using different in silico techniques. Firstly, molecular similarity and fingerprint studies have been conducted for Jusanin against co-crystallized ligands of eight different SARS-CoV-2 essential proteins. The studies indicated the similarity between 1 and X77, the co-crystallized ligand SARS-CoV-2 main protease (PDB ID: 6W63). To confirm the obtained results, a DFT study was carried out and indicated the similarity of (total energy, HOMO, LUMO, gap energy, and dipole moment) between 1 and X77. Accordingly, molecular docking studies of 1 against the target enzyme have been achieved and showed that 1 bonded correctly in the protein's active site with a binding energy of -19.54 Kcal/mol. Additionally, in silico ADMET in addition to the toxicity evaluation of Jusanin against seven models have been preceded and indicated the general safety and the likeness of Jusanin to be a drug. Finally, molecular dynamics simulation studies were applied to investigate the dynamic behavior of the Mpro-Jusanin complex and confirmed the correct binding at 100 ns. In addition to 1, three other metabolites have been isolated and identified to be сapillartemisin A (2), methyl-3-[S-hydroxyprenyl]-cumarate (3), and ß-sitosterol (4).


Subject(s)
Artemisia , Coronavirus 3C Proteases , Flavonoids , SARS-CoV-2 , Animals , Humans , Male , Rats , Artemisia/chemistry , Artemisia/metabolism , Binding Sites , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , COVID-19/pathology , COVID-19/virology , Density Functional Theory , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/metabolism , Flavonoids/pharmacology , Lethal Dose 50 , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/enzymology , SARS-CoV-2/isolation & purification , Skin/drug effects , Skin/pathology
3.
Molecules ; 27(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35209006

ABSTRACT

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Subject(s)
Artemisia/chemistry , COVID-19/enzymology , Chromones/chemistry , Coronavirus Papain-Like Proteases , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Humans , COVID-19 Drug Treatment
4.
J Am Chem Soc ; 144(7): 2905-2920, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35142215

ABSTRACT

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Cysteine Proteinase Inhibitors/metabolism , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical , Humans , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/enzymology , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacokinetics , Vero Cells
5.
Commun Biol ; 5(1): 169, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217718

ABSTRACT

SARS-CoV-2 proteases Mpro and PLpro are promising targets for antiviral drug development. In this study, we present an antiviral screening strategy involving a novel in-cell protease assay, antiviral and biochemical activity assessments, as well as structural determinations for rapid identification of protease inhibitors with low cytotoxicity. We identified eight compounds with anti-SARS-CoV-2 activity from a library of 64 repurposed drugs and modeled at protease active sites by in silico docking. We demonstrate that Sitagliptin and Daclatasvir inhibit PLpro, and MG-101, Lycorine HCl, and Nelfinavir mesylate inhibit Mpro of SARS-CoV-2. The X-ray crystal structure of Mpro in complex with MG-101 shows a covalent bond formation between the inhibitor and the active site Cys145 residue indicating its mechanism of inhibition is by blocking the substrate binding at the active site. Thus, we provide methods for rapid and effective screening and development of inhibitors for blocking virus polyprotein processing as SARS-CoV-2 antivirals. Additionally, we show that the combined inhibition of Mpro and PLpro is more effective in inhibiting SARS-CoV-2 and the delta variant.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , SARS-CoV-2/enzymology , Viral Protease Inhibitors/analysis , Drug Repositioning , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Targeted Therapy , COVID-19 Drug Treatment
6.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35037045

ABSTRACT

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/metabolism , Genome, Viral/genetics , Genomic Instability , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Exoribonucleases/antagonists & inhibitors , Genome, Viral/drug effects , Genomic Instability/drug effects , Genomic Instability/genetics , HIV Integrase Inhibitors/pharmacology , Isoindoles/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Organoselenium Compounds/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Raltegravir Potassium/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/genetics
7.
Bioengineered ; 13(2): 3350-3361, 2022 02.
Article in English | MEDLINE | ID: mdl-35048792

ABSTRACT

The COVID-19 new variants spread rapidly all over the world, and until now scientists strive to find virus-specific antivirals for its treatment. The main protease of SARS-CoV-2 (Mpro) exhibits high structural and sequence homology to main protease of SARS-CoV (93.23% sequence identity), and their sequence alignment indicated 12 mutated/variant residues. The sequence alignment of SARS-CoV-2 main protease led to identification of only one mutated/variant residue with no significant role in its enzymatic process. Therefore, Mpro was considered as a high-profile drug target in anti-SARS-CoV-2 drug discovery. Apigenin analogues to COVID-19 main protease binding were evaluated. The detailed interactions between the analogues of Apigenin and SARS-CoV-2 Mpro inhibitors were determined as hydrogen bonds, electronic bonds and hydrophobic interactions. The binding energies obtained from the molecular docking of Mpro with Boceprevir, Apigenin, Apigenin 7-glucoside-4'-p-coumarate, Apigenin 7-glucoside-4'-trans-caffeate and Apigenin 7-O-beta-d-glucoside (Cosmosiin) were found to be -6.6, -7.2, -8.8, -8.7 and -8.0 kcal/mol, respectively. Pharmacokinetic parameters and toxicological characteristics obtained by computational techniques and Virtual ADME studies of the Apigenin analogues confirmed that the Apigenin 7-glucoside-4'-p-coumarate is the best candidate for SARS-CoV-2 Mpro inhibition.


Subject(s)
Antiviral Agents/pharmacology , Apigenin/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Apigenin/chemistry , Apigenin/pharmacokinetics , Bioengineering , COVID-19/virology , Computer Simulation , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Evaluation, Preclinical , Glucosides/chemistry , Glucosides/pharmacokinetics , Glucosides/pharmacology , Humans , Molecular Docking Simulation , Phytotherapy , Protein Domains , SARS-CoV-2/genetics
8.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34981929

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Subject(s)
Aniline Compounds/chemistry , Antiviral Agents/metabolism , Benzamides/chemistry , Coronavirus Papain-Like Proteases/metabolism , Drug Design , Naphthalenes/chemistry , Peptides/chemistry , SARS-CoV-2/enzymology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides/metabolism , Benzamides/pharmacology , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Coronavirus Papain-Like Proteases/chemistry , Cytokines/chemistry , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Naphthalenes/metabolism , Naphthalenes/pharmacology , SARS-CoV-2/isolation & purification , Ubiquitins/chemistry , COVID-19 Drug Treatment
9.
Biochem Biophys Res Commun ; 591: 130-136, 2022 02 05.
Article in English | MEDLINE | ID: mdl-33454058

ABSTRACT

The coronavirus disease (COVID-19) pandemic, resulting from human-to-human transmission of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to a global health crisis. Given that the 3 chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays an indispensable role in viral polyprotein processing, its successful inhibition halts viral replication and thus constrains virus spread. Therefore, developing an effective SARS-CoV-2 3CLpro inhibitor to treat COVID-19 is imperative. A fluorescence resonance energy transfer (FRET)-based method was used to assess the proteolytic activity of SARS-CoV-2 3CLpro using intramolecularly quenched fluorogenic peptide substrates corresponding to the cleavage sequence of SARS-CoV-2 3CLpro. Molecular modeling with GEMDOCK was used to simulate the molecular interactions between drugs and the binding pocket of SARS-CoV-2 3CLpro. This study revealed that the Vmax of SARS-CoV-2 3CLpro was about 2-fold higher than that of SARS-CoV 3CLpro. Interestingly, the proteolytic activity of SARS-CoV-2 3CLpro is slightly more efficient than that of SARS-CoV 3CLpro. Meanwhile, natural compounds PGG and EGCG showed remarkable inhibitory activity against SARS-CoV-2 3CLpro than against SARS-CoV 3CLpro. In molecular docking, PGG and EGCG strongly interacted with the substrate binding pocket of SARS-CoV-2 3CLpro, forming hydrogen bonds with multiple residues, including the catalytic residues C145 and H41. The activities of PGG and EGCG against SARS-CoV-2 3CLpro demonstrate their inhibition of viral protease activity and highlight their therapeutic potentials for treating SARS-CoV-2 infection.


Subject(s)
Catechin/analogs & derivatives , Coronavirus 3C Proteases/antagonists & inhibitors , Hydrolyzable Tannins/pharmacology , Molecular Docking Simulation , SARS-CoV-2/drug effects , Binding Sites , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Catechin/chemistry , Catechin/metabolism , Catechin/pharmacology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical/methods , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Kinetics , Models, Molecular , Molecular Structure , Pandemics , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Protein Domains , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Virus Replication/drug effects
10.
J Biomol Struct Dyn ; 40(20): 10437-10453, 2022.
Article in English | MEDLINE | ID: mdl-34182889

ABSTRACT

Due to the unavailability specific drugs or vaccines (FDA approved) that can cure COVID-19, the development of potent antiviral drug candidates/therapeutic molecules against COVID-19 is urgently required. This study was aimed at in silico screening and study of polyphenolic phytochemical compounds in a rational way by virtual screening, molecular docking and molecular dynamics studies against SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) enzymes. The objective of the study was to identify plant-derived polyphenolic compounds and/or flavonoid molecules as possible antiviral agents with protease inhibitory potential against SARS-CoV-2. In this study, we report plant-derived polyphenolic compounds (including flavonoids) as novel protease inhibitors against SARS-CoV-2. From virtual docking and molecular docking study, 31 polyphenolic compounds were identified as active antiviral molecules possessing well-defined binding affinity with acceptable ADMET, toxicity and lead-like or drug-like properties. Six polyphenolic compounds, namely, enterodiol, taxifolin, eriodictyol, leucopelargonidin, morin and myricetin were found to exhibit remarkable binding affinities against the proteases with taxifolin and morin exhibiting the highest binding affinity toward Mpro and PLpro respectively. Molecular dynamics simulation studies of these compounds in complex with the proteases showed that the binding of the compounds is characterized by structural perturbations of the proteases suggesting their antiviral activities. These compounds can therefore be investigated further by in vivo and in vitro techniques to assess their potential efficacy against SARS-CoV-2 and thus serve as the starting point for the development of potent antiviral agents against the deadly COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus Papain-Like Proteases , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors
11.
J Comput Biol ; 28(12): 1228-1247, 2021 12.
Article in English | MEDLINE | ID: mdl-34847746

ABSTRACT

The detrimental effect of coronavirus disease 2019 (COVID-19) pandemic has manifested itself as a global crisis. Currently, no specific treatment options are available for COVID-19, so therapeutic interventions to tackle the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection must be urgently established. Therefore, cohesive and multidimensional efforts are required to identify new therapies or investigate the efficacy of small molecules and existing drugs against SARS-CoV-2. Since the RNA-dependent RNA Polymerase (RdRP) of SARS-CoV-2 is a promising therapeutic target, this study addresses the identification of antiviral molecules that can specifically target SARS-CoV-2 RdRP. The computational approach of drug development was used to screen the antiviral molecules from two antiviral libraries (Life Chemicals [LC] and ASINEX) against RdRP. Here, we report six antiviral molecules (F3407-4105, F6523-2250, F6559-0746 from LC and BDG 33693278, BDG 33693315, LAS 34156196 from ASINEX), which show substantial interactions with key amino acid residues of the active site of SARS-CoV-2 RdRP and exhibit higher binding affinity (>7.5 kcalmol-1) than Galidesivir, an Food and Drug Administration-approved inhibitor of the same. Further, molecular dynamics simulation and Molecular Mechanics Poisson-Boltzmann Surface Area results confirmed that identified molecules with RdRP formed higher stable RdRP-inhibitor(s) complex than RdRP-Galidesvir complex. Our findings suggest that these molecules could be potential inhibitors of SARS-CoV-2 RdRP. However, further in vitro and preclinical experiments would be required to validate these potential inhibitors of SARS-CoV-2 protein.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Computational Chemistry/methods , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Pandemics , SARS-CoV-2/drug effects , Amino Acid Motifs , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Catalytic Domain/drug effects , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Databases, Chemical , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Conformation , SARS-CoV-2/enzymology , Sequence Alignment , Sequence Homology, Amino Acid , Small Molecule Libraries
12.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 45-49, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-34817369

ABSTRACT

The hunt for potential lead/drug molecules from different resources, especially from natural resources, for possible treatment of COVID-19 is ongoing. Several compounds have already been identified, but only a few are good enough to show potential against the virus. Among the identified druggable target proteins of SARS-CoV-2, this study focuses on non-structural RNA-dependent RNA polymerase protein (RdRp), a well-known enzyme for both viral genome replication and viral mRNA synthesis, and is therefore considered to be the primary target. In this study, the virtual screening followed by an in-depth docking study of the Compounds Library found that natural compound Cyclocurcumin and Silybin B have strong interaction with RdRp and much better than the remdesivir with free binding energy and inhibition constant value as êzŒ-6.29 kcal/mol and 58.39 µMêzŒ, and êzŒ-7.93kcal/mol and 45.3 µMêzŒ, respectively. The finding indicated that the selected hits (Cyclocurcumin and Silybin B) could act as non-nucleotide anti-polymerase agents, and can be further optimized as a potential inhibitor of RdRp by benchwork experiments.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Biological Products/metabolism , COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Drug Discovery/methods , Molecular Docking Simulation/methods , Phytochemicals/metabolism , SARS-CoV-2/enzymology , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/chemistry , Alanine/metabolism , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19/virology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcumin/metabolism , Databases, Protein , Drug Evaluation, Preclinical/methods , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Phytochemicals/chemistry , Protein Binding , Silybin/chemistry , Silybin/metabolism
13.
Antiviral Res ; 195: 105183, 2021 11.
Article in English | MEDLINE | ID: mdl-34626674

ABSTRACT

The likelihood of continued circulation of COVID-19 and its variants, and novel coronaviruses due to future zoonotic transmissions, combined with the current paucity of coronavirus antivirals, emphasize the need for improved screening in developing effective antivirals for the treatment of infection by SARS-CoV-2 (CoV2) and other coronaviruses. Here we report the development of a live-cell based assay for evaluating the intracellular function of the critical, highly-conserved CoV2 target, the Main 3C-like protease (Mpro). This assay is based on expression of native wild-type mature CoV2 Mpro, the function of which is quantitatively evaluated in living cells through cleavage of a biosensor leading to loss of fluorescence. Evaluation does not require cell harvesting, allowing for multiple measurements from the same cells facilitating quantification of Mpro inhibition, as well as recovery of function upon removal of inhibitory drugs. The pan-coronavirus Mpro inhibitor, GC376, was utilized in this assay and effective inhibition of intracellular CoV2 Mpro was found to be consistent with levels required to inhibit CoV2 infection of human lung cells. We demonstrate that GC376 is an effective inhibitor of intracellular CoV2 Mpro at low micromolar levels, while other predicted Mpro inhibitors, bepridil and alverine, are not. Results indicate this system can provide a highly effective high-throughput coronavirus Mpro screening system.


Subject(s)
Biosensing Techniques , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Pyrrolidines/pharmacology , SARS-CoV-2/enzymology , Sulfonic Acids/pharmacology , Drug Evaluation, Preclinical , Fluorescence , HEK293 Cells , Humans
14.
Molecules ; 26(17)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34500664

ABSTRACT

This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Plant Extracts/pharmacology , Zingiber officinale/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/ultrastructure , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification , Coronavirus Protease Inhibitors/therapeutic use , Crystallography, X-Ray , Enzyme Assays , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , Sulfonic Acids/pharmacology
15.
Dalton Trans ; 50(35): 12226-12233, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34396374

ABSTRACT

Numerous organic molecules are known to inhibit the main protease of SARS-CoV-2, (SC2Mpro), a key component in viral replication of the 2019 novel coronavirus. We explore the hypothesis that zinc ions, long used as a medicinal supplement and known to support immune function, bind to the SC2Mpro enzyme in combination with lipophilic tropolone and thiotropolone ligands, L, block substrate docking, and inhibit function. This study combines synthetic inorganic chemistry, in vitro protease activity assays, and computational modeling. While the ligands themselves have half maximal inhibition concentrations, IC50, for SC2Mpro in the 8-34 µM range, the IC50 values are ca. 100 nM for Zn(NO3)2 which are further enhanced in Zn-L combinations (59-97 nM). Isolation of the Zn(L)2 binary complexes and characterization of their ability to undergo ligand displacement is the basis for computational modeling of the chemical features of the enzyme inhibition. Blind docking onto the SC2Mpro enzyme surface using a modified Autodock4 protocol found preferential binding into the active site pocket. Such Zn-L combinations orient so as to permit dative bonding of Zn(L)+ to basic active site residues.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Tropolone/pharmacology , Zinc/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Catalytic Domain/drug effects , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Tropolone/analogs & derivatives , Zinc/chemistry
16.
Eur J Med Chem ; 225: 113789, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34438124

ABSTRACT

SARS-CoV-2 as a positive-sense single-stranded RNA coronavirus caused the global outbreak of COVID-19. The main protease (Mpro) of the virus as the major enzyme processing viral polyproteins contributed to the replication and transcription of SARS-CoV-2 in host cells, and has been characterized as an attractive target in drug discovery. Herein, a set of 1,4-naphthoquinones with juglone skeleton were prepared and evaluated for the inhibitory efficacy against SARS-CoV-2 Mpro. More than half of the tested naphthoquinones could effectively inhibit the target enzyme with an inhibition rate of more than 90% at the concentration of 10 µM. In the structure-activity relationships (SARs) analysis, the characteristics of substituents and their position on juglone core scaffold were recognized as key ingredients for enzyme inhibitory activity. The most active compound, 2-acetyl-8-methoxy-1,4-naphthoquinone (15), which exhibited much higher potency in enzyme inhibitions than shikonin as the positive control, displayed an IC50 value of 72.07 ± 4.84 nM towards Mpro-mediated hydrolysis of the fluorescently labeled peptide. It fit well into the active site cavity of the enzyme by forming hydrogen bonds with adjacent amino acid residues in molecular docking studies. The results from in vitro antiviral activity evaluation demonstrated that the most potent Mpro inhibitor could significantly suppress the replication of SARS-CoV-2 in Vero E6 cells within the low micromolar concentrations, with its EC50 value of about 4.55 µM. It was non-toxic towards the host Vero E6 cells under tested concentrations. The present research work implied that juglone skeleton could be a primary template for the development of potent Mpro inhibitors.


Subject(s)
COVID-19 Drug Treatment , Naphthoquinones/chemistry , Protease Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Cell Survival/drug effects , Chlorocebus aethiops , Drug Design , Drug Evaluation, Preclinical , Humans , Hydrogen Bonding , Molecular Docking Simulation , Naphthoquinones/metabolism , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Vero Cells , Viral Matrix Proteins/metabolism
17.
Int J Biol Macromol ; 187: 976-987, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34333006

ABSTRACT

Coronavirus 3C-like protease (3CLpro) is a crucial target for treating coronavirus diseases including COVID-19. Our preliminary screening showed that Ampelopsis grossedentata extract (AGE) displayed potent SARS-CoV-2-3CLpro inhibitory activity, but the key constituents with SARS-CoV-2-3CLpro inhibitory effect and their mechanisms were unrevealed. Herein, a practical strategy via integrating bioactivity-guided fractionation and purification, mass spectrometry-based peptide profiling and time-dependent biochemical assay, was applied to identify the crucial constituents in AGE and to uncover their inhibitory mechanisms. The results demonstrated that the flavonoid-rich fractions (10-17.5 min) displayed strong SARS-CoV-2-3CLpro inhibitory activities, while the constituents in these fractions were isolated and their SARS-CoV-2-3CLpro inhibitory activities were investigated. Among all isolated flavonoids, dihydromyricetin, isodihydromyricetin and myricetin strongly inhibited SARS-CoV-2 3CLpro in a time-dependent manner. Further investigations demonstrated that myricetin could covalently bind on SARS-CoV-2 3CLpro at Cys300 and Cys44, while dihydromyricetin and isodihydromyricetin covalently bound at Cys300. Covalent docking coupling with molecular dynamics simulations showed the detailed interactions between the orthoquinone form of myricetin and two covalent binding sites (surrounding Cys300 and Cys44) of SARS-CoV-2 3CLpro. Collectively, the flavonoids in AGE strongly and time-dependently inhibit SARS-CoV-2 3CLpro, while the newly identified SARS-CoV-2 3CLpro inhibitors in AGE offer promising lead compounds for developing novel antiviral agents.


Subject(s)
3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Ampelopsis/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Binding Sites/drug effects , Cysteine/metabolism , Flavonoids/chemistry , Flavonols/chemistry , Flavonols/pharmacology , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding/drug effects , Protein Conformation/drug effects , SARS-CoV-2/drug effects
18.
Pharmacol Res ; 172: 105820, 2021 10.
Article in English | MEDLINE | ID: mdl-34403732

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19 Drug Treatment , Enzyme Inhibitors/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/pharmacology , Binding, Competitive , Biological Products/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chalcones/pharmacology , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Ginsenosides/pharmacology , Humans , Interferometry , Mice, Inbred C57BL , Molecular Dynamics Simulation , Phenols/pharmacology , Protein Binding
19.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34210738

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Protease Inhibitors/therapeutic use , Pyrrolidines/therapeutic use , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/pathology , Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Crystallography, X-Ray , Deuterium , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Lung/pathology , Mice , Mice, Transgenic , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , Pyrrolidines/chemistry , SARS-CoV-2/enzymology , Sulfonic Acids , Transgenes
20.
Biochem J ; 478(13): 2533-2535, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34198320

ABSTRACT

In response to the COVID-19 pandemic, we began a project in March 2020 to identify small molecule inhibitors of SARS-CoV-2 enzymes from a library of chemical compounds containing many established pharmaceuticals. Our hope was that inhibitors we found might slow the replication of the SARS-CoV-2 virus in cells and ultimately be useful in the treatment of COVID-19. The seven accompanying manuscripts describe the results of these chemical screens. This overview summarises the main highlights from these screens and discusses the implications of our results and how our results might be exploited in future.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , SARS-CoV-2/enzymology , Small Molecule Libraries/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Enzyme Assays , Humans , SARS-CoV-2/drug effects , Small Molecule Libraries/chemistry , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL