Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
PLoS One ; 19(4): e0300864, 2024.
Article in English | MEDLINE | ID: mdl-38635849

ABSTRACT

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Subject(s)
Cucurbita , Animals , Female , Sheep , Cucurbita/metabolism , Lactation , Salvia hispanica , Detergents , Dietary Fiber/metabolism , Diet/veterinary , Seeds/metabolism , Digestion , Animal Feed/analysis , Zea mays/metabolism , Dietary Supplements/analysis , Rumen/metabolism
2.
Food Funct ; 15(3): 1158-1169, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38239106

ABSTRACT

In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-ß) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.


Subject(s)
Obesity , Salvia hispanica , Salvia , Humans , Obesity/drug therapy , Obesity/metabolism , Plant Extracts/metabolism , Insulin/metabolism , Inflammation/metabolism , Seeds/chemistry , Salvia/chemistry
3.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257357

ABSTRACT

Eating practices are changing due to awareness about meat consumption associated with social, ethical, environmental, and nutritional issues. Plant-based meat analogs are alternatives to conventional meat products that attempt to mimic all the inherent characteristics of meat fully. Therefore, the search for raw materials that provide these characteristics is increasing. Chia seeds have excellent potential as a functional ingredient in these products since they are a source of proteins, lipids, and fibers. Allied with this, the full use of chia through the seed and its fractions highlights the numerous beneficial characteristics of the formulation regarding nutritional characteristics and techno-functionality. Therefore, this review aims to highlight the potential of chia seed and its fractions for applications in meat-like products. Chia seeds are protein sources. Chia oil is rich in polyunsaturated fatty acids, and its application in emulsions ensures the oil's nutritional quality and maintains its technological characteristics. Defatted chia flour has a high protein content and can be used to extract chia mucilage. Due to its high emulsification capacity, chia mucilage is an effective ingredient for meat products and, consequently, meat-like products. Therefore, this literature review demonstrates the strategic potential of using chia seeds and their fractions to develop meat analogs.


Subject(s)
Meat Substitutes , Plant Extracts , Salvia hispanica , Seeds , Meat , Flour
4.
J Sci Food Agric ; 104(6): 3352-3360, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105416

ABSTRACT

BACKGROUND: Omega-3 fatty acids are known for their various health benefits. Chia is the richest vegetable source of omega-3 fatty acids. However, its oil is highly susceptible to oxidative deterioration and should be protected for incorporation into food matrices. This work aimed to study the incorporation of different chia oil microcapsules in a powdered beverage, analyzing the effect on the physicochemical characteristics and stability during storage. RESULTS: Different types of microcapsules were obtained: monolayer microcapsules using sodium caseinate and lactose as wall material, and multilayer microcapsules produced through electrostatic deposition using lecithins, chitosan, and chia mucilage as the first, second, and third layers, respectively. The results demonstrated an efficient enrichment of smoothies, with omega-3 fatty acid values ranging from 24.09% to 42.73%, while the original food matrix powder lacked this component. These powder beverages exhibited low moisture content (≤ 2.91%) and low water activity (≤ 0.39). The aerated, packed density and compressibility assays indicated that adding microcapsules made the powders less dense and compressible. The color of the original powdered beverage was not modified. The dispersibility reflected an acceptable instantaneity, reaching the maximum obscuration after 30 s of stirring. The solubility of all the enriched products was higher than 70%, whereas the pH was ~6.8. The contact angle between the powder and liquid indicated an excellent ability to be reconstituted in water. The analysis of the glass transition temperature showed that the storage temperature (25 °C) was adequate. The peroxide value of all the products was low throughout the storage (≤ 1.63 meq peroxide kg-1 of oil at 90 days at 25 ± 2 °C), thus maintaining the quality of the microencapsulated chia oil. CONCLUSIONS: The results suggest that incorporating the monolayer and multilayer chia oil microcapsules that were studied could be a viable strategy for enriching smoothies with the omega-3 fatty acids present in chia seed oil. © 2023 Society of Chemical Industry.


Subject(s)
Fatty Acids, Omega-3 , Plant Extracts , Salvia hispanica , Salvia , Salvia/chemistry , Fruit/chemistry , Fatty Acids, Omega-3/chemistry , Capsules , Powders , Plant Oils/chemistry , Beverages/analysis , Water , Peroxides , Fatty Acids
5.
Molecules ; 28(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38138560

ABSTRACT

Diabetes mellitus (DM) is considered one of the major health diseases worldwide, one that requires immediate alternatives to allow treatments for DM to be more effective and less costly for patients and also for health-care systems. Recent approaches propose treatments for DM based on that; in addition to focusing on reducing hyperglycemia, they also consider multitargets, as in the case of plants. Among these, we find the plant known as chia to be highlighted, a crop native to Mexico and one cultivated in Mesoamerica from pre-Hispanic times. The present work contributes to the review of the antidiabetic effects of chia for the treatment of DM. The antidiabetic effects of chia are effective in different mechanisms involved in the complex pathogenesis of DM, including hypoglycemic, antioxidant, and anti-inflammatory mechanisms, and the inhibition of the enzymes α-glucosidase and α-amylase, as well as in the prevention of the risk of cardiovascular disease. The tests reviewed included 16 in vivo assays on rodent models, 13 clinical trials, and 4 in vitro tests. Furthermore, chia represents advantages over other natural products due to its availability and its acceptance and, in addition, as a component of the daily diet worldwide, especially due to its omega-3 fatty acids and its high concentration of dietary fiber. Thus, chia in the present work represents a source of antidiabetic agents that would perhaps be useful in novel clinical treatments.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Salvia , Humans , alpha-Amylases , alpha-Glucosidases , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Salvia hispanica , Seeds
6.
Curr Top Med Chem ; 23(28): 2621-2639, 2023.
Article in English | MEDLINE | ID: mdl-37855294

ABSTRACT

AIMS: The purpose of this review was to emphasize the nutritional value, and pharmacological and phytochemical properties of Salvia hispanica, as well as its toxicological evaluation. BACKGROUND: Salvia hispanica L. (S. hispanica), also called chia seeds, is an annual herbaceous plant belonging to the family Lamiaceae. It is a species of medicinal and dietary plant used since ancient times by the Maya and Aztecs. Its product is an indehiscent dry fruit that is commonly called a seed. It is utilized for its health benefits and uses in cooking. OBJECTIVE: The study aimed to investigate the pharmacological, phytochemical, and toxicological properties of S. hispanica seeds. The research also attempted to explore and compile all existing knowledge and data on these seeds' nutritional value and medical applications. MATERIALS AND METHODS: The current review was conducted using numerous scientific databases, including Science Direct, Scopus, PubMed, Google Scholar, etc. The correct plant name was verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS: S. hispanica is a pseudo cereal that is consumed by the world's population because of its preventive, functional, and antioxidant characteristics, attributable to the presence of lipids, dietary fiber, protein, phenolic compounds, vitamins, and minerals. According to research, chia offers hypoglycemic, antimicrobial, anticancer, anti-inflammatory, antioxidant, antihypersensitive, anti-obesity, and cardioprotective properties. Chia consumption has grown because of its favorable benefits on obesity, cardiovascular disease, diabetes, and several forms of cancer. These advantages are mostly due to the high concentration of essential fatty acids, dietary fiber, antioxidants, flavonoids, anthocyanins, vitamins, carotenoids, and minerals found in this seed. Based on the beneficial components, chia seeds have enormous potential in the areas of health, food, animal feed, medicines, and nutraceuticals. Finally, toxicological investigations have indicated the greater doses of chia seed extracts as safe. CONCLUSION: The current evaluation has focused on the distribution, chemical composition, nutritional value, and principal uses of S. hispanica in order to determine future research requirements and examine its pharmacological applications through clinical studies.


Subject(s)
Salvia hispanica , Salvia , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Ethnopharmacology , Salvia/chemistry , Salvia/metabolism , Anthocyanins , Minerals/metabolism , Vitamins/metabolism , Dietary Fiber/metabolism , Nutritive Value , Phytochemicals/pharmacology , Phytochemicals/metabolism
7.
Plant Physiol Biochem ; 199: 107737, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37163804

ABSTRACT

Chia (Salvia hispanica) is a functional food crop with high α-linolenic acid (ALA), the omega-3 essential fatty acid, but its worldwide plantation is limited by cold-intolerance and strict short-photoperiod flowering feature. Fatty acid desaturases (FADs) are responsible for seed oil accumulation, and play important roles in cold stress tolerance of plants. To date, there is no report on systemically genome-wide analysis of FAD genes in chia (ShiFADs). In this study, 31 ShiFAD genes were identified, 3 of which contained 2 alternative splicing transcripts, and they were located in 6 chromosomes of chia. Phylogenetic analysis classified the ShiFAD proteins into 7 groups, with conserved gene structure and MEME motifs within each group. Tandem and segmental duplications coursed the expansion of ShiFAD genes. Numerous cis-regulatory elements, including hormone response elements, growth and development elements, biotic/abiotic stress response elements, and transcription factor binding sites, were predicted in ShiFAD promoters. 24 miRNAs targeting ShiFAD genes were identified at whole-genome level. In total, 15 SSR loci were predicted in ShiFAD genes/promoters. RNA-seq data showed that ShiFAD genes were expressed in various organs with different levels. qRT-PCR detection revealed the inducibility of ShiSAD2 and ShiSAD7 in response to cold stress, and validated the seed-specific expression of ShiSAD11a. Yeast expression of ShiSAD11a confirmed the catalytic activity of its encoded protein, and its heterologous expression in Arabidopsis thaliana significantly increased seed oleic acid content. This work lays a foundation for molecular dissection of chia high-ALA trait and functional study of ShiFAD genes in cold tolerance.


Subject(s)
Fatty Acid Desaturases , Salvia , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Salvia hispanica , Phylogeny , Salvia/genetics , Salvia/metabolism , Plant Oils/chemistry , Seeds/metabolism
8.
Reprod Domest Anim ; 58(6): 823-832, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37017149

ABSTRACT

The influence of the functional food plant chia (Salvia hispanica L.) on reproduction functions and its ability to prevent the negative effects of environmental contaminants has not yet been studied. Our study aimed to examine the effect of chia seed extract alone and in combination with xylene on the markers of proliferation, apoptosis and hormones release by cultured bovine and porcine ovarian granulosa cells. The extract of chia reduced all of the measured parameters in bovine and porcine ovarian cells but had no effect on the proliferation of porcine cells. Xylene, stimulated proliferation and IGF-I release and inhibited the release of progesterone and testosterone but not apoptosis of bovine granulosa cells. It promoted proliferation, apoptosis and progesterone output by porcine cells. Chia mitigated the stimulatory effect of xylene on proliferation but not on other parameters in both species. The present results are the first demonstration of a direct effect of chia on basic ovarian cell functions. They confirmed a direct influence of xylene on these functions and found a similar stimulatory action of xylene on bovine and porcine ovarian cell proliferation. The present observations demonstrated species-specific differences in the characteristics of xylene influences on ovarian cell apoptosis and secretory activity. Finally, the present results indicate that chia can be a natural protector against the proliferation-stimulating effects of xylene on ovarian cells in both species.


Subject(s)
Animals, Domestic , Progesterone , Female , Animals , Swine , Cattle , Progesterone/pharmacology , Salvia hispanica , Xylenes/pharmacology , Cells, Cultured , Plant Extracts/pharmacology , Granulosa Cells , Cell Proliferation
9.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985699

ABSTRACT

The purpose of this study was to evaluate the phytochemical profiles of the seeds, sprouts, leaves, flowers, roots and herb of Salvia hispanica and to demonstrate their significant contribution to antioxidant and antimicrobial activities. Applied methods were: HPLC-DAD coupled with post-column derivatization with ABTS reagent, untargeted metabolomics performed by LC-Q-Orbitrap HRMS, and two-fold micro-dilution broth method, which involved suspending a solution of tested compounds dissolved in DMSO in Mueller-Hinton broth for bacteria or Mueller-Hinton broth with 2% glucose for fungi. Metabolomic profiling using LC-Q-Orbitrap HRMS used in this study yielded the identification and preliminary characterization of one hundred fifteen compounds. The dominant class of compounds was terpenoids (31 compounds), followed by flavonoids (21 compounds), phenolic acids and derivatives (19 compounds), organic acids (16 compounds) and others (fatty acids, sugars and unidentified compounds). The organic and phenolic acids were the most abundant classes in terms of total peak area, with distribution depending on the plant raw materials obtained from S. hispanica. The main compound among this class for all types of extracts was rosmarinic acid which was proven to be the most abundant for antioxidant potential. All tested extracts exhibited considerable antibacterial and antifungal activity. The strongest bioactivity was found in leaf extracts, which presented bactericidal activity against Gram-positive bacteria (S. aureus, S. epidermidis, M. luteus and E. faecalis). The work represents the first compendium of knowledge comparing different S. hispanica plant raw materials in terms of the profile of biologically active metabolites and their contribution to antioxidant, antimicrobial and antifungal activity.


Subject(s)
Anti-Infective Agents , Salvia , Antioxidants/chemistry , Salvia hispanica , Antifungal Agents/pharmacology , Antifungal Agents/analysis , Staphylococcus aureus , Salvia/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Plant Extracts/chemistry , Seeds/chemistry , Flowers/chemistry
10.
Acta Biochim Pol ; 70(1): 211-218, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36848526

ABSTRACT

Oil oxidation is important in terms of taste, nutritive component quality and toxic effect of the oil. In this study, the oxidized sunflower oil was used along with chia seed in rabbits for the determination of its effects on various hematological and serum biochemical parameters as well as on liver histopathology. Three rabbits were fed with oxidized oil (obtained by heating) at the dose rate of 2 ml/kg body weight by mixing it with green fodder. The other rabbit groups were fed with Chia seed at dose rate of 1, 2 and 3 g/kg along with oxidized sunflower oil. Chia seed was fed alone to three rabbits at the dose rate of 2 g/kg body weight. All rabbits were fed regularly for twenty-one days. For the determination of hematological and biochemical parameters, whole blood and serum samples were collected on different days during feeding period. For histopathology, liver samples were used. Significant changes (p<0.05) were noted in the hematology and biochemical indices in the rabbits that were fed with oxidized sunflower oil alone, and along with different doses of Chia seed. In a dose-dependent manner, all these parameters were significantly improved (p<0.05), when the amount of Chia seed was increased. The biochemical and hematological indices were in normal range in the group fed only with Chia seed. In oxidized oil fed group, liver histopathological analysis showed that cholestasis was present at both sides (bile pigment secretion) and zone 3 necrosis with mild inflammatory cells. Mild vacuolization of hepatocytes was also observed. In Chia seed fed group, hepatocyte vacuolization and mild necrosis was noted. It was concluded that oxidized sunflower oil alters the biochemical and hematological parameters and causes liver abnormalities. Chia seeds act as an antioxidant and retrieve those alterations.


Subject(s)
Helianthus , Salvia , Animals , Rabbits , Salvia hispanica , Sunflower Oil , Seeds , Body Weight
11.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Article in English | MEDLINE | ID: mdl-35995908

ABSTRACT

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Subject(s)
Oxacillin , Staphylococcus aureus , Oxacillin/pharmacology , Oxacillin/analysis , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/analysis , Salvia hispanica , Anti-Bacterial Agents/pharmacology , Seeds/chemistry , Drug Combinations
12.
Molecules ; 27(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36144643

ABSTRACT

Health-protective functional foods are gaining popularity in the world of nutrition because they promote excellent health while decreasing pharmaceutical burdens. Chia seeds (CS) (Salvia hispanica L.), the greatest vegetative source of α-linolenic acid, bioactive proteins, and fibers, are among the top unconventional oilseeds shown to have bounteous benefits against various non-communicable diseases. Purposely, this study was designed to integrate roasted CS powder into white-flour-based ordinary bakery goods to improve their nutritional and nutraceutical profiles. CS efficacy in normal and hyperlipidemic Sprague-Dawley rats resulted in mitigating blood glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol while elevating high-density lipoprotein cholesterol, hematocrit, hemoglobin, red blood cell counts, and platelets. The nutritional profiling of chia-fortified muffins indicated significant increases of 47% in fat, 92% in fiber, 15% in protein, and 62% in minerals. The farinographic experiments of CS-blends revealed generally improved dough quality features with a significant rise in the degree of softening as fortification levels increased. A marketable recipe for CSF-muffins with several degrees of fortification demonstrated a significant rise in fat, 92% rise in fiber, 15% rise in protein, and 62% rise in minerals. Sensorial evaluation by trained taste panelists revealed a maximum appraisal of the 15% chia-fortified muffins due to aroma, appearance, and overall acceptability, and were forwarded for being acceptable for commercialization.


Subject(s)
Salvia , Animals , Blood Glucose/metabolism , Cholesterol, HDL , Cholesterol, LDL , Dietary Fiber/analysis , Food , Plant Extracts , Powders , Rats , Rats, Sprague-Dawley , Salvia/metabolism , Salvia hispanica , Seeds/chemistry , Triglycerides , alpha-Linolenic Acid
13.
J Food Sci ; 87(9): 3872-3887, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35982647

ABSTRACT

This study aimed to determine the association between the seed coat color of two chia seed genotypes for their composition, protein content, amino acid, and fatty acid profiles. The optimal pH for protein isolation for both genotypes (BCPI and WCPI) was 10, based on protein purity and solubility. Fatty acid profiling indicated, overall, 18 different fatty acids higher in BCPI10 with linolenic acid domination (∼66%) followed by linoleic acid (∼19%) and oleic acid (∼6%), contributing PUFAs (∼86%). Optimized protein isolates, black (BCPI10) and white (WCPI10) chia, had shown purity, L*-value, solubility, and yields of 90.65%, 75.86%, 77.75%, 11.30%, and 90.00%, 77.83%, 76.07%, 10.69%, respectively. BCPI10 depicted higher EAA (33.19 g/100 g N) and EEA indices (57.676%) compared to WCPI10 (32.14 g/100 g N) and 56.360%, respectively. Amino acid profiling indicated higher, PER, TAA, TEAA, TNEAA, TAAA, TBA, acidic AA values for BCPI10, and higher leucine/isoleucine ratio for WCPI10 having leucine and sulfur amino acids as limiting amino acids. BCPI10 had higher sulfur-containing amino acid contents, as the main contributor to the albumin a water-soluble fraction, leading to its higher in vitro digestibility (71.97%) than WCPI10 (67.70%). Both isolates exhibited good WHC and OHC of 3.18, 2.39 and 3.00, 2.20, respectively. Both protein isolates had similar ∆Td (°C) values with some variation in FTIR spectrum from 1000 cm-1 to 1651 cm-1 having more peak intensity for BCPI10. SDS-PAGE indicated bands at 150 kDa, representing globulin and mild bands at 25-33 kDa for glutelin and albumin. A significant (p < 0.05) variation reported in this study for protein and lipid profiles of both genotype attributes to genetic differences between the seeds. PRACTICAL APPLICATION: Based on the nutritional profile, both chia seed isolates (black and white) are suitable for consumption with an edge for black seed when supplemented with their limiting amino acids. The high values of the functional properties and structural characteristics combined with high nutritional values make the chia protein isolate an excellent source of raw material for various food formulations. Fatty acid profile of the oils from the genotypes showed the presence of high amounts of unsaturated fatty acids, especially the PUFAs with more number of fatty acids in black chia seed. The excellent lipid profile of chia seed oil indicates the benefit of using chia seed oil as a source of essential fatty acids in the human diet for optimal health.


Subject(s)
Amino Acids, Sulfur , Salvia , Albumins , Amino Acids, Sulfur/analysis , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Genotype , Glutens/analysis , Humans , Isoleucine/analysis , Leucine/analysis , Linoleic Acids/analysis , Oils/analysis , Oleic Acids/analysis , Salvia/chemistry , Salvia/genetics , Salvia hispanica , Seeds/chemistry , Sulfur/analysis , Water/analysis , alpha-Linolenic Acid/analysis
14.
Int J Biol Macromol ; 218: 751-759, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35905758

ABSTRACT

Plastic pollution is increasing day by day and the search for new, environmentally friendly products continues. Herein, for the first time, different degrees of mucilage were obtained from chia seeds and the film-forming behavior of levan biopolymer with these mucilages was investigated. Glycerol and sorbitol were used as plasticizers in the film design. Films prepared with sorbitol were characterized physically, mechanically and morphologically. The antioxidant and antimicrobial effects of the films were examined. The films formed as nanocomposites of levan and chia seed mucilages obtained at different temperatures (25 °C, 55 °C and 80 °C) exhibited structurally and mechanically different properties. It was observed that the films obtained with chia mucilages and levan preserved their antibacterial properties but lost their antifungal properties. In addition, quorum sensing property of the mucilage obtained at 55 °C during the investigation of the antibacterial property was reported for the first time with this study. The levan-based chia seed mucilages films obtained have the potential to be used in industrial and medical fields, and the nature-friendly nature of these films is very important for our green world.


Subject(s)
Nanocomposites , Plant Mucilage , Salvia , Anti-Bacterial Agents/pharmacology , Fructans , Plant Extracts , Polymers , Polysaccharides , Salvia hispanica , Seeds , Sorbitol
15.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35806294

ABSTRACT

Chia seed peptides (CSP) can be a source of multifunctional biopeptides to treat non-communicable diseases. However, interactions and binding affinity involved in targeting specific receptors remains unexplored. In this study, molecular simulation techniques were used as virtual screening of CSP to determine drug-like candidates using a multi-target-directed ligand approach. CSP fraction with the best bioactivities in vitro was sequenced. Then, a prediction model was built using physicochemical descriptors (hydrophobicity, hydrophilicity, intestinal stability, antiangiogenic, antihypertensive, and anti-inflammatory) to calculate potential scores and rank possible biopeptides. Furthermore, molecular dynamics simulations (MDS) and ensemble molecular docking analysis were carried out using four human protein targets (ACE, angiotensin converting enzyme; VEGF, vascular endothelial growth factor; GLUC, glucocorticoid and MINC, mineralocorticoid receptors). Five known-sequence peptides (NNVFYPF, FNIVFPG, SRPWPIDY, QLQRWFR, GSRFDWTR) and five de novo peptides (DFKF, DLRF, FKAF, FRSF, QFRF) had the lowest energy score and higher affinity for ACE and VEGF. The therapeutic effects of these selected peptides can be related to the inhibition of the enzymes involved in angiogenesis and hypertension, due to formation of stable complexes with VEGF and ACE binding sites, respectively. The application of MDS is a good resource for identifying bioactive peptides for future experimental validation.


Subject(s)
Salvia hispanica , Salvia , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Plant Extracts , Salvia/chemistry , Vascular Endothelial Growth Factor A
16.
Food Res Int ; 156: 111164, 2022 06.
Article in English | MEDLINE | ID: mdl-35651030

ABSTRACT

Given obesity and its associated metabolic disorders have reached epidemic proportions, the study of therapeutic strategies targeting white adipose tissue (WAT) are of main research interest. We previously shown that α-linolenic acid-rich chia seed was able to ameliorate a wide range of metabolic disorders including body fat accretion in sucrose-rich diet (SRD)-fed rats, an experimental model of visceral adiposity and insulin resistance. However, the mechanisms involved are not fully clarified. The aim of this study was to evaluate the effect of chia seed administration upon WAT remodeling and key enzymes that controls lipolysis, insulin signaling (tAKT, pAKT), and GLUT-4 levels in different visceral fat pad depots (epididymal -eWAT- and retroperitoneal -rWAT- adipose tissues) of SRD-fed rats. Results showed that chia seed reduces adipocytes hypertrophy, the increased lipid content and collagen deposition in both WAT. These changes were accompanied by a significant reduction of HSL and ATGL protein levels in eWAT and HSL protein levels in rWAT. Moreover, chia seed restored the altered expression pattern of the pAKT observed in SRD-fed rats, and modulated GLUT-4 levels. Chia seed could be a dietary intervention of great relevance with potential beneficial effects in the management of body fat excess and WAT function.


Subject(s)
Salvia , alpha-Linolenic Acid , Adiposity , Animals , Collagen , Diet , Insulin/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Plant Extracts , Rats , Rats, Wistar , Rodentia/metabolism , Salvia/metabolism , Salvia hispanica , alpha-Linolenic Acid/pharmacology
17.
J Food Sci ; 87(7): 2798-2819, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35708201

ABSTRACT

Chia seed oil (CSO) has been recently gaining tremendous interest as a functional food. The oil is rich in with polyunsaturated fatty acids (PUFAs), especially, alpha linolenic acid (ALA), linoleic acid (LA), tocopherols, phenolic acids, vitamins, and antioxidants. Extracting CSO through green technologies has been highly efficient, cost-effective, and sustainable, which has also shown to improve its nutritional potential and proved to be eco-friendly than any other traditional or conventional processes. Due to the presence of valuable bioactive metabolites, CSO is proving to be a revolutionary source for food, baking, dairy, pharmaceutical, livestock feed, and cosmetic industries. CSO has been reported to possess antidiabetic, anticancer, anti-inflammatory, antiobesity, antioxidant, antihyperlipidemic, insect-repellent, and skin-healing properties. However, studies on toxicological safety and commercial potency of CSO are limited and therefore the need of the hour is to focus on large-scale molecular mechanistic and clinical studies, which may throw light on the possible translational opportunities of CSO to be utilized to its complete potential. In this review, we have deliberated on the untapped therapeutical possibilities and novel findings about this functional food, its biochemical composition, extraction methods, nutritional profiling, oil stability, and nutraceutical and pharmaceutical applications for its health benefits and ability to counter various diseases.


Subject(s)
Salvia , Antioxidants/analysis , Functional Food , Pharmaceutical Preparations/analysis , Plant Extracts , Plant Oils/chemistry , Salvia/chemistry , Salvia hispanica , Seeds/chemistry
18.
J Med Food ; 25(5): 529-533, 2022 May.
Article in English | MEDLINE | ID: mdl-35333621

ABSTRACT

Cancer is one of the main causes of mortality and morbidity worldwide, which does not have a fully effective medical treatment. Therefore, the objective of this study was to evaluate the effect of lipidically characterized and hydrolyzed chia seed (Salvia hispanica L.) oil on in vitro colon cancer (Caco2 cell line) and breast cancer cells (MCF7 cell line) cell viability. Cancer cells were treated with different hydrolyzed oil concentrations (12.5-400 µg/mL) for 48 h; then cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. All chia seed oil concentrations significantly reduced cell viability in the Caco2 line, with the best reduction being 23.88% with the 25 µg/mL concentration. However, in the breast cancer line the highest concentrations (200 and 400 µg/mL) increased the viability of malignant cells. Chia seed oil significantly reduces the viability of Caco2 cells, although at the higher concentrations it can increase the viability of breast cancer cells.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Salvia , Breast Neoplasms/drug therapy , Caco-2 Cells , Cell Survival , Colonic Neoplasms/drug therapy , Female , Humans , Plant Oils/pharmacology , Salvia hispanica , Seeds
19.
Biomarkers ; 27(5): 427-440, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35253573

ABSTRACT

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder and may lead to cognitive dysfunctions. OBJECTIVE: The aim of this work is to evaluate the potency of Salvia hispanica L. seeds (S. hispanica L.) (chia seeds) petroleum ether extract in attenuating brain complications associated with streptozotocin (STZ) induced diabetes in rats. MATERIALS AND METHODS: Phytochemical composition of the seeds extract, macro and micro elements, vitamins, protein, carbohydrate and caloric values were estimated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg body weight (b.wt)). Glibenclamide as a reference drug was also evaluated. The biochemical evaluation was done by measuring levels of glucose, insulin, α- amylase, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), dopamine (DA), serotonin (5-HD), noradrenaline (NE), acetylcholinesterase (AchE), tumour necrosis factor-α (TNF-α), DNA fragmentation pattern and the histopathological profile of the brain hippocampus region. RESULTS: Gas chromatography/mass spectrometry (GC/MS) analysis revealed the presence of twenty-five fatty acid esters and twenty-two compounds. Column chromatography led to the isolation of nine compounds. Treatment with the seeds extract revealed improvement of the measured parameters with variable degrees. CONCLUSION: Chia seeds extract succeeded to attenuate the neurodegeneration in diabetic rats. Thereafter, it had a therapeutic effect and could be potentially used as a new dietary supplement against diabetic encephalopathy.


Subject(s)
Brain Diseases , Diabetes Mellitus, Experimental , Plant Extracts , Salvia hispanica , Acetylcholinesterase , Animals , Brain Diseases/drug therapy , DNA , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Neurotransmitter Agents , Oxidative Stress , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Salvia hispanica/chemistry , Seeds/chemistry , Streptozocin
20.
Molecules ; 27(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35208997

ABSTRACT

Chia seeds (Salviae hispanicae semen) are obtained from Salvia hispanica L. This raw material is distinguished by its rich chemical composition and valuable nutritional properties. It is currently referred to as "health food". The purpose of the present work was to perform a literature review on S. hispanica and chia seeds, focusing on their chemical composition, biological properties, dietary importance, and medicinal uses. The valuable biological properties of chia seeds are related to their rich chemical composition, with particularly high content of polyunsaturated fatty acids, essential amino acids, polyphenols, as well as vitamins and bioelements. The available scientific literature indicates the cardioprotective, hypotensive, antidiabetic, and antiatherosclerotic effects of this raw material. In addition, studies based on in vitro assays and animal and human models have proven that chia seeds are characterized by neuroprotective, hepatoprotective, anti-inflammatory, and antioxidant properties. These properties indicate a valuable role of chia in the prevention of civilization diseases. Chia seeds are increasingly popular in functional food and cosmetic and pharmaceutical industries. That is attributed not only to their desirable chemical composition and biological activity but also to their high availability. Nevertheless, S. hispanica is also the object of specific biotechnological studies aimed at elaboration of micropropagation protocols of this plant species.


Subject(s)
Salvia hispanica/chemistry , Salvia hispanica/physiology , Seeds , Animals , Biotechnology , Cosmetics , Drug Development , Ecosystem , Functional Food , Humans , Nutritive Value , Organ Specificity , Phytochemicals , Plant Development , Plants, Medicinal , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL