Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
Add more filters

Publication year range
1.
Sci Rep ; 14(1): 7679, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561368

ABSTRACT

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Subject(s)
Saccharum , Seedlings , Plant Roots/chemistry , Plant Weeds/physiology , Allelopathy , Plant Extracts/chemistry
2.
Biomolecules ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397470

ABSTRACT

Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as ß-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.


Subject(s)
Saccharum , Humans , Saccharum/metabolism , Caco-2 Cells , Antihypertensive Agents/pharmacology , alpha-Glucosidases/metabolism , Spectroscopy, Fourier Transform Infrared , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Sugars , Lipids , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
Sci Rep ; 14(1): 4717, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413655

ABSTRACT

Aluminum (Al) inhibits growth and limits plant productivity in acidic soils. An important strategy to increase Al tolerance is the use of silicon (Si) nutrition. Thus, the aim of this study was to evaluate the interactive role of Si in increasing the growth, physiological and morphoanatomy responses of sugarcane plants under Al toxicity. A 4 × 2 factorial scheme in a completely randomized design was used to study the impact of Si (2 mM) on attenuating Al toxicity (0, 10, 15 and 20 mg L-1, as Al2(SO4)3·18H2O) in sugarcane seedlings. After 45 days, Al toxicity affected sugarcane growth by increasing Al uptake and accumulation, modifying root growth, thickness, and morphoanatomy, and decreasing pigment content, gas exchange parameters, and the number of adaxial and abaxial stomata. However, Si attenuated Al toxicity in the sugarcane seedlings by limiting Al uptake and transport to the shoots, causing positive changes in root morphoanatomy, higher pigment content, improving gas exchange parameters, thereby increased growth. Furthermore, cultivar 'CTC9003' showed beneficial impacts from Si supplementation than 'CTC9002', especially under Al toxicity. The findings of this study suggest that Si plays a notable role in improving anatomical and physiological aspects, particularly the growth of sugarcane seedlings under Al toxicity.


Subject(s)
Saccharum , Silicon , Silicon/pharmacology , Aluminum/toxicity , Photosynthesis , Plants , Seedlings , Plant Roots
4.
J Food Sci ; 89(4): 2232-2248, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380698

ABSTRACT

Sugarcane juice is a popular beverage and is also processed to produce sugar. The polyphenol oxidase (PPO) in sugarcane juice causes enzymatic browning and makes the process of sugar production complex and cumbersome. Storage of sugarcane juice is also hampered by the high sugar content and rapid microbial fermentation. The present research assessed the potential of lemon juice (LJ) and ginger extract (GE) as natural inhibitors of PPO. Enzyme kinetics and the mechanism of inhibition of LJ and GE were studied. Primary investigation was carried out using molecular docking approach to assess the inhibitory potential of LJ and GE and to determine the nature of interaction between the enzyme and inhibitors. Extracts were used as inhibitors and studies revealed that both reduced the PPO activity. Subsequently, pure bioactive inhibitors such as ascorbic acid, citric acid, and 6-shogaol present in these natural extracts were used to study the mode of inhibition of PPO. Citric acid decreased PPO activity by lowering pH, while ascorbic acid was found to be a competitive inhibitor of PPO with a Ki of 75.69 µM. The proportion of LJ and GE required in sugarcane juice was optimized on the basis of browning index and sensory acceptance. Further, the sugarcane cane juice after inhibition of PPO under optimized conditions was spray dried and evaluated for reconstitution properties. The product formulated in the present study is a new and effective approach to address quality-compromising issues associated with long-term storage of cane juice.


Subject(s)
Saccharum , Saccharum/chemistry , Catechol Oxidase/chemistry , Molecular Docking Simulation , Ascorbic Acid , Sugars , Citric Acid
5.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980713

ABSTRACT

Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum ) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2 SiO3 . In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+ , Ca2+ , Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50mgL-1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50mgL-1 Si. These findings signify Si supplementation (50mgL-1 ) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.


Subject(s)
Antioxidants , Saccharum , Antioxidants/metabolism , Saccharum/metabolism , Silicon/pharmacology , Chlorophyll A , Soil , Hydrogen Peroxide , Saline Solution , Dietary Supplements , Nutrients
6.
Environ Res ; 241: 117626, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37956754

ABSTRACT

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Subject(s)
Microalgae , Saccharum , Fatty Acids , Solvents , Lipids , Biofuels , Carbon , Methanol , Biomass
7.
Virology ; 590: 109969, 2024 02.
Article in English | MEDLINE | ID: mdl-38118269

ABSTRACT

Influenza A virus (IAV) is one of the major global public health concerns but the emerging resistance of IAV to currently available antivirals requires the need to identify potential alternatives. Polyphenol rich sugarcane extract (PRSE) is an extract prepared from the sugarcane plant Saccharum Officinarum. Herein we aimed to determine if PRSE had antiviral activity against IAV. We showed that treatment of IAV-infected cells with PRSE results in a dose-dependent inhibition of virus infection at concentrations that were non-cytotoxic. PRSE treatment limited the early stages of infection, reducing viral genome replication, mRNA transcription and viral protein expression. PRSE did not affect the ability of IAV to bind sialic acid or change the morphology of viral particles. Additionally, PRSE treatment attenuated the replication of multiple IAV strains of the H3N2 and H1N1 subtype. In conclusion, we show that PRSE displays antiviral activity against a broad range of IAV strains, in vitro.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Saccharum , Humans , Polyphenols/pharmacology , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype , Virus Replication , Plant Extracts/pharmacology , Antiviral Agents/pharmacology
8.
Sci Rep ; 13(1): 16040, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749306

ABSTRACT

Silicon (Si) fertilization is widely recognized to improve the development of crops, especially in tropical soils and cultivation under dryland management. Herein, our working hypothesis was that Si stoichiometry favors the efficient use of carbon (C), nitrogen (N), and phosphorus (P) in sugarcane plants. Therefore, a field experiment was carried out using a 3 × 3 factorial scheme consisting of three cultivars (RB92579, RB021754 and RB036066) and three forms of Si application (control without Si; sodium silicate spray at 40 mmol L-1 in soil during planting; sodium silicate spray at 40 mmol L-1 on leaves at 75 days after emergence). All Si fertilizations altered the elemental C and P stoichiometry and sugarcane yield, but silicon-induced responses varied depending on sugarcane cultivar and application method. The most prominent impacts were found in the leaf Si-sprayed RB92579 cultivar, with a significant increase of 7.0% (11 Mg ha-1) in stalk yield, 9.0% (12 Mg ha-1) in total recoverable sugar, and 20% (4 Mg ha-1) in sugar yield compared to the Si-without control. In conclusion, our findings clearly show that silicon soil and foliar fertilization alter C:N:P stoichiometry by enhancing the efficiency of carbon and phosphorus utilization, leading to improved sugarcane production and industrial quality.


Subject(s)
Saccharum , Silicon , Edible Grain , Carbon , Dietary Carbohydrates , Phosphorus , Soil , Fertilization
9.
J Sci Food Agric ; 103(15): 7529-7538, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37406160

ABSTRACT

BACKGROUND: Fresh-cut fruit are convenient ready-to-eat products increasingly demanded by consumers, but highly susceptible to oxidation. To increase the shelf life of these products, this industry is currently facing the challenge of finding sustainable natural preservatives capable of maintaining fresh-cut fruit quality while meeting consumers' expectations regarding health and environmental concerns. RESULTS: In this work, fresh-cut apple slices were treated with two antioxidant extracts derived from industrial by-products: a phenolic-rich extract produced from sugarcane straw (PE-SCS) and applied at 15 g L-1 , and a mannan-rich extract obtained from brewer's spent yeast (MN-BSY) applied at two concentrations: 1 and 5 g L-1 . PE-SCS, having a brown color, imparted a brownish hue to the fruit and increased the browning rate during storage, and not even the initial robust antioxidant response (high superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase activities), prevented oxidation. Fruit treated with MN-BSY extract at 5 g L-1 showed lower color loss rate and higher polyphenol oxidase inhibition, while at 1 g L-1 it showed lower firmness loss rate and lower lipid peroxidation after 6 days of storage. CONCLUSION: The results showed that PE-SCS triggers a potent antioxidant response in fresh-cut fruit and, despite it imparting a brown color to the fruit at 15 g L-1 , it may have potential for application at lower concentrations. Regarding MN-BSY, it generally decreased oxidative stress, but its effect on quality maintenance was dependent on the concentration and, thus, to confirm its potential as a fruit preservative more concentrations must be tested. © 2023 Society of Chemical Industry.


Subject(s)
Malus , Saccharum , Antioxidants , Saccharomyces cerevisiae , Mannans , Fruit , Plant Extracts/pharmacology
10.
Plant Physiol Biochem ; 201: 107798, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301189

ABSTRACT

Selenium (Se) beneficial effect on plants is related to an increase in nitrogen (N) assimilation and its role as an abiotic stress mitigator by reactive oxygen species (ROS) scavenging enhanced by antioxidant metabolism. This study aimed to evaluate sugarcane (Saccharum spp.) growth, photosynthetic and antioxidant responses, and sugar accumulation in response to Se supply. The experimental design was a factorial scheme 2 × 4: two sugarcane varieties (RB96 6928 and RB86 7515) and four Se application rates (0; 5; 10 and 20 µmol L-1) applied as sodium selenate in the nutrient solution. Leaf Se concentration increased under Se application in both varieties. The enzymes SOD (EC 1.15.1.1) and APX (EC 1.11.1.11) showed increase activities under Se application on variety RB96 6928. Nitrate reductase activity increased in both varieties resulting in the conversion of nitrate into higher total amino acids concentration indicating an enhanced N assimilation. This led to an increased concentration of chlorophylls and carotenoids, increased CO2 assimilation rate, stomatal conductance, and internal CO2 concentration. Selenium provided higher starch accumulation and sugar profiles in leaves boosting plant growth. This study shows valuable information regarding the role of Se on growth, photosynthetic process, and sugar accumulation in sugarcane leaves, which could be used for further field experiments. The application rate of 10 µmol Se L-1 was the most adequate for both varieties studied considering the sugar concentration and plant growth.


Subject(s)
Saccharum , Selenium , Selenium/metabolism , Antioxidants/metabolism , Saccharum/metabolism , Reactive Oxygen Species/metabolism , Carbon Dioxide/metabolism , Edible Grain/metabolism , Sugars/metabolism , Plant Leaves/metabolism
11.
Molecules ; 28(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298880

ABSTRACT

The health benefits of sugar cane products are attributed to certain antioxidant compounds in plant materials. The presence of antioxidants in plant materials depends on the extraction method in terms of yield and the number of phenolic compounds identified. This study was carried out to evaluate the performance of the three extraction methods, which were selected from previous studies to show the effect of the extraction method on the content of antioxidant compounds in different types of sugar. This study also evaluates the potential of different sugar extracts in anti-diabetic activity based on in vitro assays (α-glucosidase and α-amylase). The results showed that sugar cane extracted with acidified ethanol (1.6 M HCl in 60% ethanol) was the best condition to extract a high yield of phenolic acids compared to other methods. Among the three types of sugar, less refined sugar (LRS) showed the highest yield of phenolic compounds, 57.72 µg/g, compared to brown sugar (BS) and refined sugar (RS) sugar, which were at 42.19 µg/g and 22.06 µg/g, respectively. Whereas, among the sugar cane derivatives, LRS showed minor and BS moderate inhibition towards α-amylase and α-glucosidase activity compared to white sugar (RS). Thus, it is suggested that sugar cane extracted with acidified ethanol (1.6 M HCl in 60% ethanol) is the optimum experimental condition for antioxidant content determination and provides a basis for further exploitation of the health-beneficial resources of the sugarcane products.


Subject(s)
Antioxidants , Saccharum , Antioxidants/pharmacology , alpha-Glucosidases , Phenols/pharmacology , Ethanol , alpha-Amylases , Sugars , Plant Extracts/pharmacology
12.
J Food Sci ; 88(8): 3274-3286, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37350070

ABSTRACT

Sucrose, obtained from either sugar beet or sugarcane, is one of the main ingredients used in the food industry. Due to the same molecular structure, chemical methods cannot distinguish sucrose from both sources. More practical and affordable methods would be valuable. Sucrose samples (cane and beet) were collected from nine countries, 25% (w/w) aqueous solutions were prepared and their absorbances recorded from 200 to 1380 nm. Spectral differences were observable in the ultraviolet-visible (UV-Vis) region from 200 to 600 nm due to impurities in sugar. Linear discriminant analysis (LDA), classification and regression trees, and soft independent modeling of class analogy were tested for the UV-Vis region. All methods showed high performance accuracies. LDA, after selection of five wavelengths, gave 100% correct classification with a simple interpretation. In addition, binary mixtures of the sugar samples were prepared for quantitative analysis by means of partial least squares regression and multiple linear regression (MLR). MLR with first derivative Savitzky-Golay were most acceptable with root mean square error of cross-validation, prediction, and the ratio of (standard error of) prediction to (standard) deviation values of 3.92%, 3.28%, and 9.46, respectively. Using UV-Vis spectra and chemometrics, the results show promise to distinguish between the two different sources of sucrose. An affordable and quick analysis method to differentiate between sugars, produced from either sugar beet or sugarcane, is suggested. This method does not involve complex chemical analysis or high-level experts and can be used in research or by industry to detect the source of the sugar which is important for some countries' agricultural policies.


Subject(s)
Beta vulgaris , Saccharum , Sucrose/chemistry , Beta vulgaris/chemistry , Saccharum/chemistry , Chemometrics , Carbohydrates/analysis , Sugars , Spectrum Analysis , Least-Squares Analysis , Edible Grain/chemistry
13.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140919, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37164048

ABSTRACT

Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, Aspergillus fumigatus var. niveus (AFUMN) has a wide variety of carbohydrate-active enzymes (CAZymes), especially hydrolases, but a low number of oxidative enzymes in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane bagasse as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic Polysaccharide Monooxygenases (LPMOs). Thus, three LPMOs from the fungus Thermothelomyces thermophilus (TtLPMO9D, TtLPMO9H, and TtLPMO9O) were selected, heterologous expressed in Aspergillus nidulans, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant T. thermophilus LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of TtLPMO9D and ascorbic acid did not favor the conversion process in this study, while TtLPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.


Subject(s)
Cellulose , Saccharum , Aspergillus fumigatus/metabolism , Mixed Function Oxygenases , Saccharum/metabolism , Saccharum/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Polysaccharides
14.
Int J Biol Macromol ; 237: 124076, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36934815

ABSTRACT

In the current study, cellulose was extracted from sugarcane bagasse and further converted into carboxy methyl cellulose. The morphological, chemical, and structural characterization of synthesizeed carboxy methyl cellulose was performed. Further, the biopolymer was fabricated with mycogenic selenium nanoparticles and used to develop the biopolymer films. The developed biopolymer films were examined for the fruit shelf life stability, antifungal activity, and biodegradation potential. The results revealed that grapes wrapped with biofilms showed enhanced shelf life of fruit at all storage time intervals. The study also witnesses the antifungal activity of biopolymer films with a remarkable inhibitory action on the spores of Fusarium oxysporum and Sclerospora graminicola phytopathogens. Lastly, the biopolymer films were significantly degradable in the soil within two weeks of incubation. Thus, the developed biopolymer films exhibit multifaceted properties that can be used as an alternative to synthetic plastics for fruit packaging and also helps in protecting against fungal contaminants during storage with naturally degradable potential.


Subject(s)
Nanoparticles , Saccharum , Selenium , Vitis , Cellulose/chemistry , Carboxymethylcellulose Sodium/chemistry , Antifungal Agents , Biopolymers , Nanoparticles/chemistry , Food Packaging/methods
15.
Ecotoxicol Environ Saf ; 254: 114759, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36950993

ABSTRACT

Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.


Subject(s)
Saccharum , Selenium , Trace Elements , Xanthomonas , Humans , Selenium/pharmacology , Selenium/metabolism , Trace Elements/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/metabolism
16.
Int J Food Sci Nutr ; 74(2): 219-233, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915255

ABSTRACT

We investigated the effects of (poly)phenol-rich sugarcane extract (PRSE), sugarcane fibre (SCFiber), and the combination of them (PRSE + SCFiber) on the gut microbiota and short-chain fatty acids (SCFA) production using in vitro digestion and pig faecal fermentation. Measuring total phenolic content and antioxidant activity through the in vitro digestion stages showed that PRSE + SCFiber increased the delivery of (poly)phenols to the in vitro colonic fermentation stage compared to PRSE alone. The PRSE + SCFiber modulated the faecal microbiota profile by enhancing the relative abundances of Prevotella, Lactobacillus, and Blautia, and reducing the relative abundance of Streptococcus. PRSE + SCFiber also mitigated the inhibitory effects of PRSE on SCFA production. These results suggest that the inclusion of sugarcane fibre with PRSE could increase the availability of phenolic compounds in the colon and modulate the gut microbiota towards a more favourable profile.


Subject(s)
Dietary Fiber , Feces , Gastrointestinal Microbiome , Saccharum , Animals , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Dietary Fiber/metabolism , Digestion , Edible Grain/chemistry , Fatty Acids, Volatile/biosynthesis , Feces/chemistry , Feces/microbiology , Fermentation , Swine , Polyphenols/pharmacology , Plant Extracts/pharmacology , Gastrointestinal Microbiome/physiology
17.
Int J Biol Macromol ; 230: 123144, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36610579

ABSTRACT

This study evaluates the production of lignin bioactive extracts from sugarcane bagasse (SCB) and straw (SCS) alkaline black liquors using greener precipitating agents (methane sulfonic acid (MSA), formic acid (FA) and lactic acid (LA)) as replacers of sulfuric acid (SA), the most common one used in industry. Results showed that the highest precipitation yield was achieved by LA when applied to SCB (14.5 g extract/100 g SCB). Lignin SCB extracts were similar in composition in terms of total carbohydrates (61-70 %), lignin (22-30 %) and inorganics (1.6-2.6 %). Regarding the SCS extracts, similar yields were obtained among all extracts, however, differences in composition were observed between SA and greener precipitating agents, particularly in terms of sugar content. All extracts exhibited radical scavenging activity; overall the extracts were more effective in the scavenging of ABTS radical. FA was the most promising alternative to SA to recover lignin bioactive extracts. This work suggests organic acids as good candidates for obtaining valuable extracts from alkaline pulping of SCB and SCS instead of the conventional sulfuric acid.


Subject(s)
Lignin , Saccharum , Cellulose , Sulfuric Acids , Plant Extracts , Hydrolysis
18.
Chemosphere ; 318: 137736, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36603677

ABSTRACT

A farm at Taoyuan in Taiwan was highly contaminated with decabrominated diphenyl ether (BDE-209), a widely used commercial brominated flame retardant and persistent in the environment, more than 10 years. Since crops are able to absorb and accumulate BDE-209 from soils in our previous research, posing a hazardous risk for humans, it is essential to develop a practical method of soil treatment. Thermal treatment was studied among different approaches. In our previous study (Ko et al., 2022), we found that heating to 450 °C for 30 min achieved a complete removal of BDE-209 in soil. However, the high temperature significantly decreased the original soil organic matter (SOM) from 2.47% to 0.27%, altering the soil texture, damaging microbial biomass, and thus affecting the revegetation after the thermal treatment. Sugarcane bagasse, a common agricultural residue, served as an amendment to restore soil fertility. Current results indicate that 2.5% bagasse can improve the SOM in soil by up to 2.73% and restore its bacterial composition, making the plant growth conditions similar to those of the untreated contaminated soil. In light of the high removal efficiency provided by the 450°C-thermal treatment and the high recovery efficiency of sugarcane bagasse, the strategy presented in this study serves to be a promising method for sustainable remediation.


Subject(s)
Flame Retardants , Saccharum , Soil Pollutants , Humans , Cellulose , Soil Pollutants/analysis , Soil/chemistry , Saccharum/metabolism , Halogenated Diphenyl Ethers/analysis , Edible Grain/chemistry
19.
Bioresour Technol ; 369: 128382, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36423754

ABSTRACT

Lignocellulose is resistant to degradation and requires pretreatment before hydrolytic enzymes can release fermentable sugars. Sulfuric acid has been widely used for biomass pretreatment, but high amount of degradation products usually occurred when using this method. To enhance accessibility to cellulose, we studied the performances of several dilute organic acid pretreatments of sugarcane bagasse and oil palm empty fruit bunch fiber. The results revealed that pretreatment with maleic acid yields the highest xylose and glucose release among other organic acids. The effects of concentration, duration of heating and heating temperature were further studied. Dilute maleic acid 1 % (w/w) pretreatment at 180 °C was the key to its viability as a substitute for sulfuric acid. Moreover, maleic acid did not seem to highly promote the formation of either furfural or 5-HMF in the liquid hydrolysate after pretreatment.


Subject(s)
Cellulose , Saccharum , Cellulose/metabolism , Fruit/metabolism , Saccharum/metabolism , Carbohydrates , Acids , Sulfuric Acids/pharmacology , Hydrolysis , Palm Oil
20.
J Basic Microbiol ; 63(1): 75-91, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36336635

ABSTRACT

This study includes the utilization of sweet lemon peel (SLP) and sugarcane bagasse (SB) in solid-state fermentation using Kluyveromyces marxianus for bioflavor compounds production adopting response surface methodology. The major flavor compounds, 2-phenylethanol (2-PE) and 2-phenylethyl acetate (2-PEA) were quantified using gas chromatography-mass spectrometry with and without adding any supplements. Quantification of flavor compounds indicated that without adding any accessory in the substrate, the concentration of 2-PE using SLP and SB was 0.15 ± 0.003 mg/g and 0.14 ± 0.002 mg/g, respectively. Whereas 2-PEA concentration using SLP and SB was observed as 0.01 ± 0.008 mg/g and 0.02 ± 0.001 mg/g, respectively. The addition of l-phenylalanine (l-phe) in the substrates showed 30%-75% enhancement in the production of 2-PE and 2-PEA. The present study indicates that the K. marxianus is a potential microbial cell factory for the production of 2-PE and 2-PEA with the addition of synthetic l-phe having a plethora of applications in food and pharmaceutical industries.


Subject(s)
Cellulose , Saccharum , Fermentation , Cellulose/metabolism , Phenylalanine/metabolism , Saccharum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL