Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Publication year range
1.
Nat Prod Res ; 38(6): 1002-1006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37194675

ABSTRACT

The fruits of Sapindus saponaria L., popularly known as 'saboeiro', have been used in medicine. This study evaluated the antioxidant and antitumor activities of the hydroethanolic extract (HAE) and fractions obtained from the fruit pericarp of S. saponaria. The HAE was obtained from the S. saponaria fruit pericarp by maceration; this was followed by fractionation using reversed-phase solid-phase extraction, resulting in fractions enriched with acyclic sesquiterpenic oligoglycosides (ASOG) and saponins (SAP1, and SAP2), confirmed by mass spectrometry with electrospray ionization (ESI-QTOF-MS). The greatest citotoxic activity was observed with the SAP1 fraction against the CaCo2 cell line with a GI50 of 8.1 µg mL-1, while the SAP2 fraction had a GI50 of 13.6 µg mL-1 against CaCo2. The HAE demonstrated the greatest antioxidant activity. S. saponaria has potential therapeutic use in the pharmaceutical industry as a natural anti-oxidant or antitumor product.


Subject(s)
Sapindus , Saponaria , Humans , Antioxidants/pharmacology , Antioxidants/analysis , Fruit/chemistry , Sapindus/chemistry , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/analysis
2.
Braz J Biol ; 83: e276940, 2023.
Article in English | MEDLINE | ID: mdl-37970909

ABSTRACT

The use of synthetic surfactants reflects the high demand in the hygiene and cleaning sector for products with low-cost and good-effectiveness. These ingredients are the main components of intimate soap formulations. Sapindus saponaria L. is a plant rich in saponins, with the potential to be used as a natural surfactant due to its amphiphilic character and its foam-forming properties. Therefore, this study aimed to develop intimate soap formulations using S. saponaria extract as a natural surfactant and analyze its stability and surfactant characteristics. Preliminary and accelerated stability parameters, rheological characteristics, surface tension, foaming power, foam stability and emulsification potential were evaluated. The formulations were stable at a pH suitable for the intimate region (4.0 to 4.5), the presence of S. saponaria extract provided greater reduction of surface tension, better foaming and foam stability and greater emulsification power, desirable characteristics for an intimate liquid soap. These results demonstrate that the incorporation of S. saponaria extract into liquid soap formulations is an excellent option as a natural surfactant to reduce the use of synthetic anionic surfactants such as SLES.


Subject(s)
Sapindus , Saponaria , Surface-Active Agents/chemistry , Soaps , Saponaria/chemistry , Plant Extracts
3.
J Appl Biomater Funct Mater ; 21: 22808000231166210, 2023.
Article in English | MEDLINE | ID: mdl-37029505

ABSTRACT

OBJECTIVES: This study aimed to compare the effectiveness of an experimental root canal irrigant and 17% Ethylene-di-amine tetra acetic acid for removal of the smear layer in the coronal, middle and apical portions of the root canal. MATERIALS AND METHODS: Ninety human single rooted maxillary and mandibular teeth were selected for this study. The teeth were randomly divided into two experimental groups and one control group as follows: Group A (Ethanolic extract of Sapindus Mukorossi), Group B (17% EDTA), and Group C (Distilled water). The root canals of all three groups were prepared with stainless steel K-files by means of the standard step-back technique and irrigated with 5.25% sodium hypo chloride. The teeth were decoronated, following the irrigation and divided longitudinally into two-halves and visualized using scanning electron microscope (SEM) for the amount of smear layer present utilizing the three-point score system. The observations were noted both before and after the treatment. Nonparametric tests were applied for the comparison and p-value ⩽ 0.05 was considered as statistically significant. RESULTS: It was evident from that smear layer was completely removed in coronal portion of 27 out of 30 teeth in-group A. For middle and apical areas of group A, 24 and 19 teeth showed complete smear layer removal. In-group B it was found that there were 24, 21, and 3 teeth at coronal, middle and apical, areas respectively where smear layer were completely absent. Intra group comparison showed a significant difference (p = 0.002) in smear layer removal was found for group A at coronal, middle and apical thirds. Similarly, a significant difference (p = 0.001) was also found for group B; however heavy smear layer was found among the three parts of the canal for group C. CONCLUSIONS: Ethanolic extract of Sapindus Mukorossi have higher effectiveness in removing the smear layer from the root canal in comparison to 17% EDTA.


Subject(s)
Edetic Acid , Root Canal Irrigants , Root Canal Therapy , Sapindus , Smear Layer , Tooth Root , Humans , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/drug effects , Edetic Acid/pharmacology , Microscopy, Electron, Scanning , Root Canal Irrigants/pharmacology , Root Canal Preparation/methods , Smear Layer/drug therapy , Tooth Root/diagnostic imaging , Tooth Root/drug effects , Root Canal Therapy/methods , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Tooth Diseases/drug therapy , Tooth Diseases/therapy , Phytotherapy
4.
Eur Rev Med Pharmacol Sci ; 27(7): 2724-2732, 2023 04.
Article in English | MEDLINE | ID: mdl-37070870

ABSTRACT

OBJECTIVE: The study evaluated the effect of Sapindus mukorossi (SM) extract as a final root canal irrigant on sealer penetration (SP) in dentinal tubules and microleakage. MATERIALS AND METHODS: Samples were selected based on inclusion and exclusion criteria. An access opening in all samples was performed and the working length was decided using pro taper for canal finishing along with constant irrigation. Specimens were randomly divided into 3 groups. Group 1 was irrigated with 3 ml of 17% EDTA; group 2 was irrigated with SM irrigant and group 3 samples were irrigated with 0.9% saline. After obturation, samples were vertically placed in 1% methylene blue dye cut in half longitudinally, and viewed under a stereomicroscope. Analysis of SP in the dentinal tubule was assessed using scanning electron microscopy (SEM). For microleakage assessment, mean and standard deviation were reported and One-Way ANOVA was applied. SP was compared using Kruskal-Wallis' test. For inspecting the interaction between SM/EDTA and NaOCl, Fisher's exact test was applied. No statistically significant difference between microleakage in any of the tested groups was observed. The control group showed minimum leakage as compared to EDTA and SM. RESULTS: The results displayed that there was no significant difference, (p=0.67), between dentinal tubule SP at 2 mm. A significant difference between dentinal tubule SP among groups at 5 mm was observed (p<0.05). CONCLUSIONS: SM ethanolic extract showed comparable outcomes of smear layer removal and sealer penetration to 17% EDTA, as a final irrigant in root canal cleaning. Therefore, SM has the potential to be used as an adjuvant final irrigant in conjunction with NaOCl.


Subject(s)
Plant Extracts , Root Canal Irrigants , Root Canal Preparation , Sapindus , Dentin , Edetic Acid , Root Canal Filling Materials , Root Canal Irrigants/pharmacology , Root Canal Preparation/methods , Sapindus/chemistry , Plant Extracts/pharmacology , Humans
5.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955695

ABSTRACT

Periodontitis is a common oral disease mainly caused by bacterial infection and inflammation of the gingiva. In the prevention or treatment of periodontitis, anti-bacterial agents are used to inhibit pathogen growth, despite increasing levels of bacterial resistance. Sapindus mukorossi Gaertn (SM) seed oil has proven anti-bacterial and anti-inflammation properties. However, the possibility of using this plant to prevent or treat periodontitis has not been reported previously. The aim of this study was to evaluate the effects of SM oil on experimental periodontitis in rats by using micro-CT and microbiota analysis. The distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the sagittal micro-CT slide showed that total bone loss (TBL) was significantly lower in CEJ-ABC distances between SM oil and SM oil-free groups on Day 14. Histology data also showed less alveolar bone resorption, a result consistent result with micro-CT imaging. The microbiota analyzed at phylum and class levels were compared between the SM oil and SM oil-free groups on Day 7 and Day 14. At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacterium. Firmicutes in box plot analysis was significantly less in the SM oil group than in the SM oil-free group on Day 7. At the class level, Bacteroidia, Gammaproteobacteria, Bacilli, Clostridia, and Erysipelotrichia were the dominant bacteria. The bacteria composition proportion of Bacilli, Clostridiay, and Erysipelotrichia could be seen in the SM oil group significantly less than in t SM oil-free group on Day 7. Overall, the present results show that topical application of SM oil can reduce bone resorption and change bacteria composition in the ligature-induced periodontitis model. According to these results, it is reasonable to suggest SM oil as a potential material for preventing oral disease.


Subject(s)
Alveolar Bone Loss , Microbiota , Periodontitis , Sapindus , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Animals , Bacteria , Disease Models, Animal , Periodontitis/pathology , Plant Oils/pharmacology , Plant Oils/therapeutic use , Rats
6.
Anim Biotechnol ; 33(1): 193-199, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35105278

ABSTRACT

To explore the newer saponin resources, in vitro toxicity of saponin-enriched fraction (SEF) extracted from Silene vulgaris(SV) was evaluated for first time and compared with in vitro toxicity of SEF extracted from Sapindus mukorossi (SM) and Chlorophytum borivilianum (CV). All extracted SEF from diverse resources were characterized by immersing TLC plates in 0.5% RBC suspension method, by ethanol: sulfuric acid method and by estimating hRst values. Each extracted SEF clearly portrayed specific pattern with varied hRst range. White spots against a pinkish-red background and greenish-black spots in case of immersion method and spraying method respectively were observed. After initial characterization, in vitro 0.5% sheep RBC lytic activities and VERO cell cytotoxic activities (via SRB assay) of each extracted SEF were also evaluated. Furthermore, SEF of SV showed very less hemolytic activity compared to SM and CB. The HD50 values for SV, SM, and CB were 736.7 ± 2.824, 18.0 ± 1.894, and 170.70 ± 2.783 µg/mL, respectively. SEF of SV (IC50 ≥ 200 µg/mL) was less toxic for VERO cell line than SEF of SM (IC50 = 150.8 µg/mL) and CB (IC50 = 137.1 µg/mL). Hence, the SEF of SV was found to be less toxic and can be used as a new and safer source of saponins.


Subject(s)
Antineoplastic Agents , Sapindus , Saponins , Silene , Animals , Plant Extracts/toxicity , Saponins/toxicity , Sheep
7.
Prep Biochem Biotechnol ; 52(1): 56-61, 2022.
Article in English | MEDLINE | ID: mdl-33881946

ABSTRACT

This work deals with the evaluation of nutritional and medicinal potential of a defatted kernel of Sapindus mukorossis seed. Defatted sapindus seed kernel is a rich source of proteins (33.4 ± 2.12%), which show balanced amino acid composition for the requirement of adults as per the World Health Organization. Protein isolate possesses 29 kDa molecular weight peptide, which shows trypsin inhibitor activity. It also showed around 31.2% reduction in amylase activity while aqueous Ethanol and ethanol extracts showed 55% and 72.83%, respectively. Aqueous ethanol and ethanol extracts were found to contain polyphenols and saponins. Polyphenol content in aqueous ethanol and ethanol extract was 4.50 ± 0.15 mg/g and 5.7 ± 0.34 mg/g ferulic acid equivalent, respectively, while 0.72 ± 0.68% and 1.2 ± 0.23% Oleonolic acid equivalent saponins, respectively. Both these extracts showed potent antioxidant activity, and the rate of DPPH scavenging activity was higher than the ferulic acid standard. The deffated seed also contains dietary fibers in which 3.8 ± 0.01% are soluble, and 2.2 ± 0.03% are insoluble fibers.


Subject(s)
Fats/isolation & purification , Polyphenols/analysis , Sapindus/chemistry , Saponins/analysis , Seeds/chemistry , Antioxidants/analysis , Nutritive Value , Plant Extracts/chemistry
8.
Cell Tissue Bank ; 23(1): 79-92, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33768473

ABSTRACT

Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.


Subject(s)
Sapindus , Tissue Engineering , Animals , Chick Embryo , Esophagus , Extracellular Matrix , Fruit , Goats , Plant Extracts , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
Sci Rep ; 11(1): 11657, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079016

ABSTRACT

Soapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree with widespread application in toiletries, biomedicine, biomass energy, and landscaping. The pericarp of soapberry can be used as a medicine or detergent. However, there is currently no systematic study on the chemical constituents of soapberry pericarp during fruit development and ripening, and the dynamic changes in these constituents still unclear. In this study, a non-targeted metabolomics approach using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to comprehensively profile the variations in metabolites in the soapberry pericarp at eight fruit growth stages. The metabolome coverage of UHPLC-HRMS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively annotated. Principal component analysis and hierarchical clustering analysis of pericarp metabolic composition revealed clear metabolic shifts from early (S1-S2) to late (S3-S5) development stages to fruit ripening stages (S6-S8). Furthermore, pairwise comparison identified 57 differential metabolites that were involved in 18 KEGG pathways. Early fruit development stages (S1-S2) were characterized by high levels of key fatty acids, nucleotides, organic acids, and phosphorylated intermediates, whereas fruit ripening stages (S6-S8) were characterized by high contents of bioactive and valuable metabolites, such as troxipide, vorinostat, furamizole, alpha-tocopherol quinone, luteolin, and sucrose. S8 (fully developed and mature stage) was the most suitable stage for fruit harvesting to utilize the pericarp. To the best of our knowledge, this was the first metabolomics study of the soapberry pericarp during whole fruit growth. The results could offer valuable information for harvesting, processing, and application of soapberry pericarp, as well as highlight the metabolites that could mediate the biological activity or properties of this medicinal plant.


Subject(s)
Fruit/chemistry , Metabolic Networks and Pathways/physiology , Metabolome , Metabolomics/methods , Sapindus/chemistry , Carboxylic Acids/classification , Carboxylic Acids/isolation & purification , Carboxylic Acids/metabolism , Chromatography, High Pressure Liquid , Fatty Acids/classification , Fatty Acids/isolation & purification , Fatty Acids/metabolism , Flavones/classification , Flavones/isolation & purification , Flavones/metabolism , Fruit/metabolism , Nucleotides/classification , Nucleotides/isolation & purification , Nucleotides/metabolism , Principal Component Analysis , Quinones/classification , Quinones/isolation & purification , Quinones/metabolism , Sapindus/metabolism , Saponins/classification , Saponins/isolation & purification , Saponins/metabolism
10.
J Ethnopharmacol ; 276: 114170, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33932515

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sapindus saponaria, also popularly known as soapberry, has been used in folk medicinal values because of its therapeutic properties and several compounds in its composition, which represent a target in potential for drug discovery. However, few data about its potential toxicity has been reported. AIM OF THE STUDY: Plant proteins can perform essential roles in survival, acting as defense mechanism, as well functioning as important molecular reserves for its natural metabolism. The aim of the current study was to investigate the in vitro toxicity profile of protein extract of S. saponaria and detect protein potentially involved in biological effects such as collagen hydrolysis and inhibition of viral proteases. MATERIALS AND METHODS: Protein extract of soapberry seeds was investigated for its cytotoxic and genotoxic action using the Ames test. The protein extract was also subjected to a partial purification process of a protease and a protease inhibitor by gel chromatography filtration techniques and the partially isolated proteins were characterized biochemically. RESULTS: Seed proteins extract of S. saponaria was evaluated until 100 µg/mL concentration, presenting cytotoxicity and mutagenicity in bacterial model mostly when exposed to exogenous metabolic system and causing cytotoxic and genotoxic effects in HepG2 cells. The purification and partial characterization of a serine protease (43 kDa) and a cysteine protease inhibitor (32.8 kDa) from protein extract of S. Saponaria, corroborate the idea of ​​the biological use of the plant as an insecticide and larvicide. Although it shows cytotoxic, mutagenic and genotoxic effects. CONCLUSION: The overall results of the present study provide supportive data on the potential use of proteins produced in S. saponaria seeds as pharmacological and biotechnological agents that can be further explored for the development of new drugs.


Subject(s)
DNA Damage/drug effects , Plant Extracts/pharmacology , Plant Extracts/toxicity , Sapindus/chemistry , Seeds/chemistry , Biochemical Phenomena , Cell Death/drug effects , Cystatins/chemistry , Cystatins/isolation & purification , Cystatins/pharmacology , Hep G2 Cells , Humans , Lethal Dose 50 , Micronucleus Tests , Mutagenicity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Salmonella typhimurium/drug effects , Serine Proteases/chemistry , Serine Proteases/isolation & purification , Serine Proteases/pharmacology
11.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801201

ABSTRACT

Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-ß-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.


Subject(s)
Alkaloids/pharmacology , Plant Extracts/pharmacology , Sapindus/chemistry , Saponins/pharmacology , Toxins, Biological/pharmacology , Trifolium/growth & development , Weed Control , Trifolium/drug effects
12.
Micron ; 142: 102997, 2021 03.
Article in English | MEDLINE | ID: mdl-33388519

ABSTRACT

The aim of this study is to develop a novel decellularization method using aqueous extract of soap nut pericarp (SPE) and its evaluation using hematoxylin-eosin staining, scanning electron microscopy, diamidino-2-phenylindol (DAPI) staining, mechanical testing, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DNA quantification. The presently available decellularization agent raises some concerns due to the potential for presence of residual cytotoxic agents in the extracellular matrix. Histological analysis of hematoxylin and eosin and masson's trichrome stained processed aortic samples shows complete decellularization with preservation of extracellular matrix microarchitecture at 120 h. Further, staining of tissue samples with DAPI demonstrates complete removal of DNA fragments. Quantitative evaluation of DNA in the decellularized aorta tissues demonstrated a significant (P < 0.01) decrease in DNA content as compared to native tissues. Collagen quantification assay indicate no significant (P> 0.05) difference in its content between native and decellularized caprine aorta. Tensile strength of the decellularized scaffolds decreased non-significantly (P > 0.05) when compared to native tissues. There was no significant (P > 0.05) difference in young's modulus of elasticity, stiffness and stretch ratio between native aortic tissues and decellularized aortic scaffolds. Histological and scanning electron microscopic examination of in vitro cultured scaffold demonstrated the cell viability and proliferation of primary chicken embryo fibroblasts. SPE treatment is thus capable of producing cytocompatible decellularized caprine aorta scaffold with preservation of extracellular matrix architecture for vascular tissue engineering and could be applied widely as one of the decellularization agent.


Subject(s)
Aorta/cytology , Cell Separation/methods , Plant Extracts , Sapindus , Tissue Engineering/methods , Tissue Scaffolds , Animals , Biomechanical Phenomena , Cell Survival , Chick Embryo , Collagen , Extracellular Matrix , Fibroblasts/metabolism , Fruit/chemistry , Goats , Histocompatibility , Microscopy, Electron, Scanning , Plant Extracts/chemistry , Regenerative Medicine , Sapindus/chemistry
13.
Microbiol Res ; 242: 126601, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33010587

ABSTRACT

Plants are boon to the mankind due to plenty of metabolites with medicinal values. Though plants have traditionally been used to treat various diseases, their biological values are not completely explored yet. Sapindus mukorossi is one such ethnobotanical plant identified for various biological activities. As biofilm formation and biofilm mediated drug resistance of methicillin-resistant Staphylococcus aureus (MRSA) have raised as serious global issue, search for antibiofilm agents has gained greater importance. Notably, antibiofilm potential of S. mukorossi is still unexplored. The aim of the study is to explore the effect of S. mukorossi methanolic extract (SMME) on MRSA biofilm formation and adhesive molecules production. Significantly, SMME exhibited 82 % of biofilm inhibition at 250 µg/mL without affecting the growth and microscopic analyses evidenced the concentration dependent antibiofilm activity of SMME. In vitro assays exhibited the reduction in slime, cell surface hydrophobicity, autoaggregation, extracellular polysaccharides substance and extracellular DNA synthesis upon SMME treatment. Further, qPCR analysis confirmed the ability of SMME to interfere with the expression of adhesion genes associated with biofilm formation such as icaA, icaD, fnbA, fnbB, clfA, cna, and altA. GC-MS analysis and molecular docking study revealed that oleic acid is responsible for the antibiofilm activity. FT-IR analysis validated the presence of oleic acid in SMME. These results suggest that SMME can be used as a promising therapeutic agent against MRSA biofilm-associated infections.


Subject(s)
Biofilms/growth & development , Gene Expression/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Oleic Acid/pharmacology , Plant Extracts/pharmacology , Sapindus/chemistry , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Oleic Acid/chemistry , Polymerase Chain Reaction , Spectroscopy, Fourier Transform Infrared , Virulence Factors/genetics
14.
Nat Prod Res ; 35(22): 4740-4745, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31994913

ABSTRACT

This study evaluated the antibacterial activities of different extracts of Sapindus mukorossi Gaertn. (S. mukorossi) on Cutibacterium acnes (C. acnes). The extract solvent and procedure were screened, based on the yield of saponins and minimum inhibitory concentration (MIC). The results showed that the optimized product, fermentation and ethyl acetate extract by adding isoamyl alcohol from water extract of S. mukorossi (SWFEAI), had the highest yield of saponins (7.83 ± 0.26%) and the best antibacterial activity (MIC = 0.125 mg/mL) on C. acnes. The destroyed bacterial cell membrane and wall were observed by transmission electron microscopy, which then resulted in cell lysis and death. Furthermore, 20 compounds of SWFEAI were detected, among which oleanane-type triterpenoid saponins with molecular weights of 734, 750, 882, 924 and 966 were speculated to contribute to the antibacterial activities of SWFEAI. The results showed that SWFEAI could be a natural anti-acne agent.


Subject(s)
Sapindus , Saponins , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Propionibacterium acnes , Saponins/pharmacology
15.
Nat Prod Res ; 35(22): 4323-4330, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31960729

ABSTRACT

The anti-tumor effects of two compounds purified from Sapindus mukorossi Gaertn. (S. mukorossi.) on breast cancer in vitro were observed. Their chemical structures were identified as sesquiterpene glycosides, namely, Mukurozioside IIa and Mukurozioside IIb. The results of XTT assay indicated that their inhibition rates against three cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-435s) reached approximately 80% at a concentration of 200 µg/mL, which were higher than that of cyclophosphamide (below 40% at 200 µg/mL), and their 50% inhibiting concentrations were ranged from 120.73 to 154.01 µg/mL, indicating their inhibition were weaker than their parent fraction. Furthermore, the mechanism on breast cancer was predicted, and 22 targets including PTPN1, IL2 and VEGFA were relatively important. These results illustrated the anti-breast cancer activity of S. mukorossi was related to the two compounds with the structure of sesquiterpene glycosides, but they did not represent the full activity of their parent fraction.


Subject(s)
Antineoplastic Agents , Sapindus , Sesquiterpenes , Glycosides/pharmacology , Plant Extracts , Sesquiterpenes/pharmacology
16.
Nat Prod Res ; 35(17): 2987-2991, 2021 Sep.
Article in English | MEDLINE | ID: mdl-31651193

ABSTRACT

In this study, water extract of Sapindus mukorossi Gaertn. pericarps against Candida albicans was evaluated through in vitro and in vivo studies. The most abundant active ingredient was triterpenoid saponins determined by UPLC-TOF-MS analysis. The minimum inhibitory concentration (MIC) was 0.039 mg/mL by using agar double dilution methods. The percentage of inhibition was 93.07% when C. albicans was treated for 4 h using a 1 mg/mL in vitro dose. A vaginitis model was developed by infecting mice with C. albicans. The fungal burden was tracked, which indicated that 10 mg/mL triterpenoid saponins reduced fungal quantity ranging from 3.0 to 1.84 Log CFU/100 µL. Moreover, the subsequent studies regarding four biomarkers with an enzyme-linked immunosorbent assay were conducted. It was confirmed that interleukin IL-1ß, IL-6, IL-8, and lactate dehydrogenase (LDH) were lower than untreated group, and vaginal pathology was significantly improved in tissue sections.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Plant Extracts/pharmacology , Sapindus , Saponins , Vaginitis/drug therapy , Animals , Female , Mice , Microbial Sensitivity Tests , Sapindus/chemistry , Saponins/pharmacology
17.
Nat Prod Res ; 35(21): 4148-4153, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32174195

ABSTRACT

In the present study, the biological activity of an extract of the secondary metabolites (E-G6-32) produced by the Curvularia sp. G6-32 endophyte (isolated from the medicinal plant Sapindus saponaria L.) was investigated. The antioxidant potential was confirmed by the DPPH (22.5%) and ABTS (62.7%) assays, and the total phenolic compound content was 40 µg gallic acid equivalents/mg. The extract E-G6-32 displayed good inhibitory activity toward butyrylcholinesterase (BuChE; IC50 = 110 ± 0.05 µg mL-1). The extract E-G6-32 was subjected to spectroscopic and mass spectrometry analyses. Comparison with the literature data confirmed that (-)-asperpentyn (1) was a major component. Asperpentyn belongs to the epoxyquinone family, which has attractive structural complexity, diverse functional groups, and a broad range of biological activities, including specific enzyme inhibitory activity. Our results suggest that Curvularia sp. G6-32 is a promising source of bioactive secondary metabolites and contains (-)-asperpentyn, which has potential pharmaceutical interest.[Figure: see text].


Subject(s)
Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Curvularia/chemistry , Sapindus , Butyrylcholinesterase , Endophytes/chemistry , Sapindus/microbiology , Secondary Metabolism
18.
J Ethnopharmacol ; 268: 113552, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33152431

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sapindus mukorossi Gaertn. (S. mukorossi), known as 'mu huan zi' in Chinese folklore, belongs to the family Sapindaceae and it has been traditionally used for treating coughing and excessive salivation, removing freckle, whitening skin, etc. Evidence-based medicine also verified the antimicrobial, anti-tyrosinase and anti-acne activity of S. mukorossi extract, suggesting that it has the potential to be a pharmaceutical and cosmetic additive. AIM OF THE STUDY: The present study was intended to evaluate the freckle-removing and skin-whitening activities of S. mukorossi extracts, and further analyzing the potential anti-acne mechanism. METHODS: Saponin fractions were purified by using the semi-preparative high-performance liquid chromatography, and their antibacterial activity was detected against Propionibacterium acnes (P. acnes), which was the leading cause of inflamed lesions in acne vulgaris. The anti-lipase and anti-tyrosinase activities were assayed using a commercial kit, while the potential anti-acne mechanism was predicted on the basis of the network pharmacology. Active components of saponin fraction were identified by HPLC-MS analysis. Furthermore, the different toxicity level of compounds was predicted according to the quantitative structure-activity relationship, and the first application of crude extract and saponin fraction to facial masks was analyzed based on the comprehensive evaluation method. RESULTS: The saponin fraction (F4) purified from the fermentation liquid-based water extract (SWF) showed the best antibacterial activity against P. acnes ATCC 6919 with the MIC of 0.06 mg/mL, which was 33-fold of its parent SWF (with the MIC of 2.0 mg/mL). Compared with SWF, the application of F4 caused greater inhibition rates on lipase and tyrosinase. Chemical constituents of F4 were evaluated, from which four oleanane-type triterpenoid saponins were detected to contribute to the above biological activities of F4. The mechanism of the four compounds on anti-acne was predicted, and seven targets such as PTGS2 and F2RL1 were obtained to be important for the treatment of acne. The four compounds were also predicted to have different levels of toxicity to various species, and they were not harmful to rats. Besides, F4 and SWF were applied to facial masks and there was no significant influence on the physicochemical properties including pH, stability, and sensory characteristics. CONCLUSION: This work demonstrated that oleanane-type triterpenoid saponins were speculated to contribute to the skin-whitening, freckle-removing, and anti-acne activities of F4. These findings will facilitate the development of the S. mukorossi extract and the allied products as the new and natural anti-acne agent and cosmetic additives.


Subject(s)
Acne Vulgaris/drug therapy , Cosmetics/administration & dosage , Plant Extracts/administration & dosage , Propionibacterium acnes/drug effects , Sapindus , Saponins/administration & dosage , Acne Vulgaris/diagnosis , Acne Vulgaris/microbiology , Adult , Cosmetics/isolation & purification , Cosmetics/toxicity , Drug Evaluation, Preclinical/methods , Female , Forecasting , Humans , Male , Microbial Sensitivity Tests/methods , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Propionibacterium acnes/physiology , Saponins/isolation & purification , Saponins/toxicity , Young Adult
19.
Article in English | MEDLINE | ID: mdl-32734890

ABSTRACT

Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.


Subject(s)
Hydrazones/pharmacology , Leishmania/drug effects , Sapindus/chemistry , Saponins/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/toxicity , Hydrazones/chemistry , Hydrazones/toxicity , Leishmania/metabolism , Leishmania/ultrastructure , Leishmania braziliensis/drug effects , Leishmania braziliensis/metabolism , Leishmania braziliensis/ultrastructure , Life Cycle Stages/drug effects , Mitochondria/drug effects , Mitochondria/ultrastructure , Peptide Hydrolases/drug effects , Peptide Hydrolases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Reinfection , Saponins/chemistry , Saponins/toxicity
20.
Sci Rep ; 9(1): 17025, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745144

ABSTRACT

Peptidase inhibitors (PIs) are defense proteins of plants which are active against gut peptidases of different insects. Sapindus mukorossi was identified as a source of bioactive PIs which could confer resistance against Bactrocera cucurbitae, a most devastating pest of several economically important crops. In the present study, a trypsin inhibitor was purified from mature dry seeds of S. mukorossi and characterized for its biochemical properties as well as its potential for bio control of B. cucurbitae. The purified fractions from RP- HPLC through SDS-PAGE gave an apparent molecular weight of ~29 kDa. S. mukorossi trypsin inhibitor (SMTI) was found to be a non-competitive inhibitor which was active over a broad range of temperature (10-100 °C) and pH (6-11). SMTI when incorporated in artificial diet inhibited the growth and development of B. cucurbitae larvae. Gene expression analysis of trypsin and chymotrypsin genes via qRT-PCR indicated that their mRNA expression was down-regulated while that of other genes namely, Catalase, Elastase, Superoxide Dismutase, Glutathione -S-transferase and Alkaline Phosphatase was up regulated. SMTI also showed deleterious effects against different bacterial strains. The results of this study indicated that S. mukorossi trypsin inhibitor has potential to be used as a bio control agent that can reduce the harm caused by melon fruit fly and other devastating pests.


Subject(s)
Biological Control Agents/pharmacology , Insecticides/pharmacology , Sapindus/chemistry , Tephritidae/drug effects , Trypsin Inhibitors/pharmacology , Animals , Larva/growth & development , Plant Extracts/pharmacology , Seeds/chemistry , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL