Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PeerJ ; 12: e16647, 2024.
Article in English | MEDLINE | ID: mdl-38188178

ABSTRACT

Shark fins are a delicacy consumed throughout Southeast Asia. The life history characteristics of sharks and the challenges associated with regulating fisheries and the fin trade make sharks particularly susceptible to overfishing. Here, we used DNA barcoding techniques to investigate the composition of the shark fin trade in Singapore, a globally significant trade hub. We collected 505 shark fin samples from 25 different local seafood and Traditional Chinese Medicine shops. From this, we identified 27 species of shark, three species are listed as Critically Endangered, four as Endangered and ten as Vulnerable by the International Union for Conservation of Nature (IUCN). Six species are listed on CITES Appendix II, meaning that trade must be controlled in order to avoid utilization incompatible with their survival. All dried fins collected in this study were sold under the generic term "shark fin"; this vague labelling prevents accurate monitoring of the species involved in the trade, the effective implementation of policy and conservation strategy, and could unwittingly expose consumers to unsafe concentrations of toxic metals. The top five most frequently encountered species in this study are Rhizoprionodon acutus, Carcharhinus falciformis, Galeorhinus galeus, Sphyrna lewini and Sphyrna zygaena. Accurate labelling that indicates the species of shark that a fin came from, along with details of where it was caught, allows consumers to make an informed choice on the products they are consuming. Doing this could facilitate the avoidance of species that are endangered, and similarly the consumer can choose not to purchase species that are documented to contain elevated concentrations of toxic metals.


Subject(s)
Endangered Species , Sharks , Animals , Sharks/genetics , Conservation of Natural Resources , DNA Barcoding, Taxonomic , Fisheries , Seafood , DNA , Heavy Metal Poisoning
2.
Gen Comp Endocrinol ; 179(1): 78-87, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22884735

ABSTRACT

Melanin-concentrating hormone (MCH) is a neuromodulator, synthesized in the hypothalamus, that regulates both appetite and energy homeostasis in mammals. MCH was initially identified in teleost fishes as a pituitary gland hormone that induced melanin aggregation in chromatophores in the skin; however, this function of MCH has not been observed in other vertebrates. Recent studies suggest that MCH is involved in teleost feeding behavior, spurring the hypothesis that the original function of MCH in early vertebrates was appetite regulation. The present study reports the results of cDNAs cloning encoding preproMCH and two MCH receptors from an elasmobranch fish, Sphyrna lewini, a member of Chondrichthyes, the earliest diverged class in gnathostomes. The putative MCH peptide is composed of 19 amino acids, similar in length to the mammalian MCH. Reverse-transcription polymerase chain reaction revealed that MCH is expressed in the hypothalamus in S. lewini MCH cell bodies and fibers were identified by immunochemistry in the hypothalamus, but not in the pituitary gland, suggesting that MCH is not released via the pituitary gland into general circulation. MCH receptor genes mch-r1 and mch-r2 were expressed in the S. lewini hypothalamus, but were not found in the skin. These results indicate that MCH does not have a peripheral function, such as a melanin-concentrating effect, in the skin of S. lewini hypothalamic MCH mRNA levels were not affected by fasting, suggesting that feeding conditions might not affect the expression of MCH in the hypothalamus.


Subject(s)
Fish Proteins/chemistry , Hypothalamic Hormones/chemistry , Melanins/chemistry , Pituitary Hormones/chemistry , Receptors, Pituitary Hormone/chemistry , Sharks/genetics , Amino Acid Sequence , Animals , Brain/metabolism , Cloning, Molecular , DNA, Complementary/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism , Hypothalamic Hormones/genetics , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins/genetics , Melanins/metabolism , Molecular Sequence Data , Phylogeny , Pituitary Hormones/genetics , Pituitary Hormones/metabolism , RNA, Messenger/chemistry , Receptors, Pituitary Hormone/genetics , Receptors, Pituitary Hormone/metabolism , Sequence Alignment , Sequence Analysis, Protein , Sharks/metabolism , Skin/metabolism
3.
FEBS J ; 278(24): 4881-94, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21981325

ABSTRACT

The Rhodopsin family of G protein coupled receptors (GPCRs) includes the phylogenetic α-group consisting of about 100 human members. The α-group is the only group of GPCRs that has many receptors for biogenic amines which are major drug targets. Several members of this group are orphan receptors and their functions are elusive. In this study we present a detailed phylogenetic and anatomical characterization of the Gpr153 receptor and also attempt to study its functional role. We identified the homologue of Gpr153 in the elephant shark genome and phylogenetic and synteny analyses revealed that Gpr162 and Gpr153 share a common ancestor that split most likely through a duplication event before the divergence of the tetrapods and the teleost lineage. A quantitative real-time PCR study reveals widespread expression of Gpr153 in the central nervous system and all the peripheral tissues investigated. Detailed in situ hybridization on mouse brain showed specifically high expression in the thalamus, cerebellum and the arcuate nucleus. The antisense oligodeoxynucleotide knockdown of Gpr153 caused a slight reduction in food intake and the elevated plus maze test showed significant reduction in the percentage of time spent in the centre square, which points towards a probable role in decision making. This report provides the first detailed characterization of the evolution, expression and primary functional properties of the Gpr153 gene.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Cerebellum/metabolism , Receptors, G-Protein-Coupled/genetics , Thalamus/metabolism , Amino Acid Sequence , Animals , Behavior, Animal/drug effects , Eating , Evolution, Molecular , Gene Knockdown Techniques , Humans , Mice , Molecular Sequence Data , Phylogeny , Rats , Receptors, G-Protein-Coupled/biosynthesis , Sequence Alignment , Sharks/genetics , Synteny
4.
Comp Biochem Physiol B Biochem Mol Biol ; 147(2): 178-90, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17317254

ABSTRACT

Most advanced teleosts lack L-gulono-gamma-lactone oxidase (GULO), a key enzyme required for the biosynthesis of ascorbic acid. However, extant representatives of primitive species including sturgeon and many cartilaginous fishes, are exceptional in their ability to synthesize ascorbic acid de novo. In the present study, full-length GULO cDNAs were isolated from white sturgeon (Acipenser transmontanus) and two shark species belonging to the Triakidae (Triakis scyllium and Mustelus manazo). The open reading frames from all three species contained 440 amino acids and the deduced polypeptides had similar hydropathy profiles, predicted molecular masses and theoretical pI values. These GULO sequences exhibited high amino acid identity (67-97%) with each other, and also shared 61-71% identity with mammalian GULOs. Based on the GULO sequences obtained from these species, we developed degenerate primers for the isolation of partial GULO sequences by RT-PCR from other primitive species including another shark (Mustelus griseus, Triakidae), a spiny dogfish (Squalus acanthias, Squalidae), two ray species (Raja kenojei, Rajidae and Dasyatis akajei, Dasyatidae) and four sturgeons (Acipenser baeri, A. gueldenstaedtii, A. naccarii and A. ruthenus, Acipenseridae). Overall, sequence identities of these amplified GULO segments among primitive species were 63-99% at the nucleotide level and 67-100% at the amino acid level. Considerable numbers of amino acid residues were unique to either fish or mammals, and Acipenseriform species occupied an intermediate position, sharing several residues with either fish or mammalian GULOs. Phylogenetic analyses based on parsimony, distance and likelihood methods of both nucleotide and amino acid sequences resulted in trees that were in agreement with known taxonomy. The transcription and enzyme activity of GULO were kidney-specific when measured by biochemical assay and reverse transcription-PCR.


Subject(s)
Ascorbic Acid/biosynthesis , Fishes/genetics , L-Gulonolactone Oxidase/genetics , Phylogeny , Sharks/genetics , Amino Acid Sequence , Animals , Base Sequence , Cluster Analysis , DNA Primers , DNA, Complementary/genetics , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
5.
Mar Biotechnol (NY) ; 7(4): 350-62, 2005.
Article in English | MEDLINE | ID: mdl-15976934

ABSTRACT

Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.


Subject(s)
Gene Expression , Metallothionein/genetics , Metallothionein/metabolism , Phylogeny , Sharks/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Cluster Analysis , Gene Library , Metals, Heavy/metabolism , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Sharks/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL