Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Mar Pollut Bull ; 200: 116135, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359482

ABSTRACT

A twenty-four month long observational study conducted in an Asia's largest brackish water ecosystem, Chilika Lagoon, India, aimed to unravel dissolved organic matter (DOM) dynamics in this tropical brackish water ecosystem. The study assessed the interplay between allochthonous and autochthonous DOM sources during lean and active flow periods based on regional rainfall. Dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) fluxes were analyzed, considering catchment runoff, phytoplankton production, benthic-pelagic interactions, and sea-lagoon exchanges as contributors. Contrary to conventional thinking, the study found autochthonous processes to be more significant than conservative mixing in shaping DOM dynamics. It introduced a novel conceptual model illustrating the multifaceted origins of DOM, encompassing catchment runoff, phytoplankton, benthic-pelagic interactions, bacterial activity, and sea-lagoon exchanges. These findings underscore the importance of holistic management strategies for Chilika Lagoon to preserve its ecological health, given its vital role in global carbon cycling, fisheries, and aquaculture.


Subject(s)
Dissolved Organic Matter , Ecosystem , Phytoplankton , Saline Waters , Asia
2.
Braz J Biol ; 83: e274991, 2023.
Article in English | MEDLINE | ID: mdl-37909589

ABSTRACT

The objective of this study was to evaluate the water status, photosynthetic pigments, and photochemical efficiency of mini watermelon plants under salt stress and phosphate fertilization. The experiment was conducted in pots under greenhouse conditions in Pombal, PB, Brazil. The experimental design used was randomized blocks in a 5 × 4 factorial scheme, with five levels of electrical conductivity of irrigation water - ECw (0.3, 1.3, 2.3, 3.3, and 4.3 dS m-1) and four doses of phosphorus (60, 80, 100, and 120% of the recommendation), with three replicates. The relative water content in the tissues decreased with the increase in ECw levels in all phosphorus doses, with decreases of 7.05, 7.81 and 8.83% per unit increase in ECw, in plants fertilized with 80, 100 and 120% P2O5. On the other hand, ECw levels increased electrolyte leakage, regardless of phosphorus doses of the recommendation. The synthesis of photosynthetic pigments and the quantum efficiency of photosystem II were inhibited by increasing water salinity from 0.3 dS m-1 in plants grown under phosphorus doses above 60% of the recommendation. Water salinity from 0.3 dS m-1 reduced chlorophyll b contents, initial, maximum, and variable fluorescence of mini watermelon plants, with a decrease of 11.86, 4.51, 4.53, and 4.54% per unit increment of ECw, respectively.


Subject(s)
Citrullus , Phosphates , Photosynthesis , Saline Waters , Phosphorus
3.
J Basic Microbiol ; 63(8): 855-867, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37078839

ABSTRACT

Water salinity causes less production of agricultural productivity, low economic returns, soil destructions, less sustainability, and reduction in the germination rate. The current study was aimed to understand the combined potential of halophilic bacteria and rice husk in treating water salinity. In total, 10 halophilic bacterial isolates were isolated from Khewra Mines, Pakistan. Bacterial isolates were characterized by biochemical tests. 16S rRNA gene sequencing identified the isolate SO 1 as Bacillus safensis (accession number ON203008) being the promising halophilic bacteria tolerating upto 3 M NaCl concentration. Next, rice husk was used as carbon source for bacterial biofilm formation, growth and propagation. For saline water treatment, the experimental setting comprising glass wool, rice husk and artificial sea water (3 M) was set. B. safensis biofilm was developed in test samples to desaline the saline water containing 3 M NaCl concentration. Following NaCl decline, flame photometric analysis was used to check the desalination extent of treated saline water. Results showed decreased sodium level in sea water in the presence of rice husk and glass wool. The eluted water used for the germination of Zea mays seeds showed improved growth performance. Also, decreased photosynthetic pigments (chlorophyll "a" = 18.99, and chlorophyll "b" = 10.65), sugar contents (0.7593), and increased carotenoid (1526.91), protein contents (0.4521) were noted compared to control. This eco-friendly approach for bioremediation of salt-affected soils to optimize crop yields under stress through halophilic bacteria and rice husk may overcome the problem of the reduced yield of cash crops/agriculture and water shortage by salinity.


Subject(s)
Oryza , Sodium Chloride/metabolism , RNA, Ribosomal, 16S/genetics , Archaea/genetics , Chlorophyll/metabolism , Soil/chemistry , Saline Waters , Biofilms , Salinity
4.
Huan Jing Ke Xue ; 43(9): 4625-4635, 2022 Sep 08.
Article in Chinese | MEDLINE | ID: mdl-36096603

ABSTRACT

Brackish water irrigation increases soil salinity and changes the soil environment, which affects the structure and diversity of soil fungi. In this study, the effects of biochar and straw (3.7 t·hm-2 and 6 t·hm-2, respectively) on soil physical and chemical properties and fungal community structure diversity were investigated on the basis of long-term brackish water irrigation. The results showed that compared to the absence of biochar and straw application (control), biochar application significantly increased pH and the contents of total carbon, available potassium, and available phosphorus in soil but significantly decreased the soil conductivity by 20.71%. Straw treatment significantly increased the content of available potassium and phosphorus but significantly decreased the soil bulk density and conductivity by 4.17% and 64.50%, respectively. The biochar and straw treatment showed an increasing trend in the Chao1 index and ACE index of the fungal community but a decreasing trend in the Shannon index and Simpson index. The dominant fungal phyla in the soil were Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. The dominant fungal genera were Chaetomium, Gibberella, Fusarium, Idriella, and Mortierella. Biochar and straw were applied to increase the relative abundance of Ascomycota, Mortierellomycota, Basidiomycota, Glomeromycota, and Chaetomium. However, the relative abundance of Chytridomycota, Gibberella, and Idriella decreased. LEfSe analysis showed that biochar application and straw returning decreased the number of potential biomarkers in fungal communities. RDA results showed that soil fungal community structure was significantly correlated with EC1:5 and TN. Brackish irrigation had adverse effects on soil, in which EC1:5and TN were the main factors driving the change in soil fungal community structure. The soil fungal community adapted to a salt-stress environment through the improvement of soil by biochar and straw.


Subject(s)
Mycobiome , Charcoal , Phosphorus , Potassium , Saline Waters , Soil/chemistry , Soil Microbiology
5.
J Environ Manage ; 320: 115906, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36056497

ABSTRACT

Phosphorus (P) cycling by microbial activity is highly relevant in the eutrophication of lakes. In this context, the contents of organic (Po) and inorganic (Pi) phosphorus, the activity of acid (ACP) and alkaline (ALP) phosphomonoesterase (Pase), and the abundances of bacterial Pase genes (phoD, phoC, and phoX) were studied in sediments from Budi Lake, a eutrophic coastal brackish water lake in Chile. Our results showed spatiotemporal variations in P fractions, Pase activities, and Pase gene abundances. In general, our results showed higher contents of Pi (110-144 mg kg-1), Po (512-576 mg kg-1), and total P (647-721 mg kg-1) in sediments from the more anthropogenized sampling sites in summer compared with those values of Pi (86-127 mg kg-1), Po (363-491 mg kg-1) and total P (449-618 mg kg-1) in less anthropogenized sampling sites in winter. In concordance, sediments showed higher Pase activities (µg nitrophenyl phosphate g-1 h-1) in sediments from the more anthropogenized sampling sites (9.7-22.7 for ACP and 5.9 to 9.6 for ALP) compared with those observed in less anthropogenized sampling sites in winter (4.2-12.9 for ACP and 0.3 to 6.7 for ALP). Higher abundances (gene copy g-1 sediment) of phoC (8.5-19 × 108), phoD (9.2-47 × 106), and phoX (8.5-26 × 106) genes were also found in sediments from the more anthropogenized sampling sites in summer compared with those values of phoC (0.1-1.1 × 108), phoD (1.4-2.4 × 106) and phoX (0.7-1.2 × 106) genes in the less anthropogenized sites in winter. Our results also showed a positive correlation between P contents, Pase activities, and abundances of bacterial Pase genes, independent of seasonality. The present study provided information on the microbial activity involved in P cycling in sediments of Budi Lake, which may be used in further research as indicators for the monitoring of eutrophication of lakes.


Subject(s)
Lakes , Water Pollutants, Chemical , Chile , China , Environmental Monitoring/methods , Eutrophication , Geologic Sediments , Phosphoric Monoester Hydrolases , Phosphorus/analysis , Saline Waters , Water Pollutants, Chemical/analysis
6.
Environ Res ; 214(Pt 2): 113958, 2022 11.
Article in English | MEDLINE | ID: mdl-35921904

ABSTRACT

Brackish lake systems and estuaries are unique aquatic systems that support diversified life forms and strongly influence a region's economy. Major chemical water quality parameters of India's second-largest brackish water lake, Pulicat were assessed. Physico-chemical parameters like pH, temperature, suspended solid concentrates, total dissolved solids, salinity, nitrogenous nutrients, phosphate, silicate, and chlorophyll a were analysed. The results obtained for different parameters were compared and interpreted with statistical software SPSS version 20 and images were plotted using the Arc GIS spatial analyst tool. During the summer months, the nitrogen to phosphorus ratio ranges from a minimum of 1.96 to a maximum of 16.64 (9.55 ± 4.01) while it ranges from a minimum of 7.98 to a maximum of 15.52 (12.47 ± 2) during the pre-monsoon. In the monsoon season, the nitrogen to phosphorus ratio of surface water suggests a range from a minimum of 8.64 to a maximum of 17.58 (13.87 ± 2.14). During the post-monsoon season, the nitrogen to phosphorus ratio ranges from 4.98 to 17.34 (11.77 ± 3.68). The average nitrogen to phosphorus ratios were 9.6, 12.5, 13.9 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. The nitrogen to phosphorus ratio was lower than the Redfield ratio for all the seasons. The average concentration of chlorophyll a was 14.9, 13.4, 12.8 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. As per the Pearson Correlation Coefficient, there was no significant correlation among nitrogen, phosphorus, and chlorophyll a. This suggests the influence of suspended solid concentrates, and nitrogen and phosphorus flux in the sediment-water interface might be interfering with the nutrient cycles and primary productivity.


Subject(s)
Lakes , Water Pollutants, Chemical , Asia , Chlorophyll A/analysis , Environmental Monitoring , Lakes/analysis , Nitrogen/analysis , Phosphorus/analysis , Saline Waters , Seasons , Water Pollutants, Chemical/analysis
7.
Huan Jing Ke Xue ; 43(4): 2192-2203, 2022 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-35393843

ABSTRACT

Long-term saline water irrigation will increase soil salinity, adversely affect soil physical and chemical properties, and change the diversity of soil bacteria. Straw returning can improve the soil microenvironment and subsequently affect soil enzyme activity and bacterial community structure diversity. This experiment used two types of irrigation water salinity:fresh water (FW, 0.35 dS·m-1) and saline water (SW, 8.04 dS·m-1). Under each irrigation water salinity, the amount of cotton straw applied was 0 and 6000 kg·hm-2 (represented by FWST and SWST, respectively). The results showed that:compared with those under fresh water irrigation, saline water irrigation significantly increased the soil salt, bulk density, total carbon, and available phosphorus but significantly decreased available potassium content. Under saline water irrigation, straw returning significantly increased the soil total carbon, total nitrogen, available potassium, and available phosphorus but reduced soil bulk density. Compared with those under fresh water irrigation, soil sucrase, alkaline phosphatase, and catalase activities under saline water irrigation decreased by 57.24%, 35.15%, and 3.91%, respectively, whereas urease activity increased by 26.73%. However, straw returning significantly increased sucrase, alkaline phosphatase, and catalase activities but decreased urease activity. Saline water irrigation decreased the relative abundance of Acidobacteriota, Actinobacteriota, Bacteroidota, Verrucomicrobiota, and Firmicutes and increased the abundance of Gemmatimonadota and Myxococcota. Under saline water irrigation, straw returning significantly increased the relative abundance of Actinobacteriota, Bacteroidetes, Firmicutes, Crenarchaeota, Sphingomonas, Dongia, and Steroidobacter. NMDS results also showed that saline water irrigation and straw returning changed the bacterial community structure. In conclusion, straw returning can improve soil nutrient content, reduce soil bulk density and salinity, and then change soil enzyme activity and bacterial community structure diversity. The change in soil bacterial community composition was mainly affected by soil salinity and bulk density. Therefore, straw returning can improve soil fertility and help maintain the health of soil ecosystem. This study revealed a relationship between soil enzyme activities and bacterial communities, which provides a theoretical basis and mechanism for applying cotton stalk to regulate the soil enzyme and micro-ecological environment.


Subject(s)
Ecosystem , Soil , Alkaline Phosphatase , Bacteria , Carbon , Catalase , Phosphorus , Potassium , Saline Waters , Soil/chemistry , Soil Microbiology , Sucrase , Urease
8.
Mar Pollut Bull ; 174: 113137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34863069

ABSTRACT

India successfully executed one of the strictest lockdowns in the world during the height of the COVID-19 pandemic in early 2020, which provided unique opportunities to analyze the second-largest populous country's anthropogenic footprint on its natural systems. India's first Ramsar site and the world's second-largest brackish water system Chilika lagoon experienced a substantial decline (64%) in the total petroleum hydrocarbon (TPHC) level in water, which was attributed to the massive declines or, at times, an abrupt complete halt of motorized boat operations for fishing and tourism. Using the TPHC values during the lockdown period, our study recommends a TPHC baseline threshold of 2.02 µg L-1 and 0.91 µg g-1 for Chilika waters and sediment, respectively. These baseline values can be used to quantify oil pollution and to formulate policy and management action plans for Chilika lagoon as well as for other similar ecosystems by local environmental agencies.


Subject(s)
COVID-19 , Petroleum , Humans , Asia , Communicable Disease Control , Ecosystem , Environmental Monitoring , Hydrocarbons/analysis , India , Pandemics , Petroleum/analysis , Saline Waters , SARS-CoV-2
9.
Chemosphere ; 279: 130562, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134407

ABSTRACT

Oil spill from petrochemical industries into marine areas has resulted in severe environmental pollution. The use of natural sorbents to clean marine areas affected by petroleum contaminants is a promising approach to alleviate this problem. Therefore, this study aims at developing an technique that uses waste coconut fibres (Cocos nucifera L.) pre-treated with a "green" solvent, viz. protic ionic liquid (PIL) [2-HEA][Ac], for the remediation of oil in saline water. Conventional chemical pre-treatments (mercerisation/acetylation) and the innovative treatment (using PIL), chemical characterisation, Scanning Electron Microscope, Fourier-transform infrared spectroscopy, and oil sorption tests in hydrodynamic simulation on a laboratory scale were conducted. The fibres treated with PIL[2-HEA][Ac] possessed more pores and hydrophobic content than the mercerised/acetylated coconut fibres, indicating the efficiency of sorption. The average sorption of the PIL[2-HEA][Ac] fibre was 1.40 ± 0.06 g/g and that of the mercerised/acetylated fibre was 1.32 ± 0.12 g/g. Although the difference in sorption results is not significant, according to the Tukey test, fibre pre-treatment with PIL[2-HEA][Ac] is more advantageous than conventional treatments because it exhibits better average sorption results; furthermore, the synthesis procedure for PIL[2-HEA][Ac] is simple, reusable and non-toxic. Therefore, the use of these petroleum biosorbents is a technology with environmental benefits, such as the availability of the biosorbent in the form of biodegradable waste and treated with a "green" solvent, both of which can be reused. Thus, it adds value for its use in industries with a circular economy product; that are environment-friendly and economical.


Subject(s)
Environmental Restoration and Remediation , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Adsorption , Cocos , Petroleum Pollution/analysis , Saline Waters , Water Pollutants, Chemical/analysis
10.
Ecotoxicol Environ Saf ; 201: 110775, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32535365

ABSTRACT

Due to the limitation of suitable water for crop production in the world, recycling water is among the most proper methods enhancing water efficiency and availability. One modern method, which is of economic, health, and environmental significance, and may improve water properties for plant use is water magnetization. Medicinal plants are of nutritional, economic and medical values and their growth decreases under salinity stresses. This research was hypothesized and conducted because there is not any data, to our knowledge, on the use of magnetized salty water affecting the growth and biochemical properties of peppermint (Mentha piperita L.). The experiment was a split plot design with three replicates. The main plots consisted of magnetic fields at control (M1), 100 mT (M2), 200 mT (M3), and 300 mT (M4), the sub-plots consisted of salinity treatments (NaCl) at control (S1), 4 dS/m (S2), 8 dS/m (S3), and 12 dS/m (S4), and the growth media including cocopeat (X1), palm (X2), cocopeat + perlite (V/V = 50, X3) and palm + perlite (V/V = 50, X4) were located in the sub-sub-plots. Different plant growth and biochemical properties including plant fresh and dry weight, plant menthol, menthone, chlorophyll and proline contents were determined. Analysis of variance indicated the significant effects of experimental treatments and their interactions on the growth and biochemistry of peppermint. Different magnetic fields significantly increased plant growth, and interestingly with increasing the salinity level the alleviating effects of magnetic field on salinity stress became more clear (significant interaction between salinity and magnetic field treatments). Cocopeat was the most efficient growth medium. At the third level of salinity (8 dS/m) just the two levels of 100 and 200 mT increased plant menthol concentration. Treatments M3S2X4 and M1S1X1 resulted in the highest (38%) and the least menthol percentage (13%), respectively. Treatments S2 and M2 and M3 significantly increased plant menthone concentration, especially in the growth media of X1 and X3. However, at the third level of salinity, M3 and M4 were the most effective treatments. The highest (25.8%) and the least (1.2%) concentrations of menthone were related to treatments M3S2X4 and M2S4X1, respectively. The results indicated that it is possible to alleviate the stress of salinity on peppermint growth and improve its biochemical (medicinal) properties using magnetized salty water, although proline concentration was not much affected by the magnetic field.


Subject(s)
Mentha piperita/physiology , Salt Stress , Crop Production , Menthol , Plant Development/drug effects , Saline Waters , Salinity , Sodium Chloride/pharmacology , Water/pharmacology
11.
Chemosphere ; 249: 126131, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32058135

ABSTRACT

Lanthanum-modified bentonite (LMB, commercially called Phoslock®) has been widely applied in freshwater systems to manage eutrophication. Little is known, however, about its behaviour and efficiency in binding filterable reactive phosphorus (FRP) in saline environments. We assessed if LMB would adsorb phosphate over a range of salinities (0-32 ppth) comparing the behaviour in seawater salts and equivalent concentrations of NaCl. Lanthanum release from the bentonite matrix was measured and the La species prevailing in saline environments were evaluated through chemical equilibrium modelling. We demonstrated that LMB was able to adsorb FRP in all the salinities tested. Filterable lanthanum (FLa) concentrations were similarly low (<5 µgL-1) at all seawater salinities but considerably elevated, on occasion >2000 times greater in equivalent NaCl salinities. Mineralogical analysis indicates that La present in the clay interlayer was (partially) replaced by Na/Ca/Mg present in the seawater and a possible secondary P-reactive phase was formed, such as kozoite (LaCO3OH) or lanthanite (La2(CO3)3·8H2O) that may be physically dissociated from the LMB. Geochemical modelling also indicates that most FLa dissociated from LMB would be precipitated as a carbonate complex. In light of the identification of reactive intermediate phases, further studies including ecotoxicologial assays are required to assess any deleterious effects from the application of LMB to saline waters.


Subject(s)
Bentonite/chemistry , Lanthanum/chemistry , Phosphates/chemistry , Saline Waters/chemistry , Water Purification/methods , Adsorption , Eutrophication , Lakes , Lanthanum/metabolism , Phosphates/analysis , Phosphorus/analysis , Salinity
12.
Environ Sci Pollut Res Int ; 27(2): 2120-2130, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31773537

ABSTRACT

Lake Hamana is a semi-enclosed brackish lake amid agricultural and residential land. Monthly vertical profiles of nutrients, total phosphorus (TP), and total nitrogen (TN) at twelve sampling stations in the lake were obtained from 1995 to 2016. Freshwater samples were also obtained from five stations in the river flowing into the lake. Significant decreases were seen in phosphate, TP, and TN concentrations at most lake and all river stations. Decrease in phosphate concentration reflects reduced organic matter and nutrient load into the lake due to increased sewage coverage. Nitrate concentration significantly increased at four stations, whereas ammonium and TN concentrations significantly decreased. This could be due to inefficient nitrification/denitrification of wastewater. At all stations, the nitrogen to phosphate ratio in surface water was higher than 16 and increased significantly. Therefore, phosphate limitation could be strengthened by the decrease in phosphate and increase in nitrate concentrations in the lake.


Subject(s)
Environmental Monitoring , Lakes/chemistry , Phosphates/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification , Japan , Nitrogen/analysis , Phosphorus/analysis , Saline Waters
13.
Molecules ; 24(14)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319490

ABSTRACT

This study investigates an aqueous salt process (ASP) combined with microwave-assisted extraction (MAE) for the seed oil extraction from yellow horn (Xanthoceras sorbifolium Bunge). The NaCl concentration in the oil extraction process affected the oil extraction yield. Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The optimal operating parameters were: 24 g/L NaCl, 300 W microwave power, 4:1 water to material ratio, an 80 min extraction time, and 45 °C extraction temperature. The chemical composition of the extracted seed oil was analyzed using gas chromatography-mass spectrometry (GC-MS). This extraction technique for yellow horn seed oil provided high throughput and high-quality oil. The present research offers a kind of green extraction method for edible oil in the food industry.


Subject(s)
Plant Oils/chemistry , Sapindaceae/chemistry , Seeds/chemistry , Fatty Acids/chemistry , Gas Chromatography-Mass Spectrometry , Microwaves , Saline Waters/chemistry , Temperature
14.
Water Res ; 150: 358-367, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30550866

ABSTRACT

Silica scaling of reverse osmosis membranes in brackish water desalination is less understood than hardness scaling due to the complex silica behaviors at the membrane/water interface. In this study, -COOH, -SO3H, -NH2 and -OH functional groups were introduced onto polyamide membranes to create distinct surface physicochemical properties. The resulting membranes were further studied under similar scaling conditions to yield temporal flux loss data that were empirically interpreted by a logistic growth model. The scaled membranes were also characterized by complementary analytical techniques. It was found that permeate flux loss was strongly correlated to the initial silica layer formed by direct interaction between reactive silanol (Si-OH) and reciprocal groups on the membrane surface, rather than the entire scaling layer. Importantly, membrane surface properties dictated the initial silica layer formation through three possible mechanisms, i.e., electrostatic repulsion, competitive adsorption, and interfacial energy change. Of these, electrostatic repulsion was identified as the primary one. Therefore, by modifying the membrane surface properties, the three aforementioned mechanisms may be enhanced to favor the formation of a loose, disordered initial silica scaling layer. Accordingly, membrane flux loss may be mitigated. This finding provided important insights into the design heuristics of scaling-resistant reverse osmosis membrane for brackish water desalination.


Subject(s)
Silicon Dioxide , Water Purification , Membranes, Artificial , Osmosis , Saline Waters , Surface Properties
15.
Animal ; 13(1): 98-105, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29679996

ABSTRACT

Salinization of groundwater and soil is a prevalent global issue with serious consequences on animal health and production. The present study was conducted to investigate the capacity of Boer goats to adjust their salt intake from saline drinking water in a free-choice system. In total, 12 non-pregnant Boer goats aged between 1 and 8 years with an average BW of 46.4±8.3 kg were kept in individual pens for 4 weeks. In the control phase (1 week), only fresh water was supplied in five identical buckets for each pen. During the subsequent treatment phase (3 weeks), fresh water and four different concentrations (0.75, 1.0, 1.25 and 1.5% NaCl) of saline water were offered simultaneously in a free-choice system. The positions of the concentrations were changed daily at random. Cut hay and water were provided ad libitum, and a mineral supplement was allocated. Feed and water intake, mineral supplement intake, ambient temperature and relative humidity were recorded daily, whereas BW and body condition score were measured weekly. Dry matter intake, total water intake and total sodium intake were significantly (P<0.001) higher during the treatment phase. Body weight and body condition were not affected by saline water intake. Across the treatment phase, saline water consumption was significantly (P<0.001) lower in young (19.6±27.1 g/kg BW0.82 per day) than in adult goats (27.9±31.5 g/kg BW0.82 per day), indicating that young goats were more sensitive towards the saline water. All goats had a significant preference for fresh water (0% salt) over saline water. At the first offering of the simultaneous choice situation (week 2), animals did not differentiate between the salt concentration of 0.75% and 1.0%. However, with successive treatment (weeks 3 and 4), animals distinguished between saline water concentrations and preferred the 0.75% salt concentration. Salt concentrations of 1% to 1.5% were avoided. The total sodium intake of the goats ranged between 0.37 and 0.55 g /kg BW0.75 per day during the treatment phase, being 8- to 11-fold higher than the daily requirements of sodium for body maintenance. The results suggest that goats are able to differentiate between saline water concentrations and to adjust their sodium intake by quick adjustments in self-selection in a free-choice system. Compared with two-choice preference tests, the present free-choice situation allows evaluating changes in saline water acceptance with prolonged exposure.


Subject(s)
Choice Behavior , Drinking Water/analysis , Fresh Water/analysis , Goats/physiology , Saline Waters/analysis , Animal Feed/analysis , Animals , Female
16.
Water Res ; 141: 9-18, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29753976

ABSTRACT

The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature in the appropriate range (25-30 °C) and/or manipulating influent carbon sources.


Subject(s)
Bioreactors , Phosphorus/metabolism , Sulfur/metabolism , Temperature , Acetates/metabolism , Anaerobiosis , Bacteria/metabolism , Carbon/metabolism , Denitrification , Kinetics , Nitrogen/metabolism , Propionates/metabolism , Saline Waters , Wastewater
17.
Aquat Toxicol ; 194: 67-77, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29156433

ABSTRACT

The aims of this study were to assess the biodiversity of periphytic diatom assemblages in fresh, brackish and marine waterbodies of Korea, and to assess the effect of environmental and anthropogenic factors on parameters such as the quantity and biovolume of lipid bodies and deformations of diatoms as early warning measures of anthropogenic impact. Diatom samples were collected from 31 sites (14 freshwater, 10 brackish and 7 marine), which included less impacted (upstream) and impacted (downstream) sites in each water type. Our results showed higher abundance and biodiversity of periphytic diatoms at the less impacted sites in terms of species richness, Shannon index, cell count and biovolume of the communities than at the impacted sites for freshwater and estuarine sites, but not for marine sites. 84 diatom species were noted in freshwater, 80 in brackish water and 40 in marine waters. In comparison to diatoms of the impacted sites, those of less impacted freshwater, brackish and marine sites had less lipid bodies (also less biovolume) and a lower percentage of teratological frustules, and showed more mobile forms in the community. Principal component analysis (PCA) also showed clear segregation of impacted from less impacted sites by the extent of the presence of lipid bodies (higher both in number and biovolume) and deformities in diatom frustules. Pearson correlation analysis revealed that lipid body induction and deformities were positively correlated with metals (Cd, Co, Cr, Cu, Fe, Pb and Zn) and nutrients (total phosphorus and total nitrogen), whereas they showed negative correlation with salinity, dissolved oxygen, suspended solutes and pH. Life-forms, lipid bodies and deformities in diatoms may be an effective biomonitoring tool for assessing biological effects of pollutants in non-marine aquatic ecosystems in Korea.


Subject(s)
Diatoms/drug effects , Environmental Monitoring , Fresh Water/chemistry , Saline Waters/chemistry , Seawater/chemistry , Water Pollutants, Chemical/toxicity , Diatoms/growth & development , Diatoms/metabolism , Ecosystem , Lipid Droplets/chemistry , Metals/chemistry , Metals/toxicity , Nitrogen/chemistry , Nitrogen/metabolism , Phosphorus/chemistry , Phosphorus/metabolism , Principal Component Analysis
18.
Water Sci Technol ; 76(9-10): 2710-2718, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29168711

ABSTRACT

The flocculation-column flotation with hydraulic loading (HL, >10 m h-1) was studied for the treatment of oil-in-water emulsions containing 70-400 mg L-1 (turbidity = 70-226 NTU) of oil and salinity (30 and 100 g L-1). A polyacrylamide (Dismulgan, 20 mg L-1) flocculated the oil droplets, using two floc generator reactors, with rapid and slow mixing stages (head loss = 0.9 to 3.5 bar). Flotation was conducted in two cells (1.5 and 2.5 m) with microbubbles (MBs, 5-80 µm) and nanobubbles (NBs, 50-300 nm diameter, concentration of 108 NBs mL-1). Bubbles were formed using a centrifugal multiphase pump, with optimized parameters and a needle valve. The results showed higher efficiency with the taller column reducing the residual oil content to 4 mg L-1 and turbidity to 7 NTU. At high HL (27.5 m h-1), the residual oil concentrations were below the standard emission (29 mg L-1), reaching 18 mg L-1. The best results were obtained with high concentration of NBs (apart from the bigger bubbles). Mechanisms involved appear to be attachment and entrapment of the NBs onto and inside the flocs. Thus, the aggregates were readily captured, by bigger bubbles (mostly MBs) aiding shear withstanding. Advantages are the small footprint of the cells, low residence time and high processing rate.


Subject(s)
Petroleum/analysis , Saline Waters/chemistry , Emulsions/analysis , Flocculation , Oil and Gas Industry/instrumentation
19.
PLoS One ; 12(9): e0184819, 2017.
Article in English | MEDLINE | ID: mdl-28934270

ABSTRACT

Vermelha Lagoon is a hypersaline shallow transitional ecosystem in the state of Rio de Janeiro (Brazil). This lagoon is located in the protected area of Massambaba, between the cities of Araruama and Saquarema (Brazil), and displays two quite uncommon particularities: it exhibits carbonate sedimentation and displays the development of Holocene stromatolites. Due to both particularities, the salt industry and property speculation have been, increasingly, generating anthropic pressures on this ecosystem. This study aims to apply a multiproxy approach to evaluate the trophic state of Vermelha Lagoon based on physicochemical parameters and geochemical data for the quantification and qualification of organic matter (OM), namely total organic carbon (TOC), total sulfur (TS), total phosphorus (TP) and biopolymeric carbon (BPC), including carbohydrates (CHO), lipids (LIP) and proteins (PTN). The CHO/TOC ratio values suggest that OM supplied to the sediment is of autochthonous origin and results, essentially, from microbial activity. The cluster analyses allowed the identification of four regions in Vermelha Lagoon. The Region I included stations located in shallow areas of the eastern sector of Vermelha lagoon affected by the impact of the artificial channel of connection with Araruama Lagoon. The Region II, under the influence of salt pans, is characterized by the highest values of BPC, namely CHO promoted by microbiological activity. The Region III include stations spread through the lagoon with high values of dissolved oxygen and lower values of TP. Stromatolites and microbial mattes growth was observed in some stations of this sector. Region IV, where the highest values of TOC and TS were found, represents depocenters of organic matter, located in general in depressed areas. Results of this work evidences that the Vermelha Lagoon is an eutrophic but alkaline and well oxygenated environment (at both water column and surface sediment) where the autotrophic activity is greater than heterotrophic one. These particular conditions make this a special and rare ecosystem.


Subject(s)
Ecosystem , Geologic Sediments/chemistry , Saline Waters/chemistry , Autotrophic Processes , Brazil , Carbohydrates/chemistry , Carbon/chemistry , Cluster Analysis , Geologic Sediments/microbiology , Hydrogen-Ion Concentration , Lipids/chemistry , Oxygen/chemistry , Phosphorus/chemistry , Proteins/chemistry , Salts/chemistry , Sulfur/chemistry , Temperature
20.
J Hazard Mater ; 333: 319-328, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28376360

ABSTRACT

Wetland mesocosms were constructed to assess two hybrid poplar clones (Populustrichocarpa×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se), and a hydroponic experiment was performed to test the B tolerance and B accumulation in both clones. In the mesocosm experiment, clone 345-1 exhibited no toxic symptoms at an EC of 10mScm-1, while clone 347-14 showed slight toxic symptoms at 7.5mScm-1. The removal percentages of B, Se, sodium (Na), and chloride (Cl) ranged from 26.7-45.6%, 50-69.4%, 18.4-24.0%, and 15.8-23.2%, respectively, by clone 345-1, and from 22.9-29.4%, 31.7-43.8%, 16.5-24.2%, and 14.9-23.9%, respectively, by clone 347-1. In the hydroponic experiment, B toxic symptoms were observed at treatments of 150 and 200mg B L-1 for clones 345-1 and 347-14, respectively. The greatest leaf B concentrations of 3699 and 1913mgkg-1 were found in clone 345-1 and clone 347-14, respectively. The translocation factor (TF) of clone 347-14 was less than clone 345-1. Clone 345-1 only showed significantly greater (P<0.05) B removal percentages than clone 347-14 when B treatment was <20mg B L-1. In conclusion, both tested poplar clones competitively accumulated and removed B and Se in constructed wetlands.


Subject(s)
Biodegradation, Environmental , Boron/isolation & purification , Populus/metabolism , Saline Waters/chemistry , Selenium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Wetlands , Biomass , Boron/analysis , Boron/metabolism , Chlorides/isolation & purification , Hybridization, Genetic , Hydroponics , Populus/genetics , Selenium/analysis , Selenium/metabolism , Sodium/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL