Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339117

ABSTRACT

Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.


Subject(s)
Cognitive Dysfunction , Dementia , Sideritis , Rats , Male , Animals , Scopolamine/adverse effects , Rats, Wistar , Acetylcholinesterase , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Dementia/chemically induced , Dementia/drug therapy , Maze Learning
2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139321

ABSTRACT

Dry eye disease is a common condition in patients of all ages, causing discomfort and potential visual problems. Current treatments, including artificial tears and anti-inflammatory drugs, have certain limitations, encouraging research into alternative therapies. We investigated the therapeutic potential of multi-wavelength light-emitting diode (LED) irradiation of mice with dry eye. First, we showed that multi-wavelength LED irradiation was non-toxic to human corneal epithelial cells and improved cell viability. We then used a scopolamine-induced mouse model of dry eye to assess the effects of multi-wavelength LED irradiation on various clinical parameters. This treatment increased the tear volume and reduced corneal irregularity, thus improving dry eye. Histological analysis revealed that multi-wavelength LED irradiation protected against corneal epithelial damage and the associated reduction in epithelial thickness and would thus improve the corneal health of dry eye patients. Multi-wavelength LED irradiation significantly reduced the corneal levels of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α; the treatment was thus anti-inflammatory. Our results suggest that multi-wavelength LED irradiation may serve as a safe and effective treatment for dry eye, alleviating symptoms, reducing inflammation, and promoting corneal health.


Subject(s)
Corneal Injuries , Dry Eye Syndromes , Humans , Mice , Animals , Scopolamine/adverse effects , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/pathology , Tears , Cornea/pathology , Disease Models, Animal , Anti-Inflammatory Agents/adverse effects , Corneal Injuries/pathology
3.
Article in Chinese | WPRIM | ID: wpr-928148

ABSTRACT

This study aims to investigate the mechanism of the Tibetan medicine Ershiwuwei Shanhu Pills(ESP) in improving scopolamine-induced learning and memory impairment in mice based on Keap1/Nrf2/HO-1 signaling pathway. ICR mice were randomized into blank group, model group, low-dose(200 mg·kg~(-1)), medium-dose(400 mg·kg~(-1)), and high-dose(800 mg·kg~(-1)) ESP groups, and donepezil hydrochloride group. The learning and memory impairment was induced in mice by intraperitoneal injection of scopola-mine. The learning and memory abilities of mice were detected by Morris water maze test, and the damage of hippocampal neurons and cortical neurons was detected based on Nissl staining. The expression of neuron specific nuclear protein(NeuN) in hippocampus and cortex of mice was determined by immunofluorescence assay, and the content of acetylcholine(Ach) and the activity of acetylcholines-terase(AchE) in hippocampus of mice by kits. Moreover, the content of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in serum of mice was detected. The content of Kelch-like ECH-associated protein 1(Keap1), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase 1(HO-1) in hippocampus was determined by Western blot. The results showed that there were significant differences in the trajectory map of mice among different groups in the behavioral experiment. Moreover, the latency of ESP groups decreased significantly compared with that in the model group. The hippocampal neurons in the high-dose ESP group were significantly more than those in the model group and the cortical neurons in the high-dose and medium-dose ESP groups were significantly more than those in the model group. The expression of NeuN in the model group was significantly decreased compared with that in the blank group, and the expression in the ESP groups was significantly higher than that in the model group. The AchE activity and MDA level were significantly decreased, and Ach content and levels of SOD, CAT, and T-AOC in the ESP groups were significantly increased in the ESP groups compared with those in the model group. The expression of Keap1 in the model group was significantly increased compared with that in the blank group, and the Keap1 expression increased insignificantly in ESP groups compared with that in the model group. The expression of Nrf2 and HO-1 was significantly lower in the model group than in the blank group, and the expression was significantly higher in the medium-dose ESP group than in the model group. In conclusion, ESP protected mice against the scopolamine-induced learning and memory impairment by regulating the Keap1/Nrf2/HO-1 signaling pathway.


Subject(s)
Animals , Mice , Kelch-Like ECH-Associated Protein 1/metabolism , Medicine, Tibetan Traditional , Mice, Inbred ICR , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Plant Extracts , Scopolamine/adverse effects , Signal Transduction , Superoxide Dismutase/metabolism
4.
Acta cir. bras ; 31(8): 520-526, Aug. 2016. tab, graf
Article in English | LILACS | ID: lil-792414

ABSTRACT

ABSTRACT PURPOSE: To evaluated the long-term effect of scopolamine and sesame oil on spatial memory. METHODS: Memory impairment induced by Intracerebroventricular (ICV) injection of scopolamine hydrochloride (10 μg/ rat). Animals were gavaged for 4 weeks with saline, sesame oil (0.5, 1, or 2 mL/kg/day), or 3 weeks with memantine (30 mg/kg/day) in advance to induction of amnesia. Morris water maze (MWM) test was conducted 6 days after microinjection of scopolamine. Then, blood and brain samples were collected and evaluated for the malondialdehyde (MDA) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and total antioxidant status (TAS) and ferric reducing ability of plasma (FRAP). RESULTS: Scopolamine significantly decreased traveled distance and time spent in target quadrant in probe test. Pretreatment of rats with sesame oil (0.5 mg/kg) mitigated scopolamine-induced behavioral alterations. Measurement of MDA, SOD, and GPX in brain tissue, and FRAP and TAS in blood showed little changes in animals which had received scopolamine or sesame oil. CONCLUSIONS: Intracerebroventricular injection of scopolamine has a residual effect on memory after six days. Sesame oil has an improving effect on spatial memory; however this effect is possibly mediated by mechanisms other than antioxidant effect of sesame oil.


Subject(s)
Animals , Male , Rats , Scopolamine/adverse effects , Sesame Oil/administration & dosage , Amnesia/drug therapy , Adjuvants, Anesthesia/adverse effects , Antioxidants/administration & dosage , Superoxide Dismutase/chemistry , Ferric Compounds/chemistry , Rats, Wistar , Oxidative Stress/drug effects , Maze Learning , Disease Models, Animal , Alzheimer Disease/prevention & control , Glutathione Peroxidase/chemistry , Amnesia/chemically induced , Injections, Intraventricular , Memory/drug effects , Antioxidants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL