Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.120
Filter
Add more filters

Publication year range
1.
Drug Des Devel Ther ; 18: 1199-1219, 2024.
Article in English | MEDLINE | ID: mdl-38645989

ABSTRACT

Aim: Scutellaria baicalensis, a traditional Chinese medicinal herb renowned for its anti-inflammatory, antioxidant, and anti-tumor properties, has shown promise in alleviating cognitive impairment associated with Alzheimer's disease. Nonetheless, the exact neuroprotective mechanism of Scutellaria baicalensis against Alzheimer's disease remains unclear. In this study, network pharmacology was employed to explore the possible mechanisms by which Scutellaria baicalensis protects against Alzheimer's disease. Methods: The active compounds of Scutellaria baicalensis were retrieved from the TCMSP database, and their corresponding targets were identified. Alzheimer's disease-related targets were obtained through searches in the GeneCards and OMIM databases. Cytoscape 3.6.0 software was utilized to construct a regulatory network illustrating the "active ingredient-target" relationships. Subsequently, the target genes affected by Scutellaria baicalensis in the context of Alzheimer's disease were input into the String database to establish a PPI network. GO analysis and KEGG analysis were conducted using the DAVID database to predict the potential pathways associated with these key targets. Following this, the capacity of these active ingredients to bind to core targets was confirmed through molecular docking. In vitro experiments were then carried out for further validation. Results: A total of 36 active ingredients from Scutellaria baicalensis were screened out, which corresponded to 365 targets. Molecular docking results demonstrated the robust binding abilities of Baicalein, Wogonin, and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to key target proteins (SRC, PIK3R1, and STAT3). In vitro experiments showed that the active components of Scutellaria baicalensis can inhibit STAT3 expression by downregulating the PIK3R1/SRC pathway in Neuro 2A cells. Conclusion: In summary, these findings collectively suggest that Scutellaria baicalensis holds promise as a viable treatment option for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Molecular Docking Simulation , Network Pharmacology , Scutellaria baicalensis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Scutellaria baicalensis/chemistry , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Plant Extracts/pharmacology , Plant Extracts/chemistry
2.
Phytomedicine ; 128: 155497, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640855

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE: This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90ß-STAT3-PD-L1 axis activity. METHODS: We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90ß (HSP90ß) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS: We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90ß's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90ß-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION: Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.


Subject(s)
Bufanolides , Colorectal Neoplasms , HSP90 Heat-Shock Proteins , STAT3 Transcription Factor , Xenograft Model Antitumor Assays , Bufanolides/pharmacology , Animals , Colorectal Neoplasms/drug therapy , Humans , Mice , STAT3 Transcription Factor/metabolism , T-Lymphocytes/drug effects , Cell Line, Tumor , B7-H1 Antigen , Mice, Nude , Mice, Inbred BALB C , Amphibian Venoms/pharmacology , Female
3.
Biomed Pharmacother ; 174: 116597, 2024 May.
Article in English | MEDLINE | ID: mdl-38643544

ABSTRACT

Zhen-Wu-Tang (ZWT), a conventional herbal mixture, has been recommended for treating lupus nephritis (LN) in clinic. However, its mechanisms of action remain unknown. Here we aimed to define the immunological mechanisms underlying the effects of ZWT on LN and to determine whether it affects renal tissue-resident memory T (TRM) cells. Murine LN was induced by a single injection of pristane, while in vitro TRM cells differentiated with IL-15/TGF-ß. We found that ZWT or mycophenolate mofetil treatment significantly ameliorated kidney injury in LN mice by decreasing 24-h urine protein, Scr and anti-dsDNA Ab. ZWT also improved renal pathology and decreased IgG and C3 depositions. In addition, ZWT down-regulated renal Desmin expression. Moreover, it lowered the numbers of CD8+ TRM cells in kidney of mice with LN while decreasing their expression of TNF-α and IFN-γ. Consistent with in vivo results, ZWT-containing serum inhibited TRM cell differentiation induced by IL-15/TGF-ß in vitro. Mechanistically, it suppressed phosphorylation of STAT3 and CD122 (IL2/IL-15Rß)expression in CD8+ TRM cells. Importantly, ZWT reduced the number of total F4/80+CD11b+ and CD86+, but not CD206+, macrophages in the kidney of LN mice. Interestingly, ZWT suppressed IL-15 protein expression in macrophages in vivo and in vitro. Thus, we have provided the first evidence that ZWT decoction can be used to improve the outcome of LN by reducing CD8+ TRM cells via inhibition of IL-15/IL-15R /STAT3 signaling.


Subject(s)
CD8-Positive T-Lymphocytes , Drugs, Chinese Herbal , Interleukin-15 , Kidney , Lupus Nephritis , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Interleukin-15/metabolism , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Mice , Signal Transduction/drug effects , Female , Mice, Inbred C57BL , Memory T Cells/drug effects , Memory T Cells/immunology , Memory T Cells/metabolism , Cell Differentiation/drug effects
4.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
5.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38631488

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Subject(s)
Autophagy , Chemical and Drug Induced Liver Injury , Cinnamates , Depsides , Janus Kinase 2 , Lysosomes , Rosmarinic Acid , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Mice , Autophagy/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Cinnamates/pharmacology , Depsides/pharmacology , Drugs, Chinese Herbal/pharmacology , Janus Kinase 2/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lysosomes/drug effects , Lysosomes/metabolism , Mice, Inbred BALB C , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
6.
Phytomedicine ; 129: 155555, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579641

ABSTRACT

BACKGROUND: Ischemic stroke is a leading cause of death and long-term disability worldwide. Studies have suggested that cerebral ischemia induces massive mitochondrial damage. Valerianic acid A (VaA) is the main active ingredient of valerianic acid with neuroprotective activity. PURPOSE: This study aimed to investigate the neuroprotective effects of VaA with ischemic stroke and explore the underlying mechanisms. METHOD: In this study, we established the oxygen-glucose deprivation and reperfusion (OGD/R) cell model and the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model in vitro and in vivo. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of VaA in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP), and activities of NAD+ were detected to reflect mitochondrial function. Mechanistically, gene knockout experiments, transfection experiments, immunofluorescence, DARTS, and molecular dynamics simulation experiments showed that VaA bound to IDO1 regulated the kynurenine pathway of tryptophan metabolism and prevented Stat3 dephosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. RESULTS: We showed that VaA decreased the infarct volume in a dose-dependent manner and exerted neuroprotective effects against reperfusion injury. Furthermore, VaA promoted Opa1-related mitochondrial fusion and reversed neuronal mitochondrial damage and loss after reperfusion injury. In SH-SY5Y cells, VaA (5, 10, 20 µM) exerted similar protective effects against OGD/R-induced injury. We then examined the expression of significant enzymes regulating the kynurenine (Kyn) pathway of the ipsilateral brain tissue of the ischemic stroke rat model, and these enzymes may play essential roles in ischemic stroke. Furthermore, we found that VaA can bind to the initial rate-limiting enzyme IDO1 in the Kyn pathway and prevent Stat3 phosphorylation, promoting Stat3 activation and subsequent transcription of the mitochondrial fusion-related gene Opa1. Using in vivo IDO1 knockdown and in vitro IDO1 overexpressing models, we demonstrated that the promoted mitochondrial fusion and neuroprotective effects of VaA were IDO1-dependent. CONCLUSION: VaA administration improved neurological function by promoting mitochondrial fusion through the IDO1-mediated Stat3-Opa1 pathway, indicating its potential as a therapeutic drug for ischemic stroke.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Neuroprotective Agents , Rats, Sprague-Dawley , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Neuroprotective Agents/pharmacology , Male , Signal Transduction/drug effects , Rats , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mitochondrial Dynamics/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Reperfusion Injury/drug therapy , Membrane Potential, Mitochondrial/drug effects , Kynurenine/metabolism , Ischemic Stroke/drug therapy , Triterpenes/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism
7.
J Ethnopharmacol ; 329: 118138, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565410

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Phoenix dactylifera L. (date palm) seed is widely used in Arabian traditional medicine to alleviate several health problems including inflammatory conditions. The herbal tea of date palm seed has been consumed by rheumatoid patients to relief their symptoms. AIM OF THE STUDY: The purpose of this study was to investigate the claimed beneficial use of P. dactylifera L. (Sewy variety) seed (PDS) in the treatment of rheumatoid arthritis (RA) and its mechanism of action as well as to study its phytoconstituents. MATERIALS AND METHODS: The anti-inflammatory and anti-oxidative properties of the non-polar and the polar extracts of PDS were studied using Complete Freund's adjuvant (CFA)-induced arthritis rat model. Paw edema, body weight, total nitrate/nitrite NOX content and cytokine markers were evaluated to monitor the progress of arthritis. Also, histological examination and thermal analysis were conducted. The phytoconstituent profiles of non-polar and polar extracts of PDS were investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The multiple reactions monitoring mode (MRM) of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to quantify phenolic phytoconstituents in both extracts. RESULTS: According to the findings, the polar and non-polar PDS extracts kept body weight comparable to those of healthy individuals while considerably lowering paw swelling, edema, and neutrophil infiltration. It also reduced the levels of Nuclear Factor Kappa B (NF-κB), Tumor Necrosis Factor Alpha (TNF-α), Interleukin 22, Interleukin 23, Interferon (IFN), Interleukin 17, Interleukin 1ß, Interleukin 6, Interleukin 36, Janus Kinase 1 (JAK1), and Signal Transducer and Activator of Transcription 3 (STAT3). They also reduced the degenerative alterations caused by RA. Thermal research gave additional support for these findings. 83 phytoconstituents were identified in the non-polar PDS extract and 86 phytoconstituents were identified in the polar PDS extract. 74 of the identified phytoconstituents were common in both extracts. 33 phytoconstituents were identified here from P. dactylifera for the first time as far as we know. In MRM-LC-ESI-MS/MS analysis, the major phenolics in both extracts were chlorogenic acid, naringenin, and vanillin. Catechin was only detected in the non-polar PDS extract. On the other hand, apigenin, kaempferol, and hesperetin were only detected in the polar PDS extract. Generally, the polar PDS extract showed higher concentrations of the identified phenolics than the non-polar extract. CONCLUSIONS: The PDS extracts especially the non-polar extract showed significant anti-inflammatory and anti-oxidative properties in the CFA-induced arthritis rat model. PDS might be used to produce RA medicines.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Cytokines , Freund's Adjuvant , Janus Kinase 1 , Phoeniceae , Plant Extracts , STAT3 Transcription Factor , Seeds , Animals , Phoeniceae/chemistry , STAT3 Transcription Factor/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Janus Kinase 1/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Seeds/chemistry , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/isolation & purification , Rats , Phytochemicals/analysis , Phytochemicals/pharmacology , Signal Transduction/drug effects , Rats, Wistar , Rats, Sprague-Dawley , Antioxidants/pharmacology
8.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658095

ABSTRACT

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Subject(s)
Anthraquinones , Cell Proliferation , Colorectal Neoplasms , Doublecortin-Like Kinases , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Mice , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Anthraquinones/pharmacology , Cell Line, Tumor , Drug Repositioning , Apoptosis/drug effects , Cell Movement/drug effects , Mice, Inbred BALB C , Mice, Nude
9.
Toxicol Lett ; 394: 102-113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460807

ABSTRACT

Toosendanin (TSN) is the main active component in the traditional herb Melia toosendan Siebold & Zucc, which exhibits promising potential for development due to its diverse pharmacological properties. However, the hepatotoxicity associated with TSN needs further investigation. Previous research has implicated autophagy dysregulation in TSN-induced hepatotoxicity, yet the underlying mechanisms remain elusive. In this study, the mechanisms of signal transducer and activator of transcription 3 (STAT3) in TSN-induced autophagy inhibition and liver injury were explored using Stat3 knockout C57BL/6 mice and HepG2 cells. TSN decreased cell viability, increased lactate dehydrogenase (LDH) production in vitro, and elevated serum aspartate transaminase (AST) and alanine aminotransferase (ALT) levels as well as liver lesions in vivo, suggesting TSN had significant hepatotoxicity. TSN inhibited Janus kinase 2 (JAK2)/STAT3 pathway and the expression of cathepsin C (CTSC). Inhibition of STAT3 exacerbated TSN-induced autophagy inhibition and hepatic injury, whereas activation of STAT3 attenuated these effects of TSN. Mechanistically, STAT3 transcriptionally regulated the level of CTSC gene, which in turn affected autophagy and the process of liver injury. TSN-administered Stat3 knockout mice showed more severe hepatotoxicity, CTSC downregulation, and autophagy blockade than wildtype mice. In summary, TSN caused hepatotoxicity by inhibiting STAT3/CTSC axis-dependent autophagy and lysosomal function.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Triterpenes , Animals , Mice , STAT3 Transcription Factor/metabolism , Cathepsin C/metabolism , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Autophagy
10.
Redox Biol ; 71: 103124, 2024 May.
Article in English | MEDLINE | ID: mdl-38503216

ABSTRACT

OBJECTIVE: Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS: We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-ß-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION: Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.


Subject(s)
Cardiovascular Diseases , Cysteine , Mice , Animals , Cysteine/metabolism , Myocytes, Cardiac/metabolism , Sulfur Dioxide/pharmacology , Cardiovascular Diseases/metabolism , STAT3 Transcription Factor/metabolism , Epigenesis, Genetic , DNA/metabolism , Cellular Senescence
11.
Biochem Biophys Res Commun ; 706: 149758, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484571

ABSTRACT

Byakangelicin mostly obtained from the root of Angelica dahurica and has protective effect on liver injury and fibrosis. In addition, Byakangelicin, as a traditional medicine, is also used to treat colds, headache and toothache. Recent studies have shown that Byakangelicin exhibits anti-tumor function; however, the role of Byakangelicin in breast tumor progression and related mechanism has not yet been elucidated. Our study aims to investigate the role of Byakangelicin in breast tumor progression and the underlying mechanism. To measure the effect of Byakangelicin on JAK2/STAT3 signaling, a dual luciferase reporter assay and a Western blot assay were performed. CCK8, colony formation, apoptosis and cell invasion assays were used to examine the inhibitory potential of Byakangelicin on breast cancer cells. Additionally, SHP-1 was silenced by specific siRNA duplex and the function of SHP-1 on Byakangelicin-mediated inhibition of JAK2/STAT3 signaling was evaluated. Byakangelicin treatment significantly inhibited STAT3 transcriptional activity. In addition, Byakangelicin treatment blocked JAK2/STAT3 signaling in a dose-dependent manner. Byakangelicin-treated tumor cells showed a dramatically reduced proliferation, colony formation and invasion ability. Moreover, Byakangelicin remarkedly induced breast cancer cell apoptosis. Furthermore, Byakangelicin regulated the expression of SHP1.In conclusion, our current study indicated that Byakangelicin, a natural compound, inhibits SHP-1/JAK2/STAT3 signaling and thus blocks tumor growth and motility.


Subject(s)
Breast Neoplasms , Furocoumarins , Signal Transduction , Humans , Female , Cell Line, Tumor , Cell Proliferation , Apoptosis , Breast Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism
12.
Phytomedicine ; 128: 155490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460358

ABSTRACT

BACKGROUND: Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Rubiaceae) is widely used to treat respiratory diseases in China. Strictosamide is its main active component and has significant anti-inflammatory activity. However, the effects and molecular mechanisms of strictosamide in the treatment of acute lung injury (ALI) remain largely unknown. PURPOSE: This study aimed to examine the regulatory effects of strictosamide on T helper 17 cells (Th17 cells)/Regulatory T cells (Treg cells) and gut microbiota in ALI-affected mice. MATERIALS AND METHODS: The ALI model was induced using lipopolysaccharide (LPS) intraperitoneal injection. Hematoxylin-eosin (H&E) staining, the number of inflammatory cells in broncho-alveolar lavage fluid (BALF), the Wet/Dry (W/D) ratio, and myeloperoxidase (MPO) activity were utilized as evaluation indices for the therapeutic efficacy of strictosamide on ALI. Flow cytometry (FCM), enzyme-linked immune sorbent assay (ELISA), quantitative reverse transcription polymerase chain reaction (qRT-PCR), and western blotting were used to determine the regulation of strictosamide on the Th17/Treg cells and the STAT3/STAT5 signaling pathway. The analysis of gut microbiota was conducted using 16S rDNA sequencing. The verification of the relationship between the gut microbiome and immune function was conducted using Spearman analysis. RESULTS: Strictosamide attenuated inflammation on ALI induced by LPS, which reduced the levels of Th17-related factors interleukin (IL)-6 and IL-17 and increased Treg-related factors IL-10 and transforming growth factor (TGF)-ß. In the spleens and whole blood, strictosamide reduced the proportion of Th17 cells and increased the proportion of Treg cells. Furthermore, strictosamide increased Forkhead/winged helix transcription factor 3 (Foxp3) and p-STAT5 protein expression while inhibiting Retinoid-related orphan nuclear receptors-γt (RORγt) and p-STAT3 expression. Moreover, strictosamide reshaped the diversity and structure of the gut microbiota, and influence the associations between immune parameters and gut microbiota in ALI mice. CONCLUSIONS: In summary, the results of the current investigation showed that strictosamide has a therapeutic impact on LPS-induced ALI. The mechanism of action of this effect may be associated with the modulation of Th17 and Treg cells differentiation via the SATA signaling pathway, as well as the impact of the gut microbiota.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Lipopolysaccharides , STAT3 Transcription Factor , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Acute Lung Injury/drug therapy , T-Lymphocytes, Regulatory/drug effects , Gastrointestinal Microbiome/drug effects , Th17 Cells/drug effects , Male , Mice , STAT3 Transcription Factor/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology
13.
Phytomedicine ; 128: 155316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518635

ABSTRACT

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Subject(s)
Cell Movement , Cell Proliferation , Janus Kinase 2 , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Stilbenes , Stomach Neoplasms , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stilbenes/pharmacology , Animals , Humans , Cell Proliferation/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Cell Cycle Checkpoints/drug effects , Network Pharmacology , Male , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects
14.
Phytomedicine ; 128: 155319, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518637

ABSTRACT

BACKGROUND: Myocardial infarction (MI) is one of the most deadly diseases in the world. Hyperoside (Hyp) has been shown to have a protective effect on cardiovascular function through various signaling pathways, but whether it can protect myocardial infarction by regulating JAK2/STAT3 signaling pathway is unknown. AIM OF THE STUDY: To investigate whether Hyp could protect the heart against myocardial infarction injury in mice by modulating JAK2/STAT3 signaling pathway and its potential mechanism. METHODS: In vivo experiments, the myocardial infarction model was established by ligating the left anterior descending coronary artery (LAD) of male C57BL/6 mice permanently. The mice were divided into seven groups: sham group, MI group, MI+Hyp (9 mg/kg), MI+Hyp (18 mg/kg) group, MI+Hyp (36 mg/kg) group, MI+Captopril group (15 mg/kg) group and MI+Hyp (36 mg/kg)+AG490 (7.5 mg/kg) group. Each group of animals were given different concentrations of hyperoside, positive control drug or inhibitor of JAK2/STAT3 singaling. After 14 days of administration, the electrocardiogram (ECG), echocardiography and serum myocardial injury markers were examined; Slices of mouse myocardial tissue were assessed for histopathological changes by HE, Masson and Sirius Red staining. TTC and TUNEL staining were used to evaluate the myocardial infarction area and cardiomyocytes apoptosis respectively. The expression of JAK2/STAT3 signaling pathway, apoptosis and autophagy-related proteins were detected by western blot. In vitro experiments, rat H9c2 cardiomyocytes were deprived of oxygen and glucose (OGD) to stimulate myocardial ischemia. The experiment was divided into seven groups: Control group, OGD group, OGD+Hyp (20 µM) group, OGD+Hyp (40 µM) group, OGD+Hyp (80 µM), OGD+Captopril (10 µM) group and OGD+Hyp (80 µM)+AG490 (100 µM) group. Myocardial cell damage and redox index were measured 12 h after OGD treatment. ROS content in cardiomyocytes was detected by immunofluorescence. Cardiomyocytes apoptosis was detected by flow cytometry. The expressions of JAK2/STAT3 signaling pathway-related proteins, apoptosis and autophagy related proteins were detected by western blot. RESULTS: In vivo, hyperoside could ameolirate ECG abnormality, increase cardiac function, reduce myocardial infarction size and significantly reduce myocardial fibrosis level and oxidation level. The experimental results in vitro showed that Hyp could reduce the ROS content in cardiomyocytes, decrease the level of oxidative stress and counteract the apoptosis induced by OGD injury . Both in vivo and in vitro experiments showed that hyperoside could increase phosphorylated JAK2 and STAT3, indicating that hyperoside could play a cardioprotective role by activating JAK2/STAT3 signaling pathway. It was also shown that hyperoside could increase the autophagy level of cardiomyocytes in vivo and in vitro. However the cardiomyocyte-protective effect of Hyp was abolished in combination with JAK2/ STAT3 signaling pathway inhibitor AG490. These results indicated that the protective effect of Hyp on cardiomyocyte injury was at least partially achieved through the activation of the JAK2/STAT3 signaling pathway. CONCLUSION: Hyp can significantly improve cardiac function, ameliorate myocardial hypertrophy and myocardial remodeling in MI mice. The mechanism may be related to improving mitochondrial autophagy of cardiomyocytes to maintain the advantage of autophagy, and blocking apoptosis pathway through phagocytosis, thus suppressing apoptosis level of cardiomyocytes. These effects of Hyp are achieved, at least in part, by activating the JAK2/STAT3 signaling pathway.


Subject(s)
Janus Kinase 2 , Mice, Inbred C57BL , Myocardial Infarction , Myocytes, Cardiac , Quercetin , Quercetin/analogs & derivatives , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Myocardial Infarction/drug therapy , Male , Myocytes, Cardiac/drug effects , Signal Transduction/drug effects , Quercetin/pharmacology , Mice , Apoptosis/drug effects , Disease Models, Animal , Rats , Tyrphostins/pharmacology , Reactive Oxygen Species/metabolism
15.
Phytomedicine ; 128: 155397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547623

ABSTRACT

BACKGROUND: Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE: To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN: The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS: The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS: In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION: XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , STAT3 Transcription Factor , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , STAT3 Transcription Factor/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Male , Phosphorylation/drug effects , Lipopolysaccharides , MAP Kinase Signaling System/drug effects , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Network Pharmacology , Signal Transduction/drug effects
16.
Phytomedicine ; 128: 155518, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552431

ABSTRACT

BACKGROUND: Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE: The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN: The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS: 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1ß, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1ß and p-NF-κB p65 levels was assessed. RESULTS: 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION: Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.


Subject(s)
Alzheimer Disease , Benzyl Alcohols , Disease Models, Animal , Glucosides , Mice, Inbred C57BL , Microglia , NF-kappa B , Neuroinflammatory Diseases , TNF Receptor-Associated Factor 6 , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Benzyl Alcohols/pharmacology , Glucosides/pharmacology , TNF Receptor-Associated Factor 6/metabolism , Microglia/drug effects , Microglia/metabolism , NF-kappa B/metabolism , Alzheimer Disease/drug therapy , Mice , Neuroinflammatory Diseases/drug therapy , Male , Neuroprotective Agents/pharmacology , Gastrodia/chemistry , Signal Transduction/drug effects , Lipopolysaccharides , STAT3 Transcription Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Cell Line , Phosphorylation/drug effects , Anti-Inflammatory Agents/pharmacology
17.
Fitoterapia ; 175: 105927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548028

ABSTRACT

STAT3 is a crucial member within a family of seven essential transcription factors. Elevated STAT3 levels have been identified in various cancer types, notably in breast cancer (BC). Consequently, inhibiting STAT3 is recognized as a promising and effective strategy for therapeutic intervention against breast cancer. We herein synthesize a library of isoxazole (PAIs) from piperic acid [2E, 4E)-5-(2H-1,3-Benzodioxol-5-yl) penta-2,4-dienoic acid] on treatment with propargyl bromide followed by oxime under prescribed reaction conditions. Piperic acid was obtained by hydrolysis of piperine extracted from Piper nigrum. First, we checked the binding potential of isoxazole derivatives with breast cancer target proteins by network pharmacology, molecular docking, molecular dynamic (MD) simulation and cytotoxicity analysis as potential anti-breast cancer (BC) agents. The multi-source databases were used to identify possible targets for isoxazole derivatives. A network of protein-protein interactions (PPIs) was generated by obtaining 877 target genes that overlapped gene symbols associated with isoxazole derivatives and BC. Molecular docking and MD modelling demonstrated a strong affinity between isoxazole derivatives and essential target genes. Further, the cell viability studies of isoxazole derivatives on the human breast carcinoma cell lines showed toxicity in all breast cancer cell lines. In summary, our study indicated that the isoxazole derivative showed the significant anticancer activity. The results highlight the prospective utility of isoxazole derivatives as new drug candidates for anticancer chemotherapy, suggesting route for the continued exploration and development of drugs suitable for clinical applications.


Subject(s)
Fatty Acids, Unsaturated , Isoxazoles , Molecular Docking Simulation , STAT3 Transcription Factor , Triple Negative Breast Neoplasms , Humans , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/drug therapy , Isoxazoles/pharmacology , Isoxazoles/chemistry , Cell Line, Tumor , Molecular Structure , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/isolation & purification , Fatty Acids, Unsaturated/chemistry , Network Pharmacology , Molecular Dynamics Simulation , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification
18.
Chem Biol Interact ; 394: 110972, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38555047

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by complex clinical symptoms and multi-organ damage. One of the most prevalent complications of SLE is lupus nephritis (LN). Rutin, a natural flavonoid compound found in various plants used in traditional Chinese medicine, has shown promising anti-inflammatory, antioxidant, and renal protective effects. In our study, we treated MRL/lpr mice, a model known for spontaneously developing LN, with Rutin. Our findings reveal that Rutin markedly reduced serum cytokine and autoantibody levels and decreased inflammatory cell infiltration in renal tissues, thereby ameliorating kidney pathology. In vitro experiments indicated that Rutin's therapeutic effect on LN is linked to its significant reduction of oxidative stress in T cells. Further investigations suggest that Rutin enhances oxidative stress management through the modulation of Peroxisome proliferator-activated receptor gamma (PPARγ). We observed that Rutin modulates PPARγ activity, leading to reduced transcriptional activity of NF-κB and STAT3, which in turn inhibits the secretion of inflammatory cytokines such as IL-6, TNF-α, and IL-17. In summary, Rutin can exert an antioxidant effect by regulating PPARγ and shows therapeutic action against LN.


Subject(s)
Lupus Nephritis , Mice, Inbred MRL lpr , NF-kappa B , Oxidative Stress , PPAR gamma , Rutin , T-Lymphocytes , Rutin/pharmacology , Rutin/therapeutic use , Animals , PPAR gamma/metabolism , Oxidative Stress/drug effects , Lupus Nephritis/drug therapy , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Mice , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , NF-kappa B/metabolism , Female , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Antioxidants/pharmacology
19.
Phytomedicine ; 129: 155563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552377

ABSTRACT

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Catechin , Diet, High-Fat , Janus Kinase 2 , Mice, Inbred C57BL , STAT3 Transcription Factor , Animals , Catechin/pharmacology , Catechin/analogs & derivatives , Mice , STAT3 Transcription Factor/metabolism , Adipogenesis/drug effects , Janus Kinase 2/metabolism , Adipocytes/drug effects , Male , Mitosis/drug effects , Cell Differentiation/drug effects , Obesity/drug therapy , PPAR gamma/metabolism , Lipid Metabolism/drug effects , Signal Transduction/drug effects
20.
Phytomedicine ; 128: 155501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471318

ABSTRACT

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Subject(s)
Bone Resorption , Cell Differentiation , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoblasts , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoclasts/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Osteoporosis/drug therapy , Osteoblasts/drug effects , Female , RAW 264.7 Cells , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Ovariectomy , RANK Ligand , Rats , Osteogenesis/drug effects , Disease Models, Animal , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL