Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Ethnopharmacol ; 326: 117996, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38431110

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY: The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS: The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS: Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 µM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION: Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.


Subject(s)
Lignans , Polycyclic Compounds , Schisandra , Receptors, Glycine , Lignans/pharmacology , Pain , Calcium Channels, N-Type , Analgesics/pharmacology , Analgesics/therapeutic use , Sodium Channels , Cyclooctanes
2.
Sci Rep ; 14(1): 3792, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360913

ABSTRACT

In onion thrips Thrips tabaci, reduced sensitivity of the sodium channel caused by several sodium channel mutations have been correlated with pyrethroid resistance. For this study, using mitochondrial cytochrome c oxidase subunit I gene sequences, we examined the phylogenetic relation among a total of 52 thelytokous and arrhenotokous strains with different genotypes of the sodium channel mutations. Then, we used flow cytometry to estimate their ploidy. Results showed that the strains are divisible into three groups: diploid thelytoky, triploid thelytoky, and diploid arrhenotoky. Using 23 whole genome resequencing data obtained from 20 strains out of 52, we examined their genetic relation further using principal component analysis, admixture analysis, and a fixation index. Results showed that diploid and triploid thelytokous groups are further classifiable into two based on the sodium channel mutations harbored by the respective group members (strains). The greatest genetic divergence was observed between thelytokous and arrhenotokous groups with a pair of T929I and K1774N. Nevertheless, they shared a genomic region with virtually no polymorphism around the sodium channel gene loci, suggesting a hard selective sweep. Based on these findings, we discuss the evolutionary origin and distribution of the sodium channel mutations in T. tabaci.


Subject(s)
Thysanoptera , Animals , Onions , Phylogeny , Triploidy , Amino Acids/metabolism , Mutation , Sodium Channels/metabolism
3.
Iran Biomed J ; 27(4): 158-66, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37553755

ABSTRACT

Background: The majority of insecticides target sodium channels. The increasing emergence of resistance to the current insecticides has persuaded researchers to search for alternative compounds. Scorpion venom gland as a reservoir of peptides or proteins, which selectively target insect sodium channels. These proteins would be an appropriate source for finding new suitable anti-insect components. Methods: Transcriptome of venom gland of scorpion Mesobuthus eupeus was obtained by RNA extraction and complementary DNA library synthesis. The obtained transcriptome was blasted against protein databases to find insect toxins against sodium channel based on the statistically significant similarity in sequence. Physicochemical properties of the identified protein were calculated using bioinformatics software. The three-dimensional structure of this protein was determined using homology modeling, and the final structure was assessed by molecular dynamics simulation. Results: The sodium channel blocker found in the transcriptome of M. eupeus venom gland was submitted to the GenBank under the name of meuNa10, a stable hydrophilic protein consisting of 69 amino acids, with the molecular weight of 7721.77 g/mol and pI of 8.7. The tertiary structure of meuNa10 revealed a conserved LCN-type cysteine-stabilized alpha/beta domain stabilized by eight cysteine residues. The meuNa10 is a member of the 3FP superfamily consisting of three finger-like beta strands. Conclusion: This study identified meuNa10 as a small insect sodium channel-interacting protein with some physicochemical properties, including stability and water-solubility, which make it a good candidate for further in vivo and in vitro experiments in order to develop a new bioinsecticide.


Subject(s)
Insecticides , Scorpion Venoms , Animals , Amino Acid Sequence , Scorpions/chemistry , Insecticides/metabolism , Scorpion Venoms/genetics , Cysteine/metabolism , Sodium Channels/chemistry , Sodium Channels/metabolism
4.
J Ethnopharmacol ; 306: 116161, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36646158

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY: The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS: The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS: By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 µM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION: Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.


Subject(s)
Phytol , Sodium Channel Blockers , Rats , Animals , Phytol/pharmacology , Phytol/therapeutic use , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Pain/drug therapy , Sodium Channels/physiology , Neurons
5.
mSphere ; 7(6): e0044622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36321825

ABSTRACT

Renal impairment associated with chronic kidney disease (CKD) causes the buildup of uremic toxins that are deleterious to patient health. Current therapies that manage toxin accumulation in CKD offer an incomplete therapeutic effect against toxins such as para-cresol (p-cresol) and p-cresyl sulfate. Probiotic therapies can exploit the wealth of microbial diversity to reduce toxin accumulation. Using in vitro culture techniques, strains of lactobacilli and bifidobacteria from a 24-strain synbiotic were investigated for their ability to remove p-cresol. Four strains of bifidobacteria internalized p-cresol from the extracellular environment. The oral supplementation of these toxin-clearing probiotics was more protective than control strains in a Drosophila melanogaster toxicity model. Bifidobacterial supplementation was also associated with higher abundance of lactobacilli in the gut microbiota of p-cresol-exposed flies. The present findings suggest that these strains might reduce p-cresol in the gut in addition to increasing the prevalence of other beneficial bacteria, such as lactobacilli, and should be tested clinically to normalize the dysbiotic gut microbiota observed in CKD patients. IMPORTANCE Chronic kidney disease (CKD) affects approximately 10% of the global population and has limited treatment options. The accumulation of gut microbiota-derived uremic toxins, such as para-cresol (p-cresol) and p-cresyl sulfate, is associated with the onset of comorbidities (i.e., atherosclerosis and cognitive disorders) in CKD. Unfortunately, dialysis, the gold standard therapy is unable to remove these toxins from the bloodstream due to their highly protein-bound nature. Some strains of Bifidobacterium have metabolic properties that may be useful in managing uremic toxicity. Using a Drosophila model, the present work highlights why dosing with certain probiotic strains may be clinically useful in CKD management.


Subject(s)
Drosophila Proteins , Probiotics , Renal Insufficiency, Chronic , Animals , Drosophila melanogaster , Uremic Toxins , Probiotics/therapeutic use , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/microbiology , Sulfates , Sodium Channels
6.
Toxins (Basel) ; 14(9)2022 09 11.
Article in English | MEDLINE | ID: mdl-36136568

ABSTRACT

Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.


Subject(s)
Scorpion Venoms , Scorpions , Amino Acid Sequence , Animals , Calcium Channels/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Defensins/genetics , Female , Male , Potassium Channels/genetics , RNA/metabolism , Scorpion Venoms/chemistry , Scorpions/genetics , Scorpions/metabolism , Sequence Homology, Amino Acid , Sodium Channels/genetics , Tandem Mass Spectrometry , Transcriptome
7.
Cardiovasc Res ; 118(4): 929-931, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35191472

Subject(s)
Sodium Channels
8.
J Ethnopharmacol ; 282: 114654, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34537283

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Luteolin (Lut) was recently identified as the major active ingredient of Mosla scabra, which was a typical representative traditional Chinese medicine and had been used to treat pulmonary diseases for thousands of years. AIM OF THE STUDY: This study was to explore the effects and relative mechanisms of Lut in LPS-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). The main characteristic of ALI/ARDS is pulmonary edema, and epithelial sodium channel (ENaC) is a key factor in effective removal of excessive alveolar edematous fluid, which is essential for repairing gas exchange and minimizing damage to the peripheral tissues. However, whether the therapeutic effects of Lut on respiratory diseases are relative with ENaC is still unknown. MATERIALS AND METHODS: Alveolar fluid clearance was calculated in BALB/c mice and ENaC function was measured in H441 cells. Moreover, ENaC membrane protein and mRNA were detected by Western blot and real-time PCR, respectively. We also studied the involvement of cGMP/PI3K pathway during the regulation of Lut on ENaC during LPS-induced ALI/ARDS by ELISA method and applying cGMP/PI3K inhibitors/siRNA. RESULTS: The beneficial effects of Lut in ALI/ARDS were evidenced by the alleviation of pulmonary edema, and enhancement of both amiloride-sensitive alveolar fluid clearance and short-circuit currents. Lut could alleviate the LPS decreased expression levels of ENaC mRNA and membrane protein in H441 cells and mouse lung. In addition, cGMP concentration was increased after the administration of Lut in ALI/ARDS mice, while the inhibition of cGMP/PI3K pathway could abrogate the enhanced AFC and ENaC protein expression of Lut. CONCLUSION: These results implied that Lut could attenuate pulmonary edema via enhancing the abundance of membrane ENaC at least partially through the cGMP/PI3K pathway, which could provide a promising therapeutic strategy for treating ALI/ARDS.


Subject(s)
Alveolar Epithelial Cells/drug effects , Lipopolysaccharides/toxicity , Lung Injury/drug therapy , Luteolin/therapeutic use , Respiratory Distress Syndrome/drug therapy , Sodium Channels/metabolism , Animals , Chromones/pharmacology , Cyclic GMP/antagonists & inhibitors , Cyclic GMP/genetics , Cyclic GMP/metabolism , Gene Expression Regulation/drug effects , Lung Injury/chemically induced , Male , Mice , Mice, Inbred BALB C , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Random Allocation , Respiratory Distress Syndrome/chemically induced , Up-Regulation/drug effects
9.
Physiol Rep ; 9(16): e14975, 2021 08.
Article in English | MEDLINE | ID: mdl-34405579

ABSTRACT

Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aß) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aß fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aß neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aß fibers during chronic inflammation.


Subject(s)
Action Potentials , Neurons, Afferent/metabolism , Nociceptive Pain/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Calcium Channels, L-Type/metabolism , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Male , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Nociception , Nociceptive Pain/physiopathology , Rats , Rats, Sprague-Dawley , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Tetrodotoxin/pharmacology
10.
J Neurophysiol ; 126(2): 561-574, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34232785

ABSTRACT

Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here, we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp, and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance that results from the interaction of the slow inactivation of the low-threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization-activated cationic current Ih is not involved in the generation of resonance; instead it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage-dependent inward rectification (i.e., a negative slope conductance region). Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.NEW & NOTEWORTHY Our study expands the repertoire of ionic mechanisms known to be involved in the generation and control of resonance and provides the first experimental proof of previous theoretical predictions on resonance amplification mediated by regenerative hyperpolarizing currents. In thalamocortical neurons, we confirmed that the calcium current IT generates resonance, determined that the large steady conductance of the cationic current Ih curtails resonance, and demonstrated that the inward rectifier potassium current IKir amplifies resonance.


Subject(s)
Action Potentials , Cerebral Cortex/physiology , Neurons/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Thalamus/physiology , Animals , Calcium Channels/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Mice , Models, Neurological , Neurons/metabolism , Sodium Channels/metabolism , Thalamus/cytology , Thalamus/metabolism
11.
Bioelectromagnetics ; 42(5): 357-370, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33998011

ABSTRACT

Low-frequency pulsed magnetic field (LF-PMF) application is a non-invasive, easy, and inexpensive treatment method in pain management. However, the molecular mechanism underlying the effect of LF-PMF on pain is not fully understood. Considering the obvious dysregulations of gene expression observed in certain types of voltage-gated sodium channels (VGSCs) in pain conditions, the present study tested the hypothesis that LF-PMF shows its pain-relieving effect by regulating genes that code VGSCs proteins. Five experimental rat groups (Control, Streptozotocin-induced experimental painful diabetic neuropathy (PDN), PDN Sham, PDN 10 Hz PMF, and PDN 30 Hz PMF) were established. After the pain formation in PDN groups, the magnetic field groups were exposed to 10/30 Hz, 1.5 mT PMF for 4 weeks, an hour daily. Progression of pain was evaluated using behavioral pain tests during the entire experimental processes. After the end of PMF treatment, SCN9A (NaV1.7 ), SCN10A (NaV1.8 ), SCN11A (NaV1.9 ), and SCN3A (NaV1.3 ) gene expression level changes were determined by analyzing real-time polymerase chain reaction results. We found that 10 Hz PMF application was more effective than 30 Hz on pain management. In addition, NaV1.7 and NaV1.3 transcriptions were upregulated while NaV1.8 and NaV1.9 were downregulated in painful conditions. Notably, the downregulated expression of the genes encoding NaV1.8 and NaV1.9 were re-regulated and increased to control level by 10 Hz PMF application. Consequently, it may be deduced that 10 Hz PMF application reduces pain by modulating certain VGSCs at the transcriptional level. © 2021 Bioelectromagnetics Society.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuralgia , Animals , Diabetic Neuropathies/genetics , Diabetic Neuropathies/therapy , Magnetic Fields , NAV1.3 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel , NAV1.9 Voltage-Gated Sodium Channel , Neuralgia/genetics , Neuralgia/therapy , Rats , Sodium Channels
12.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166088, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33515676

ABSTRACT

Point mutation in alcohol dehydrogenase 2 (ALDH2), ALDH2*2 results in decreased catalytic enzyme activity and has been found to be associated with different human pathologies. Whether ALDH2*2 would induce cardiac remodeling and increase the attack of atrial fibrillation (AF) remains poorly understood. The present study evaluated the effect of ALDH2*2 mutation on AF susceptibility and unravelled the underlying mechanisms using a multi-omics approach including whole-genome gene expression and proteomics analysis. The in-vivo electrophysiological study showed an increase in the incidence and reduction in the threshold of AF for the mutant mice heterozygous for ALDH2*2 as compared to the wild type littermates. The microarray analysis revealed a reduction in the retinoic acid signals which was accompanied by a downstream reduction in the expression of voltage-gated Na+ channels (SCN5A). The treatment of an antagonist for retinoic acid receptor resulted in a decrease in SCN5A transcript levels. The integrated analysis of the transcriptome and proteome data showed a dysregulation of fatty acid ß-oxidation, adenosine triphosphate synthesis via electron transport chain, and activated oxidative responses in the mitochondria. Oral administration of Coenzyme Q10, an essential co-factor known to meliorate mitochondrial oxidative stress and preserve bioenergetics, conferred a protection against AF attack in the mutant ALDH2*2 mice. The multi-omics approach showed the unique pathophysiology mechanisms of concurrent dysregulated SCN5A channel and mitochondrial bioenergetics in AF. This inspired the development of a personalized therapeutic agent, Coenzyme Q10, to protect against AF attack in humans characterized by ALDH2*2 genotype.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/physiology , Atrial Fibrillation/pathology , Energy Metabolism , Mitochondria/pathology , Mutation , Sodium Channels/metabolism , Transcriptome , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/metabolism , Gene Regulatory Networks , Male , Mice , Mitochondria/metabolism , Signal Transduction , Sodium Channels/genetics
13.
Mol Pain ; 16: 1744806920970368, 2020.
Article in English | MEDLINE | ID: mdl-33307981

ABSTRACT

The embryonic rat dorsal root ganglion (DRG) neuron-derived 50B11 cell line is a promising sensory neuron model expressing markers characteristic of NGF and GDNF-dependent C-fibre nociceptors. Whether these cells have the capacity to develop into distinct nociceptive subtypes based on NGF- or GDNF-dependence has not been investigated. Here we show that by augmenting forskolin (FSK) and growth factor supplementation with NGF or GDNF, 50B11 cultures can be driven to acquire differential functional responses to common nociceptive agonists capsaicin and ATP respectively. In addition, to previous studies, we also demonstrate that a differentiated neuronal phenotype can be maintained for up to 7 days. Western blot analysis of nociceptive marker proteins further demonstrates that the 50B11 cells partially recapitulate the functional phenotypes of classical NGF-dependent (peptidergic) and GDNF-dependent (non-peptidergic) neuronal subtypes described in DRGs. Further, 50B11 cells differentiated with NGF/FSK, but not GDNF/FSK, show sensitization to acute prostaglandin E2 treatment. Finally, RNA-Seq analysis confirms that differentiation with NGF/FSK or GDNF/FSK produces two 50B11 cell subtypes with distinct transcriptome expression profiles. Gene ontology comparison of the two subtypes of differentiated 50B11 cells to rodent DRG neurons studies shows significant overlap in matching or partially matching categories. This transcriptomic analysis will aid future suitability assessment of the 50B11 cells as a high-throughput nociceptor model for a broad range of experimental applications. In conclusion, this study shows that the 50B11 cell line is capable of partially recapitulating features of two distinct types of embryonic NGF and GDNF-dependent nociceptor-like cells.


Subject(s)
Cell Differentiation/drug effects , Ganglia, Spinal/cytology , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Nerve Growth Factor/pharmacology , Nociceptors/cytology , Action Potentials/drug effects , Adenosine Triphosphate/pharmacology , Animals , Biomarkers/metabolism , Capsaicin/pharmacology , Cell Differentiation/genetics , Cell Line , Cell Shape/drug effects , Colforsin/pharmacology , Dinoprostone/pharmacology , Gene Expression Regulation/drug effects , Genetic Variation , Neuronal Outgrowth/drug effects , Neurons/drug effects , Neurons/metabolism , Nociceptors/drug effects , Phenotype , Principal Component Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Sodium Channels/metabolism
14.
Eur J Pharmacol ; 885: 173390, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32735983

ABSTRACT

Erythrinian alkaloids ((+)-erythravine and (+)-11-α-hydroxy-erythravine) have been pointed as the main responsible agents for the anticonvulsant and anxiolytic properties of Erythrina mulungu Mart ex Benth. The present work provides a new set of information about the mode of action of these alkaloids by the use of a complementary approach of neurochemical and electrophysiological assays. We propose here that the antiepileptic and anxiolytic properties exhibited by both alkaloids appear not to be related to the inhibition of glutamate binding or GABA uptake, or even to the increase of glutamate uptake or GABA binding, as investigated here by the use of rat cortical synaptosomes. Similarly, and even in a high concentration, (+)-erythravine and (+)-11-α-hydroxy-erythravine did not modulate the main sodium and potassium channel isoforms checked by the use of voltage-clamp studies on Xenopus laevis oocytes. However, unlike (+)-11-α-hydroxy-erythravine, which presented a little effect, it was possible to observe that the (+)-erythravine alkaloid produced a significant inhibitory modulation on α4ß2, α4ß4 and α7 isoforms of nicotinic acetylcholine receptors also checked by the use of voltage-clamp studies, which could explain at least partially its anxiolytic and anticonvulsant properties. Since (+)-11-α-hydroxy-erythravine and (+)-erythravine modulated nicotinic acetylcholine receptors to different extents, it is possible to reinforce that small differences between the chemical structure of these alkaloids can affect the selectivity and affinity of target-ligand interactions, conferring distinct potency and/or pharmacological properties to them, as previously suggested by differential experimental comparison between different erythrinian alkaloids.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anticonvulsants/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Erythrina/chemistry , Glutamic Acid/metabolism , Nicotinic Antagonists/pharmacology , Oocytes , Patch-Clamp Techniques , Potassium/metabolism , Receptors, Nicotinic/drug effects , Sodium Channels/metabolism , Synaptosomes/drug effects , Synaptosomes/metabolism , Xenopus laevis , gamma-Aminobutyric Acid/metabolism
15.
Biomed Res Int ; 2020: 4803172, 2020.
Article in English | MEDLINE | ID: mdl-32596315

ABSTRACT

The research on the biological pacemaker has been very active in recent years. And turning nonautomatic ventricular cells into pacemaking cells is believed to hold the key to making a biological pacemaker. In the study, the inward-rectifier K+ current (I K1) is depressed to induce the automaticity of the ventricular myocyte, and then, the effects of the other membrane ion currents on the automaticity are analyzed. It is discovered that the L-type calcium current (I CaL) plays a major part in the rapid depolarization of the action potential (AP). A small enough I CaL would lead to the failure of the automaticity of the ventricular myocyte. Meanwhile, the background sodium current (I bNa), the background calcium current (I bCa), and the Na+/Ca2+ exchanger current (I NaCa) contribute significantly to the slow depolarization, indicating that these currents are the main supplementary power of the pacing induced by depressing I K1, while in the 2D simulation, we find that the weak electrical coupling plays a more important role in the driving of a biological pacemaker.


Subject(s)
Biological Clocks , Membrane Transport Proteins/physiology , Models, Cardiovascular , Myocytes, Cardiac/physiology , Ventricular Function , Calcium Channels, L-Type/physiology , Humans , Potassium Channels, Inwardly Rectifying/physiology , Sodium Channels/physiology , Sodium-Potassium-Chloride Symporters/physiology
16.
Mol Brain ; 13(1): 73, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32393368

ABSTRACT

Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.


Subject(s)
Calcium Channel Blockers/pharmacology , Ganglia, Spinal/drug effects , Limonins/pharmacology , Neuralgia/drug therapy , Pharmaceutical Preparations/administration & dosage , Sodium Channel Blockers/pharmacology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Calcium Channels/drug effects , Calcium Channels/physiology , Female , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , HIV Infections/drug therapy , HIV Infections/physiopathology , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Hyperalgesia/virology , Limonins/administration & dosage , Limonins/chemistry , Neuralgia/metabolism , Neuralgia/virology , Nociceptors/drug effects , Pharmaceutical Preparations/metabolism , Rats , Rats, Sprague-Dawley , Sodium Channels/drug effects , Sodium Channels/physiology , Tetrodotoxin/pharmacology
17.
Med Hypotheses ; 137: 109576, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32014712

ABSTRACT

Theories of pain have traditionally attributed the sensory experience of pain to the brain. We present here a new hypothesis on the origin of pain which is based on a novel approach to the management of persistent pain. We call it the 'pain channel' hypothesis of the origin of pain. There are key components to the development of our hypothesis: [1] Our clinical outcome of a persistently pain-free state, representing a maintained pain score of 0/10 has been achieved in a growing cohort of various presentations of persistent pain now exceeding 130 patients over the course of the last five years. With complete control of pain, the patients rapidly return to their premorbid state and level of function. This result requires careful consideration and explanation. [2] Regional anaesthesia has been used as a diagnostic tool to confirm the clinically suspected source of the persistent pain. The pharmacodynamics of local anaesthetics identify the sodium channel of the primary nociceptive sensory neuron as the critical subcellular structure generating pain. [3] Sodium channel function has been recognised as a bioelectromagnetic phenomenon. [4] Neuromodulation has been used to provide our long-term pain relief result. We understand the neuromodulation unit as producing an electromagnetic field within the super low wavelength range of the electromagnetic spectrum and we have devised a strategy which we believe delivers maximal electromagnetic field effect to the intended sodium channels to create a long-term conduction block. We believe that our clinical outcome challenges the current understanding of the role of the brain in pain. We hypothesise that pain is a peripheral phenomenon rather than being a construct of the brain, as our strategy is peripherally based and completely reverses the presenting clinical profile of persistent pain. More specifically we hypothesise that the sensory phenomenon of pain is a function of specific sodium channels which are coded for pain and which are part of the subcellular structure of peripheral nociceptive sensory nerves. We believe that these hypotheses can lead to a change in focus in the diagnosis and management of pain and drive improvement in current technology and medications to facilitate effective treatment of persistent pain.


Subject(s)
Pain , Sodium Channels , Brain , Humans , Pain Management , Peripheral Nerves
18.
Environ Toxicol ; 35(7): 774-782, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32061153

ABSTRACT

This study aims to investigate the protective effects of the Bauhinia championii (BC) against ischemia/reperfusion (I/R)-induced injury in an isolated heart model. Langendorff-perfused C57BL/6JNarl mice hearts were performed with 30 minutes ischemia and 60 minutes reperfusion by left anterior descending artery ligation. Before reperfusion, boiling water extracts of BC (10 mg/L) was pretreated for 15 minutes. During reperfusion, BC significantly decreased the occurrence of ventricular arrhythmias by lead II electrocardiogram (ECG). Electrophysiological effect of BC was further determined in isolated ventricular myocytes by whole-cell patch clamp technique. The underlying mechanism may result from its Na+ channel blocking activity characterized with reduced rise slope of action potential and Na+ current density. Moreover, BC dramatically reduced I/R-caused infarct size, which was accessed by 2,3,5-triphenyltetrazolium chloride (TTC) assay. Since BC decreased I/R-induced myoglobin release and oxidation of Ca2+ -calmodulin-dependent protein kinase, inhibition of myocardial necroptosis may account for the protective effects of BC on myocytes lose. This study indicated that BC may prevent I/R induced ventricular arrhythmias and myocyte death by blocking Na+ channels and decreasing necroptosis, respectively. Since most of the available antiarrhythmic remedies have unwanted adverse actions, BC could be a novel candidate for the treatment of myocardial infarction and ventricular arrhythmia.


Subject(s)
Bauhinia/chemistry , Heart/drug effects , Myocardial Reperfusion Injury/prevention & control , Plant Extracts/pharmacology , Sodium Channel Blockers/pharmacology , Animals , Electrocardiography , In Vitro Techniques , Male , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necroptosis/drug effects , Patch-Clamp Techniques , Plant Components, Aerial/chemistry , Plant Extracts/isolation & purification , Sodium Channel Blockers/isolation & purification , Sodium Channels/metabolism
19.
Semin Nephrol ; 39(4): 353-367, 2019 07.
Article in English | MEDLINE | ID: mdl-31300091

ABSTRACT

The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of cells with distinct and complementary functions. CD principal cells traditionally have been considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC function has improved significantly owing to new research findings. Thus, we now have a new model for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis, and acid-base status between principal cells and ICs. There are three main types of ICs (type A, type B, and non-A, non-B), which first appear in the late distal convoluted tubule or in the connecting segment in a species-dependent manner. ICs can be detected in CD from cortex to the initial part of the inner medulla, although some transport proteins that are key components of ICs also are present in medullary CD, cells considered inner medullary. Of the three types of ICs, each has a distinct morphology and expresses different complements of membrane transport proteins that translate into very different functions in homeostasis and contributions to CD luminal pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine signaling that contributes to acid-base regulation as well as Na+, Cl-, K+, and Ca2+ homeostasis. Thus, these new findings highlight the potential role of ICs as targets for potential hypertension treatments.


Subject(s)
Acid-Base Equilibrium/physiology , Epithelial Cells/physiology , Kidney Tubules, Collecting/physiology , Animals , Calcium Channels/physiology , Chloride Channels/physiology , Epithelial Cells/metabolism , Humans , Hydrogen-Ion Concentration , Ion Transport/physiology , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Potassium Channels/physiology , Sodium Channels/physiology
20.
Annu Rev Neurosci ; 42: 87-106, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30702961

ABSTRACT

Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.


Subject(s)
Sodium Channel Blockers/therapeutic use , Sodium Channels/physiology , Somatoform Disorders/physiopathology , Animals , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Drug Evaluation, Preclinical , Forecasting , Ganglia, Spinal/physiopathology , Genetic Association Studies , Humans , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Peripheral Nerves/physiopathology , Pharmacogenomic Testing , Protein Domains , Sensory Receptor Cells/physiology , Sodium Channel Blockers/pharmacology , Sodium Channels/chemistry , Sodium Channels/genetics , Somatoform Disorders/drug therapy , Somatoform Disorders/genetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL