Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
2.
Am J Chin Med ; 52(1): 275-289, 2024.
Article in English | MEDLINE | ID: mdl-38291583

ABSTRACT

This study intends to explore the effects of Cucurbitacin B (CuB) and KIF20A on esophageal carcinoma (ESCA). Data were downloaded from the Cancer Genome Atlas (TCGA) database. The expression properties of KIF20A have been confirmed by GEPIA and ualcan from TCGA. The expression of KIF20A was determined using western blotting in ECA109 and KYSE150 cells after transfection with KIF20A, KIF20A siRNA, or numerical control siRNA (si-NC). Then, different concentrations of CuB were used to treat ECA109 and KYSE150 cells. CCK-8 and colony formation assays were used to measure cell viability, and a Transwell assay was utilized to assess cell migration and invasion ability. N-cadherin, E-cadherin, snail, p-Janus kinase 2 (JAK2), JAK2, p-signal transducer and activator of transcription 3 (STAT3), and STAT3 expression levels were evaluated using western blot. KIF20A was higher expressed in ESCA than in normal cells, and its overexpression was associated with squamous cell carcinoma, TNM stage, and lymph nodal metastasis of ESCA patients. In ECA109 and KYSE150 cells, increased KIF20A facilitated cell proliferation, migration, and invasion, whereas the knockdown of KIF20A can reverse these effects with N-cadherin. Snail expression diminished and E-cadherin increased. Similarly, CuB treatment could inhibit cell proliferation, migration, and invasion concentration dependently. Furthermore, KIF20A accelerated the expression of p-JAK2 and p-STAT3, while the application of CuB inhibited KIF20A expression and attenuated the activation of the JAK/STAT3 pathway. These findings revealed that CuB could inhibit the growth, migration, and invasion of ESCA through downregulating the KIF20A/JAK/STAT3 signaling pathway, and CuB could serve as an essential medicine for therapeutic intervention.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Triterpenes , Humans , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Signal Transduction/genetics , Carcinoma, Squamous Cell/genetics , Cell Proliferation/genetics , Cell Movement/genetics , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Cadherins/genetics , Cadherins/metabolism , Gene Expression Regulation, Neoplastic , Kinesins/genetics , Kinesins/metabolism , Kinesins/pharmacology
3.
J Nat Med ; 78(2): 285-295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38082192

ABSTRACT

The natural product Honokiol exhibits robust antitumor activity against a range of cancers, and it has also received approval to undergo phase I clinical trial testing. We confrmed that honokiol can promote the apoptotic death of tumor cells through cell experiments. Then siRNA constructs specific for PIAS3, PIAS3 overexpression plasmid and the mutation of the STAT3 Tyr705 residue were used to confirm the mechanism of Honokiol-induced apoptosis. Finally, we confrmed that honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation through the in vivo and in vitro experiments. Honokiol was ultimately found to reduce tumor cell viability by promoting apoptosis through a mechanism dependent on the ability of Honokiol to promote PIAS3 upregulation and the selective inhibition of p-STAT3 (Tyr705) without affecting p-STAT3 (Ser727) or p-STAT1 (Tyr701) levels. PIAS3 knockdown and overexpression in tumor cells altered STAT3 activation and associated DNA binding activity through the control of Tyr705 phosphorylation via PIAS3-STAT3 complex formation, ultimately shaping Honokiol-induced tumor cell apoptosis. Honokiol was also confirmed to significantly prolong the survival of mice bearing xenograft tumors in a PIAS3-dependent fashion. Together, these findings highlight a novel pathway through which Honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation and promoting the apoptotic death of tumor cells.


Subject(s)
Allyl Compounds , Apoptosis , Biphenyl Compounds , Phenols , Tyrosine , Humans , Animals , Mice , Phosphorylation , Up-Regulation , Cell Line, Tumor , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
4.
Environ Toxicol ; 39(4): 2218-2228, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130072

ABSTRACT

Postmenopausal osteoporosis (PMOP) poses a significant threat to women's health worldwide. Eupatilin is a key bioactive component of the Chinese herbal medicine Artemisia asiatica Nakai. Recent research reports have proved the inhibitory function of Eupatilin in many diseases. MicroRNAs (miRNAs) are 21-23 nucleotide-long, single-stranded, noncoding RNA molecules generated endogenously, and many studies have indicated that miRNAs are involved in the development of osteoporosis. This study explored the role and potential mechanism of Eupatilin underlying PMOP. First, rats were given intragastric administration of Eupatilin every day and subcutaneous injections of oligonucleotides or plasmids that interfered with miR-211-5p or janus kinase 2 (JAK2) once a week. After 4 weeks, the PMOP rat model was established. Then, serum alkaline phosphatase, calcium, and phosphorus levels, as well as femur bone mineral density and biomechanical parameters, were detected. Hematoxylin-eosin staining and Masson staining were applied for detecting the pathological condition of femur, and immunohistochemical staining was for detecting osteocalcin. MC3T3-E1 cells were transfected with plasmid vectors interfering with miR-211-5p or JAK2; and cell viability, lactate dehydrogenase cytotoxicity, and cell mineralization were subsequently examined. The relationship between miR-211-5p and JAK2/signal transducer and activator of transcription 3 (STAT3) pathway was analyzed. The targeting relation between miR-211-5p and JAK2 was also verified. The experimental results revealed that Eupatilin improved the pathological conditions of PMOP rats by promoting the proliferation and mineralization of osteoblasts. MiR-211-5p was down-regulated and JAK2/STAT3 was upregulated in PMOP rats. Upregulation of miR-211-5p further improved the pathological conditions of PMOP rats based on Eupatilin treatment. MiR-211-5p inhibited the JAK2/STAT3 pathway. JAK2 offset the effects of elevated miR-211-5p on PMOP rats. Overall, Eupatilin attenuates PMOP through elevating miR-211-5p and repressing JAK2/STAT3 pathway, which suggests the utility of Eupatilin as a potential drug for POMP treatment.


Subject(s)
Flavonoids , MicroRNAs , Osteoporosis, Postmenopausal , Humans , Female , Rats , Animals , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
5.
J Tradit Chin Med ; 43(6): 1168-1175, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37946479

ABSTRACT

OBJECTIVE: To investiage the possible mechanism underlying the effect of the Jianpi Qutan Fang (, JPQT) on Atherosclerosis (AS) which is the main pathological process of most cardiovascular diseases that affect millions of adults worldwide. METHODS: In the present study, rats were fed with a high-fat-diet (HFD) with vitamin D3 for 16 weeks and were orally administered atorvastatin treatment and different doses of JPQT. Histopathological changes and ultrastructural changes in the aorta were evaluated through hematoxylin-eosin staining and transmission electron microscopy (TEM), respectively. Suppressor of cytokine signaling 1 (SOCS1)/Janus kinase 1 (JAK1)/ signal transducer and activator of transcription 1 (STAT1) signaling pathways were detected through Western blotting. RESULTS: JPQT treatment decreased the lipid levels of triglyceride, low-density lipoprotein, and cholesterol, the inflammatory cytokine levels of interleukin 1 beta (IL-1ß), IL-6 and IL-8 in rat serum, but increased high-density lipoprotein and IL-10 serum levels. JPQT treatment ameliorated pathological changes in the aorta of AS model rats. Moreover, JPQT upregulated SOCS1 protein expression and down-regulated phosphorylated protein expression levels of p-JAK1 and p-STAT1. CONCLUSION: These results suggest that JPQT induces anti-atherosclerosis effects through anti-inflammatory and inhibiting JAK/STAT signaling pathways in HFD fed rats.


Subject(s)
Atherosclerosis , Janus Kinases , Rats , Animals , Janus Kinases/genetics , Janus Kinases/metabolism , Diet, High-Fat/adverse effects , Signal Transduction , Cytokines/genetics , Cytokines/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Endothelial Cells/metabolism , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
6.
Chin J Nat Med ; 21(11): 842-851, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38035939

ABSTRACT

Cancer stands as one of the predominant causes of mortality globally, necessitating ongoing efforts to develop innovative therapeutics. Historically, natural products have been foundational in the quest for anticancer agents. Bulbocodin D (BD) and Bulbocodin C (BC), two bibenzyls derived from Pleione bulbocodioides (Franch.) Rolfe, have demonstrated notable in vitro anticancer activity. In human lung cancer A549 cells, the IC50s for BD and BC were 11.63 and 11.71 µmol·L-1, respectively. BD triggered apoptosis, as evidenced by an upsurge in Annexin V-positive cells and elevated protein expression of cleaved-PARP in cancer cells. Furthermore, BD and BC markedly inhibited the migratory and invasive potentials of A549 cells. The altered genes identified through RNA-sequencing analysis were integrated into the CMap dataset, suggesting BD's role as a potential signal transducer and activator of transcription 3 (STAT3) inhibitor. SwissDock and MOE analyses further revealed that both BD and BC exhibited a commendable binding affinity with STAT3. Additionally, a surface plasmon resonance assay confirmed the direct binding affinity between these compounds and STAT3. Notably, treatment with either BD or BC led to a significant reduction in p-STAT3 (Tyr 705) protein levels, regardless of interleukin-6 stimulation in A549 cells. In addition, the extracellular signal-regulated kinase (ERK) was activated after BD or BC treatment. An enhancement in cancer cell mortality was observed upon combined treatment of BD and U0126, the MEK1/2 inhibitor. In conclusion, BD and BC emerge as promising novel STAT3 inhibitors with potential implications in cancer therapy.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Antineoplastic Agents/chemistry , A549 Cells , Apoptosis , Cell Line, Tumor , Cell Proliferation
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Article in English | MEDLINE | ID: mdl-38009004

ABSTRACT

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Bortezomib/pharmacology , Bortezomib/metabolism , Bortezomib/therapeutic use , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Apoptosis , Cell Proliferation , Proteasome Endopeptidase Complex/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
8.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4475-4482, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802874

ABSTRACT

This study investigated the effect and mechanism of morin in inducing autophagy and apoptosis in hepatocellular carcinoma cells through the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription protein 3(STAT3) pathway. Human hepatocellular carcinoma SK-HEP-1 cells were stimulated with different concentrations of morin(0, 50, 100, 125, 200, and 250 µmol·L~(-1)). The effect of morin on the viability of SK-HEP-1 cells was detected by Cell Counting Kit-8(CCK-8). The effect of morin on the proliferation and apoptosis of SK-HEP-1 cells was investigated using colony formation assay, flow cytometry, and BeyoClick~(TM) EdU-488 with different concentrations of morin(0, 125, and 250 µmol·L~(-1)). The changes in the autophagy level of cells treated with morin were examined by transmission electron microscopy and autophagy inhibitors. The impact of morin on the expression levels of proteins related to the Akt/mTOR/STAT3 pathway was verified by Western blot. Compared with the control group, the morin groups showed decreased viability of SK-HEP-1 cells in a time-and concentration-dependent manner, increased number of apoptotic cells, up-regulated expression level of apoptosis marker PARP, up-regulated phosphorylation level of apoptosis-regulating protein H2AX, decreased number of positive cells and the colony formation rate, an upward trend of expression levels of autophagy-related proteins LC3-Ⅱ, Atg5, and Atg7, and decreased phosphorylation levels of Akt, mTOR, and STAT3. These results suggest that morin can promote apoptosis, inhibit proliferation, and induce autophagy in hepatocellular carcinoma cells, and its mechanism of action may be related to the Akt/mTOR/STAT3 pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Autophagy , Cell Proliferation , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
9.
Clin Transl Med ; 13(10): e1422, 2023 10.
Article in English | MEDLINE | ID: mdl-37771187

ABSTRACT

BACKGROUND: A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS: Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS: Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS: We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Wnt Signaling Pathway/genetics , Androgen Antagonists , Yin-Yang , Cell Differentiation/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
10.
Zhen Ci Yan Jiu ; 48(9): 933-8, 2023 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-37730264

ABSTRACT

OBJECTIVE: To observe the effect of transcutaneous auricular vagus nerve stimulation (taVNS) on the improvement of depressive-like behavior and the splenic α7 nicotinic acetylcholine receptor (α7nAchR) / Janus kinase 2 (JAK2 / signal transducer and activator of transcription 3 (STAT3) signaling pathway in lipopolysaccharide (LPS)-induced depressive-like behavior rats, so as to investigate the antidepressant mechanism of taVNS. METHODS: SD rats were randomly divided into SD control group, SD model group and SD taVNS group, and α7nAchR knockout rats were also randomly divided into α7 control group, α7 model group and α7 taVNS group, with 6 rats in each group. Rat model of depressive-like behavior was established by intraperitoneal injection of LPS (1 mg/kg). Rats in both SD taVNS and α7 taVNS groups received taVNS intervention once a day (2 Hz/15 Hz, 2 mA, 30 min) from 7 days before LPS injection to 2 days after LPS injection, respectively. The mean speed, activity time and side immobility time in the open field test were recorded after taVNS. The contents of interleukin 10 (IL-10) and chemokine (C-X-C motif) ligand 1 (CXCL1) in serum were detected by electrochemiluminescence multifactorial method. The splenic phosphorylated (p)-JAK2 and p-STAT3 protein expressions were detected by Western blot. RESULTS: Compared with their respective control groups, the mean speed and active time were reduced (P<0.01, P<0.05, P<0.001) and the side immobility time was increased (P<0.001) in the open field test, serum IL-10 and CXCL1 levels were up-regulated (P<0.01, P<0.05, P<0.001), and splenic p-JAK2 protein expressions were down-regulated (P<0.05, P<0.01) in SD and α7nAchR knockout rats, and splenic p-STAT3 protein expression were down-regulated (P<0.05) in SD rats after LPS injection. Following taVNS intervention and in comparison with the model group , the mean speed and active time were increased (P<0.01) and the side immobility time was decreased (P<0.001) in the open field test, serum IL-10 and CXCL1 levels down-regulated (P<0.05), while splenic p-JAK2 and p-STAT3 protein expressions were up-regulated (P<0.01, P<0.001) in the SD taVNS group rather than in the α7 taVNS group. Compared with SD taVNS group, the α7 taVNS group showed increased (P<0.001, P<0.05) side immobility time in the open field test and serum IL-10, decreased splenic p-JAK2 and p-STAT3 protein expressions (P<0.01, P<0.05). CONCLUSION: taVNS may exert anti-inflammatory effects through modulating the splenic α7nAchR/JAK2/STAT3 signaling pathway, thereby ameliorating LPS-induced depressive-like behavior in rats.


Subject(s)
STAT3 Transcription Factor , Vagus Nerve Stimulation , Animals , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/genetics , Lipopolysaccharides/adverse effects , alpha7 Nicotinic Acetylcholine Receptor/genetics , Janus Kinase 2/genetics , Interleukin-10 , Signal Transduction
11.
Altern Ther Health Med ; 29(8): 704-709, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708538

ABSTRACT

Objective: Abundant angiogenesis in hepatocellular carcinoma (HCC) is critical in its malignant course; however, its mechanism is incompletely understood. Meanwhile, the corresponding roles of PIK3R6 molecules in HCC have not been investigated. This study aims to explore the intrinsic mechanism of PIK3R6 and provide theoretical reference for the treatment of hepatocellular carcinoma. Methods: Differential expressions of PIK in ovarian cancer and normal ones were detected by Western blotting and quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Analyze the relationship between the expression of PIK3R6 and patient prognosis through the TCGA database. Subsequently constructed corresponding stable cell lines, combined with transcriptome sequencing and several cell biology experiments, we explored the inner mechanism and clinical significance of PIK3R6. Results: By analyzing multiple cohorts, we found that high PIK3R6 expression in tumor tissues negatively correlates with patient prognosis. PIK3R6 could increase angiogenesis in HCC by boosting the activity of the STAT3 signalling pathway to hasten the malignant progression of the disease, according to corresponding cellular and molecular experimental studies. Then again, immunohistochemistry on a series of tissue chips confirmed the important clinical significance of PIK3R6-STAT3 regulatory axis. Couclusions: This study initially addressed the clinical significance of PIK3R6 and revealed its mechanism for promoting angiogenesis in hepatocellular carcinoma, providing a reliable working foundation for future in-depth research and clinical translation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Signal Transduction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
12.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3199-3206, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37382003

ABSTRACT

Based on the Janus kinase 2/signal transducer and activator of transcription 3(JAK2/STAT3) signaling pathway, this study investigated the effect of medicated serum of Sparganii Rhizoma(SR) and Curcumae Rhizoma(CR) on the proliferation, apoptosis, migration, and secretion of inflammatory factors of ectopic endometrial stromal cells(ESCs). Specifically, human ESCs were primary-cultured. The effect of different concentration(5%, 10%, 20%) of SR-, CR-, and SR-CR combination-medicated serum, and AG490 solution(50 µmol·L~(-1)) on the proliferation of ESCs was detected by methyl thiazolyl tetrazolium(MTT) assay, and the optimal dose was selected accordingly for further experiment. The cells were classified into normal serum(NS) group, SR group(10%), CR group(10%), combination(CM) group(10%), and AG490 group. The apoptosis level of ESCs was detected by flow cytometry, and the migration ability was examined by wound healing assay. The secretion of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α was determined by enzyme-linked immunosorbent assay(ELISA). The protein levels of cysteinyl aspartate specific protei-nase-3(caspase-3), B-cell lymphoma(Bcl-2), and Bcl-2-associated X protein(Bax) and the levels of phosphorylated(p)-JAK2 and p-STAT3 were detected by Western blot. The results showed that the viability of ESCs cells was lowered in the administration groups compared with the blank serum group(P<0.01), especially the 10% drug-medicated serum, which was selected for further experiment. The 10% SR-medicated serum, 10% CR-medicated serum, and 10% CM-medicated serum could increase the apoptosis rate(P<0.01), up-regulate the protein expression of caspase-3 and Bax in cells(P<0.05 or P<0.01), down-regulate the expression of Bcl-2(P<0.01), decrease the cell migration rate(P<0.05 or P<0.01), and reduce the secretion levels of IL-1ß, IL-6, and TNF-α(P<0.05 or P<0.01), and levels of p-JAK2 and p-STAT3(P<0.05 or P<0.01). Compared with the SR and CR groups, CM group showed low cell viability(P<0.01), high protein expression of caspase-3 and Bax(P<0.05 or P<0.01), and low protein expression of Bcl-2 and p-JAK2(P<0.05). After incubation with CM, the apoptosis rate was higher(P<0.05) and the migration rate was lower(P<0.01) than that of the CR group. The p-STAT3 protein level of CM group was lower than that of the RS group(P<0.05). The mechanism of SR, CR, and the combination underlying the improvement of endometriosis may be that they blocked JAK2/STAT3 signaling pathway, inhibited ESC proliferation, promoted apoptosis, weakened cell migration, and reduced the secretion of inflammatory factors. The effect of the combination was better than that of RS alone and CR alone.


Subject(s)
Interleukin-6 , Janus Kinase 2 , Female , Humans , Caspase 3 , bcl-2-Associated X Protein , Interleukin-6/genetics , Apoptosis , Signal Transduction , Cell Proliferation , STAT3 Transcription Factor/genetics
13.
Environ Res ; 233: 116458, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37348629

ABSTRACT

Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Cell Transformation, Neoplastic , Apoptosis , Cytokines/metabolism , Cell Proliferation , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
14.
Food Funct ; 14(10): 4807-4823, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37128963

ABSTRACT

Chinese chestnut shell is a by-product of chestnut food processing and is rich in polyphenols. This study sought to investigate the effect of chestnut shell polyphenol extract (CSP) on weight loss and lipid reduction in a 12-week high-fat diet (HFD)-induced murine obesity model. CSP (300 mg per kg body weight) was administered intragastrically daily. AG490, a JAK2 protein tyrosine kinase inhibitor, was also intraperitoneally injected. The results showed that an HFD induced leptin resistance (LR). Compared to corresponding values in the HFD group, CSP treatment improved blood lipid levels, weight, and leptin levels in obese mice (p < 0.01). Additionally, CSP treatment enhanced enzyme activity by improving total antioxidant capacity, attenuating oxidative stress, and reducing fat droplet accumulation and inflammation in the liver, epididymal, and retroperitoneal adipose tissue. CSP also activated the LEPR-JAK2/STAT3-PTP1B-SOCS-3 signal transduction pathway in hypothalamus tissue and improved LR while regulating the expression of proteins related to lipid metabolism (PPARγ, FAS, and LPL) in white adipose tissue in the retroperitoneal cavity. However, the amelioration of lipid metabolism by CSP was dependent on JAK2. Molecular docking simulation further demonstrated the strong binding affinity of procyanidin C1 (-10.3983297 kcal mol-1) and procyanidin B1 (-9.12686729 kcal mol-1) to the crystal structure of JAK2. These results suggest that CSP may be used to reduce HFD-induced obesity with potential application as a functional food additive.


Subject(s)
Diet, High-Fat , Leptin , Animals , Mice , Diet, High-Fat/adverse effects , Fagaceae , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leptin/metabolism , Lipids , Mice, Inbred C57BL , Molecular Docking Simulation , Nuts , Obesity/metabolism , Plant Extracts , Plant Structures , Polyphenols/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
15.
Am J Chin Med ; 51(2): 445-459, 2023.
Article in English | MEDLINE | ID: mdl-36891981

ABSTRACT

Dihydroartemisinin (DHA) has anticancer effects on multiple tumors, including those associated with breast cancer. This study aimed to investigate the mechanism causing DHA-reversing cisplatin (DDP) resistance in breast cancer. Relative mRNA and protein levels were tested using a qRT-PCR and western blot assay. Cell proliferation, viability, and apoptosis were evaluated using colony formation, MTT, and flow cytometry assays, respectively. Interaction of STAT3 and DDA1 was measured via a dual-luciferase reporter assay. The results showed that DDA1 and p-STAT3 levels were dramatically elevated in DDP-resistant cells. DHA treatment repressed proliferation and induced apoptosis of DDP-resistant cells by suppressing STAT3 phosphorylation; the inhibition ability was positively proportional to the DHA concentration. DDA1 knockdown inhibited cyclin expression, promoted G0/G1 phase arrest, restrained cell proliferation, and induced apoptosis of DDP-resistant cells. Furthermore, knockdown of STAT3 restrained proliferation and induced apoptosis and G0/G1 cell cycle arrest of DDP-resistant cells by targeting DDA1. DHA could restrain tumor proliferation of breast cancer via enhancing drug sensitivity of DDP-resistant cells through the STAT3/DDA1 signaling pathway.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , MicroRNAs , Ovarian Neoplasms , Female , Humans , Cisplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Signal Transduction/genetics , Cell Proliferation , Apoptosis/genetics , MicroRNAs/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
16.
Int J Radiat Oncol Biol Phys ; 115(3): 719-732, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36245124

ABSTRACT

PURPOSE: This study suggested that lenvatinib may incapacitate hepatocellular carcinoma (HCC) to radiation treatment by abrogating radiation-induced Src/signal transducer and the activator of transcription 3 signaling (STAT3)/nuclear factor-κB (NF-κB) to escalate radiation-induced extrinsic and intrinsic apoptosis. These findings uncover the role of targeting Src and its arbitrating epithelial-mesenchymal transition (EMT), which could increase the anti-HCC efficacy of radiation therapy (RT). Lenvatinib and sorafenib are multikinase inhibitors used to treat HCC. Lenvatinib is noninferior to sorafenib in the therapeutic response in HCC. However, whether lenvatinib intensifies the anti-HCC efficacy of RT is ambiguous. Several oncogenic kinases and transcription factors, such as Src, STAT3, and NF-κB, enhance the radiosensitivity of cancers. Therefore, we aimed to investigate the roles of the Src/STAT3/NF-κB axis in HCC after RT treatment and assessed whether targeting Src by lenvatinib may enhance the effectiveness of RT. METHODS AND MATERIALS: Hep3B, Huh7, HepG2, and SK-Hep1 HCC cells and 2 types of animal models were used to identify the efficacy of RT combined with lenvatinib. Cellular toxicity, apoptosis, DNA damage, EMT/metastasis regulation, and treatment efficacy were validated by colony formation, flow cytometry, Western blotting, and in vivo experiments, respectively. Knockdown of Src by siRNA was also used to validate the role of Src in RT treatment. RESULTS: Silencing Src reduced STAT3/NF-κB signaling and sensitized HCC to radiation. Lenvatinib reversed radiation-elicited Src/STAT3/NF-κB signaling while enhancing the anti-HCC efficacy of radiation. Both lenvatinib and siSrc promoted the radiation effect of cell proliferation on suppression, inhibition of the invasion ability, and induction of apoptosis in HCC. Lenvatinib also alleviated radiation-triggered oncogenic and EMT-related protein expression. CONCLUSIONS: Our findings uncovered the role of the Src/STAT3/NF-κB regulatory axis in response to radiation-induced toxicity and confirmed Src as the key regulatory molecule for radiosensitization of HCC evoked by lenvatinib.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/radiotherapy , NF-kappa B/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/radiotherapy , Sorafenib/pharmacology , Sorafenib/therapeutic use , Epithelial-Mesenchymal Transition , Negotiating , Apoptosis/radiation effects , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
17.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36512408

ABSTRACT

Leptin exerts its biological actions by activating the long-form leptin receptor (LepRb). LepRb signaling impairment and leptin resistance are believed to cause obesity. The transcription factor Slug - also known as Snai2 - recruits epigenetic modifiers and regulates gene expression by an epigenetic mechanism; however, its epigenetic action has not been explored in leptin resistance. Here, we uncover a proobesity function of neuronal Slug. Hypothalamic Slug was upregulated in obese mice. LepRb+ cell-specific Slug-knockout (SlugΔLepRb) mice were resistant to diet-induced obesity, type 2 diabetes, and liver steatosis and experienced decreased food intake and increased fat thermogenesis. Leptin stimulated hypothalamic Stat3 phosphorylation and weight loss to a markedly higher level in SlugΔLepRb than in Slugfl/fl mice, even before their body weight divergence. Conversely, hypothalamic LepRb+ neuron-specific overexpression of Slug, mediated by AAV-hSyn-DIO-Slug transduction, induced leptin resistance, obesity, and metabolic disorders in mice on a chow diet. At the genomic level, Slug bound to and repressed the LepRb promoter, thereby inhibiting LepRb transcription. Consistently, Slug deficiency decreased methylation of LepRb promoter H3K27, a repressive epigenetic mark, and increased LepRb mRNA levels in the hypothalamus. Collectively, these results unravel what we believe to be a previously unrecognized hypothalamic neuronal Slug/epigenetic reprogramming/leptin resistance axis that promotes energy imbalance, obesity, and metabolic disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Obesity , Receptors, Leptin , Snail Family Transcription Factors , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Hypothalamus/metabolism , Leptin/genetics , Leptin/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/genetics , Obesity/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
18.
Zhen Ci Yan Jiu ; 47(12): 1095-100, 2022 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-36571225

ABSTRACT

OBJECTIVE: To observe the effect of moxibustion on Janus protein tyrosine kinase 2/signal transducer and activator of transcription 3 (JAK2-STAT3) signal pathway and interleukin (IL)-1ß and IL-18 in synovial fluid of adjuvant arthritis (AA) rabbits, so as to explore the mechanism of moxibustion in the treatment of rheumatoid arthritis. METHODS: Twenty-eight rabbits were randomized into control, model, moxibustion, and NLRP3 overexpression groups, with 7 rabbits in each group. AA rabbit model was established by injection of Freund's complete adjuvant (FCA, 0.5 mL/kg) into the rabbits' bilateral hind-knee joint cavities. On the third day after modeling, the NLRP3 lentiviral vector (40 µL) were injected into the bilateral hind-knee joint cavities of rabbits in NLRP3 overexpression group. Moxibustion was used to bilateral "Shenshu" (BL23) and "Zusanli" (ST36), 5 cones every time, once daily, 6 days a week for 3 weeks in the moxibustion and NLRP3 overexpression groups. The perimeters of rabbits' hind legs were measured after modeling and after the intervention. The contents of IL-1ß, IL-18 in synovial fluid were detected by ELISA and the expression levels of NLRP3, JAK2 and STAT3 mRNAs in synovial tissue were detected by real-time PCR. RESULTS: In comparison with the control group, the perimeters of bilateral knee joints were significantly increased at each time point (P<0.05),and the contents of IL-1ß, IL-18 in synovial fluid and the expression levels of NLRP3, JAK2, STAT3 mRNA in synovial tissue were significantly increased (P<0.05) in the model group. Compared with the model group, the perimeters of bilateral knee joints were significantly decreased (P<0.05), and the contents of IL-1ß, IL-18 in synovial fluid and the expression levels of NLRP3, JAK2, STAT3 mRNAs in synovial tissue were significantly decreased (P<0.05) in the moxibusion group. Compared with the moxibustion group, the above indexes were higher in the NLRP3 overexpression group (P<0.05). CONCLUSION: Moxibustion may play an anti-inflammatory and detumescent role in AA rabbits by regulating JAK2-STAT3 signal pathway, and its therapeutic effect may be closely related to the expression of NLRP3.


Subject(s)
Arthritis, Experimental , Moxibustion , Animals , Rabbits , Freund's Adjuvant , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Signal Transduction , STAT3 Transcription Factor/genetics
19.
Gut Microbes ; 14(1): 2120744, 2022.
Article in English | MEDLINE | ID: mdl-36067404

ABSTRACT

Intestinal metaplasia (IM) is the inevitable precancerous stage to develop intestinal-type gastric cancer (GC). Deoxycholic acid (DCA) is the main bile acid (BA) component of duodenogastric reflux and has shown an increased concentration during the transition from chronic gastritis to IM associated with continued STAT3 activation. However, the mechanisms underlying how DCA facilitates IM in the gastric epithelium need exploration. We evaluated IM and bile reflux in corpus tissues from 161 subjects undergoing GC screening. Cell survival and proliferation, proinflammatory cytokine expression and TGR5/STAT3/KLF5 axis activity were measured in normal human gastric cells, cancer cells, and organoid lines derived from C57BL/6, FVB/N and insulin-gastrin (INS-GAS) mice treated with DCA. The effects of DCA on IM development were determined in INS-GAS mice with long-term DCA supplementation, after which the gastric bacterial and BA metabolic profiles were measured by 16S rRNA gene sequencing and LC-MS. We revealed a BA-triggered TGR5/STAT3/KLF5 pathway in human gastric IM tissues. In gastric epithelial cells, DCA promoted proliferation and apoptotic resistance, upregulated proinflammatory cytokines and IM markers, and facilitated STAT3 phosphorylation, nuclear accumulation and DNA binding to the KLF5 promoter. DCA triggered STAT3 signaling and the downstream IM marker KLF5 in mouse gastric organoids in vitro and in vivo. In INS-GAS mice, DCA promoted the accumulation of serum total BAs and accelerated the stepwise development of gastric IM and dysplasia. DCA induced gastric environmental alterations involving abnormal BA metabolism and microbial dysbiosis, in which the Gemmobacter and Lactobacillus genera were specifically enriched. Lactobacillus genus enrichment was positively correlated with increased levels of GCA, CA, T-α-MCA, TCA and ß-MCA in DCA-administrated INS-GAS mice. DCA promotes nuclear STAT3 phosphorylation, which mediates KLF5 upregulation associated with gastric inflammation and IM development. DCA disturbs the gastric microbiome and BA metabolism homeostasis during IM induction.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Precancerous Conditions , Animals , Bile Acids and Salts , Deoxycholic Acid/toxicity , Humans , Metaplasia/chemically induced , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
20.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35956786

ABSTRACT

Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.


Subject(s)
Antineoplastic Agents , Oils, Volatile , Pinus , Plant Oils , Prostatic Neoplasms , STAT3 Transcription Factor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cell Proliferation , Glutathione/metabolism , Humans , Male , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oxidative Stress , Pinus/metabolism , Plant Oils/pharmacology , Plant Oils/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL