Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Virol Methods ; 288: 114013, 2021 02.
Article in English | MEDLINE | ID: mdl-33166547

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.


Subject(s)
Fluorescent Dyes , High-Throughput Screening Assays , RNA, Viral , RNA-Dependent RNA Polymerase/metabolism , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Antiviral Agents/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Activation , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/standards , Humans , Inhibitory Concentration 50 , RNA, Messenger/genetics , Templates, Genetic
2.
Hong Kong Med J ; 14 Suppl 4: 36-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18708673

ABSTRACT

1. We have demonstrated for the first time that the helicase of a ribonucleic acid virus, the SARS coronavirus (SARS-CoV), is a valid target for drug development. 2. Using high throughput screen and chemical synthesis, several lead compounds targeting the SARS-CoV helicase have been identified. We have shown that these compounds can inhibit SARS-CoV helicase activity and viral growth in cell culture systems. These compounds can potentially be used to target other viruses.


Subject(s)
DNA Helicases/pharmacology , Severe Acute Respiratory Syndrome/drug therapy , Severe acute respiratory syndrome-related coronavirus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Cells, Cultured , Chlorocebus aethiops , DNA Helicases/genetics , Drug Delivery Systems , Drug Evaluation, Preclinical , Severe acute respiratory syndrome-related coronavirus/genetics , Sensitivity and Specificity , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Vero Cells/cytology , Vero Cells/drug effects , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL