Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 24951-24960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460038

ABSTRACT

Solid process fine waste or tailings of a uranium mill is a potential source of release of radiologically significant gaseous radon (222Rn). A number of variables such as radium (226Ra) content, porosity, moisture content, and tailings density can affect the extent of emanation from the tailings. Further, if a cover material is used for remediation purposes, additional challenges due to changes in the matrix characteristics in predicting the radon flux can be anticipated. The uranium mill tailings impoundment systems at Jaduguda have been in use for the long-term storage of fine process waste (tailings). A pilot-scale remediation exercise of one of the tailings ponds has been undertaken with 30 cm soil as a cover material. For the prediction of the radon flux, a numerical model has been developed to account for the radon exhalation process at the remediated site. The model can effectively be used to accommodate both the continuous and discrete variable inputs. Depth profiling and physicochemical characterization for the remediated site have been done for the required input variables of the proposed numerical model. The predicted flux worked out is well below the reference level of 0.74 Bq m-2 s-1 IAEA (2004).


Subject(s)
Radium , Radon , Soil Pollutants, Radioactive , Uranium , Radon/analysis , Soil Pollutants, Radioactive/analysis , India , Solid Waste
2.
Radiat Prot Dosimetry ; 200(6): 554-563, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38453149

ABSTRACT

Monitoring radioactivity levels in the environment around nuclear power plants is of great significance to assessing environmental safety and impact. Shidaowan nuclear power plant is currently undergoing commissioning; however, the baseline soil radioactivity is unknown. The naturally occurring radionuclides 238U, 232Th, 226Ra and 40K, and artificial radionuclide (AR) 137Cs in soil samples around the Shidaowan nuclear power plant were measured to establish the baseline levels. Human health hazard indices such as external hazard indices (Hex), Radium equivalent (Raeq), outdoor absorbed dose rate (Dout), annual effective dose (AED) and excess lifetime cancer risk (ELCR) were estimated. The average concentration of 232Th, 40K, 137Cs, 238U and 226Ra were 42.6 ± 15, 581 ± 131, 0.68 ± 0.38, 40.13 ± 9.07 and 40.8 ± 12.8 Bq per kg, respectively. The average Hex, Raeq, Dout, AED and ELCR were 0.40, 146 Bq per kg, 68.8 nGy per h, 0.09 mSv per y and 3.29E-04, respectively. These data showed an acceptable level of risk to residents near the nuclear power plant and that the current radioactivity in the soil may not pose immediate harm to residents living close to the nuclear power plant. The observed lower AED and 40 K and 137Cs concentrations were comparable to other studies, whilst ELCR was higher than the world average of 2.9E-04. The commissioning of the Shidaowan nuclear power plant is potentially safe for the surrounding residents; further continuous monitoring is recommended.


Subject(s)
Cesium Radioisotopes , Nuclear Power Plants , Potassium Radioisotopes , Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Thorium , Soil Pollutants, Radioactive/analysis , Risk Assessment/methods , China , Radiation Monitoring/methods , Humans , Cesium Radioisotopes/analysis , Radium/analysis , Thorium/analysis , Potassium Radioisotopes/analysis , Radiation Dosage , Uranium/analysis
3.
J Environ Manage ; 353: 120207, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38281428

ABSTRACT

The release of uranium from uranium tailings into the aqueous environment is a complex process controlled by a series of interacting geochemical reactions. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling and mixed to analyze the fugacity state of U. Static leaching experiments of U at different pH, oxidant concentration and solid-to-liquid ratios and dynamic leaching experiments of U at different pH were carried out, and the adsorption and desorption behaviour of U in five representative stratigraphic media were investigated. The results show that U is mainly present in the residue state in uranium tailings, that U release is strong in the lower pH range, that the leached U is mainly in the form of U(VI), mainly from the water-soluble, Fe/Mn oxides and exchangeable fraction of uranium tailings, and that the reduction in U leaching at higher pH is mainly due to the combined effect of precipitation formation and larger particle size of platelets in uranium tailings. Experiments with different oxidant concentrations and solid-liquid ratios showed that the oxygen-enriched state and low solid-liquid ratios were favorable for the leaching of U from uranium tailings. Adsorption and desorption experiments show that U is weakly adsorbed in representative strata, reversibly adsorbed, and that U is highly migratory in groundwater. The present research results have important guiding significance for the management of existing uranium tailings ponds and the control of U migration in groundwater, which is conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.


Subject(s)
Soil Pollutants, Radioactive , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Adsorption , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Water , Oxidants
4.
J Environ Radioact ; 273: 107382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266319

ABSTRACT

Advances in the development of gamma-ray spectrometers have resulted in devices that are ideal for use in conjunction with the increasingly reliable systems of autonomously flying uncrewed aerial vehicles (UAVs) that have recently become available on the market. Airborne gamma-ray spectrometry (GRS) measurements have many different applications. Here, the technique is applied to a former uranium mining and processing site, which is characterized by relatively low specific activities and, hence, low count rates, requiring relatively large detectors and correspondingly big size UAVs. The future acceptance of the use of such UAV-based GRS systems for radionuclide mapping depends on their ability to measure absolute specific activities of natural radionuclides such as U-238 in near-surface soil that are consistent with the results of established and proven ground-based systems. To determine absolute specific activities on the ground, the gamma radiation data from airborne detectors must be corrected for attenuation caused by the flight altitude above ground. In recent years, mathematical procedures for altitude correction have been developed, that are specifically tailored to the working range of several tens of meters typical for UAVs. However, very limited experimental validation of these theoretical approaches is available. A very large dataset consisting of about 3000 UAV-based and 19,000 backpack-based measurements was collected at a low-grade uranium ore dump in Yangiabad, Uzbekistan. We applied different geostatistical interpolation methods to compare the data from both survey techniques by upscaling backpack data to airborne data. Compared to backpack systems, UAV-based systems have lower spatial resolution, so measurements average over larger areal units (or in geostatistical terminology: "spatial support"). Taking into account the change in spatial support, we illustrate that (1) the UAV-based measurements show good agreement with the upscaled backpack measurements and that (2) UAV surveys provide good delineation of contrasts of the relatively smooth U-238 specific activity distribution typical for former uranium mining and processing sites. We are able to show that the resolution of UAV-based systems is sufficient to map extended uranium waste facilities.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , Uranium/analysis , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma
5.
Radiat Prot Dosimetry ; 200(3): 240-250, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38072679

ABSTRACT

Natural radioactivity due to 238U, 232Th and 40K in brick samples from Tamil Nadu was determined using gamma-ray spectrometry. The mean activity concentrations of 238U, 232Th and 40K, 69 ± 6, 62 ± 6 and 462 ± 23 Bq kg-1, are slightly greater than the world recommended limits of 35, 45 and 420 Bq kg-1, respectively, and they are compared with a similar work carried out across the world. The radiological parameters such as radium equivalent activity, Raeq (193 ± 17 Bq kg-1), internal hazard index, Hin (0.71 ± 0.06), and activity utilisation index, AUI (1.43 ± 0.13), was lower, whilst absorbed dose rate, DRin (89 ± 8 nGy h-1), annual effective dose equivalent, AEDEin (0.43 ± 0.04 mSv y-1), and excess lifetime cancer risk, ELCRin (1.52 ± 0.13 mSv y-1), are slightly greater than the world's recommended limit. Bi-variate statistical analysis was performed to corroborate the relationship between radionuclides and radiological hazards.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Uranium , Thorium/analysis , Potassium Radioisotopes/analysis , Uranium/analysis , Radiation Dosage , India , Construction Materials/analysis , Radium/analysis , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis
6.
J Environ Radioact ; 272: 107347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056323

ABSTRACT

According to the characteristics of contaminated soil around uranium mines, combined with the pollution path of soil, the response relationship between the gamma radiation dose rate and radium activity concentration in contaminated soil was proposed by using a numerical model and subequilibrium theory. The results showed that the topsoil (depth 20 cm) made the mainly contribution of gamma dose rate (above 88%), and the main nuclide of concern was radium. Additionally, the uranium-radium equilibrium coefficient between 0 and 0.3 had a great influence on the gamma dose rate. The method proposed in this study could quickly identify the radium activity concentration in topsoil by using on-site gamma dose rate monitoring data. Compared with the actual monitoring results within ±10% error control, which had strong operability. This method could quickly identify the location and scope of contaminated soil and guide the on-site monitoring points around uranium mines.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Uranium , Radiation Monitoring/methods , Uranium/analysis , Radium/analysis , Gamma Rays , Soil , Soil Pollutants, Radioactive/analysis
7.
Health Phys ; 126(2): 65-78, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38147633

ABSTRACT

ABSTRACT: The former Lamprecht uranium mine facility in Texas ceased operations well before the new millennium. However, decommissioning activities were never completed by the licensee. Consequently, a legal proceeding was authorized between state and licensee representatives. Meanwhile, state funds were used to hire an independent contractor to perform radiological surveys and assess the magnitude of residual radioactivity across the terrain at the site. The purpose of this study was to apply advanced spatial statistical methods to the survey data measured by contractors at the Lamprecht site to precisely predict remaining radioactive hotspot locations post soil remediation activities. To accomplish this, descriptive statistics such as Google maps and boxplots along with inferential spatial statistical techniques, e.g., kriging and semivariograms, were employed. R coding was also used throughout. Specifically, the descriptive statistical methods included geographical mapping of targeted areas at the site coupled with summary statistics. Inferentially, spatial analytical techniques were employed to pinpoint the locations of elevated radiation levels above regulatory limits. Our results suggest that fewer hotspots were identified after remediation activities were completed at the site. This study provides an additional analytical resource for the State of Texas regarding the release of this former in situ leach uranium mine site to landowners for unrestricted use.


Subject(s)
Radiation Monitoring , Radioactivity , Soil Pollutants, Radioactive , Uranium , Uranium/analysis , Texas , Soil Pollutants, Radioactive/analysis , Soil
8.
Environ Sci Pollut Res Int ; 30(56): 118149-118160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936035

ABSTRACT

Humans are constantly exposed to radioactivity present in rocks, soils, and water, mainly from materials in the Earth's crust that contain chemical elements belonging to the radioactive series of uranium and thorium. An important anthropogenic source of these natural radioisotopes to the environment is fertilizers, widely used to increase agricultural productivity. Exposure to ionizing radiation can become a public health problem worldwide, since it is related to the development of different cancers in humans. The present study aimed to survey research on the radioactive content in different types of mineral phosphate fertilizers used around the world through a comprehensive review of the Scopus and Web of Science databases. About 80 scientific articles fit the purpose of this review. The concentration activity values found varied widely from one country to another, and there is no specific legislation that determines the maximum allowed limits of radioisotopes in these agricultural inputs. In addition, there are still uncertainties regarding the impact of natural radioactivity from fertilizers on human health, highlighting the need for further investigations on the subject.


Subject(s)
Radioactivity , Radium , Soil Pollutants, Radioactive , Uranium , Humans , Fertilizers/analysis , Phosphates , Radioisotopes , Minerals , Uranium/analysis , Thorium/analysis , Soil Pollutants, Radioactive/analysis , Potassium Radioisotopes , Radium/analysis
9.
Radiat Prot Dosimetry ; 199(18): 2258-2261, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37934987

ABSTRACT

In 1972, before shipping natural uranium to the USSR for enrichment operations in 235 U, the analysts at Pierrelatte plant noted a slight deficit in 235U: 0.7171 instead of 0.7202. The Direction des Productions of the CEA launched a vast campaign of analyses for the different mines exploited, at all stages of the elaboration of uranium; for this analysis campaign, the Direction des Productions relied on the analytical laboratory of the Pierrelatte plant and on the Central Analytical Laboratory of the CEA where I was in charge of analyses by mass spectrometry.


Subject(s)
Soil Pollutants, Radioactive , Uranium , Uranium/analysis , Mass Spectrometry/methods , Laboratories , Soil Pollutants, Radioactive/analysis
10.
J Environ Radioact ; 270: 107300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37757656

ABSTRACT

A large number of radionuclides remain in uranium tailings, and U, 226Ra and 210Pb leach out with water chemistry, causing potential radioactive contamination to the surrounding environment. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling, mixed and homogenised, and analysed for mineral and chemical composition, microscopic morphology, U, 226Ra and 210Pb fugacity, static leaching and dynamic leaching of U, 226Ra and 210Pb in uranium tailings at different pH conditions. The variation of U, 226Ra and 210Pb concentrations in the leachate under different pH conditions with time was obtained, and the leaching mechanism was analysed. The results showed that the uranium tailings were dominated by quartz, plagioclase and other minerals, of which SiO2 and Al2O3 accounted for 65.45% and 13.32% respectively, and U, 226Ra and 210Pb were mainly present in the residue form. The results of the static leaching experiments show that pH mainly influences the leaching of U, 226Ra and 210Pb by changing their chemical forms and the particle properties of the tailings, and that the lower the pH the more favourable the leaching. The results of dynamic leaching experiments during the experimental cycle showed that the leaching concentration and cumulative release of U, 226Ra and 210Pb in the leach solution were greater at lower pH conditions than at higher pH conditions, and the leaching of U, 226Ra and 210Pb at different pH conditions was mainly from the water-soluble and exchangeable states. The present research results are of great significance for the environmental risk management and control of radioactive contamination in existing uranium tailings ponds, and are conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , Uranium/analysis , Lead/analysis , Silicon Dioxide/analysis , Soil Pollutants, Radioactive/analysis , Minerals/analysis , Hydrogen-Ion Concentration , Water
11.
Appl Radiat Isot ; 200: 110939, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536028

ABSTRACT

In this study, natural radioactivity levels (226Ra, 232Th, and 4 K) of some medicinal plant samples with known anti-oxidative properties, which are frequently consumed by animals and humans, were obtained from Ankara province and its surroundings (Mamak, Kizilcahamam, Beypazari, Kahramankazan, and Polatli districts) were determined using a thallium-doped sodium iodide NaI(Tl) gamma spectrometry. By using the determined natural radioactivity concentrations in the collected plant samples, the number of radiological doses that people could be exposed by consuming these plants was calculated. As a result of the study, 226Ra, 232Th, and 4 K radioactivity concentration ranges of the plant samples were found be 14.69 ± 1.27-59.08 ± 3.12 Bq kg-1, 1.78 ± 0.04-50.05 ± 2.76 Bq kg-1 and 207.24 ± 34.09-826.13 ± 25.40 Bq kg-1, respectively. The highest 226Ra, 232Th, and 4 K activity concentrations were measured in Astragalus densifolius subsp. ayashensis (Kahramankazan), Astragalus kochakii (Kahramankazan) and Rumex patientia (Patience Dock) (Kahramankazan) plants, respectively. The lowest 226Ra, 232Th and,4 K activity concentration plants were determined respectively as Rumex patientia (Mamak), Lavandula angustifolia (Kizilcahamam), and Astragalus acikirensis (Polatli). The establishment and routine repetition of environmental radioactivity monitoring programs in each region are important for human and animal health, and the results of this study gain importance for Ankara and its surroundings in terms of environmental health.


Subject(s)
Radiation Monitoring , Radioactivity , Radium , Soil Pollutants, Radioactive , Humans , Radioisotopes/analysis , Radiation Monitoring/methods , Turkey , Spectrometry, Gamma/methods , Soil Pollutants, Radioactive/analysis , Potassium Radioisotopes/analysis , Radium/analysis , Thorium/analysis
12.
Sci Total Environ ; 899: 165467, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37454838

ABSTRACT

Ceasium-137 and 90Sr are major artificial radionuclides that have been released into the environment. Soil-to-plant transfer of radionuclides is an important route to food contamination. The radionuclide activity concentrations in crops must be quantitatively predicted for estimating the internal radiation doses from food ingestion. In this study, soil and potato samples were collected from three study sites contaminated with different sources of 137Cs and 90Sr: Aomori Prefecture (global fallout) and two accidental release areas (Fukushima Prefecture and the Chornobyl exclusion zone). The 137Cs activity concentrations in the soil and potato samples widely ranged from 1.0 to 250,000 and from 0.048 to 200,000 Bq kg-1 dry weight, respectively. The soil-to-potato transfer factor of 137Cs also ranged widely (0.0015-1.1) and decreased with increasing concentration of exchangeable K. Meanwhile, the activity concentrations of 90Sr in the soil and potato samples were 0.50-64,000 and 0.027-18,000 Bq kg-1 dry weight respectively, and the soil-to-potato transfer factor of 90Sr was 0.023-0.74, decreasing with increasing concentration of exchangeable Ca. The specific activity ratios of 137Cs/Cs and 90Sr/Sr in the exchangeable fraction were similar to those in potatoes, with a factor of 3 in the ±95 % confidence intervals over six orders of magnitude and a factor of 2 in the ±95 % confidence intervals over five orders of magnitude, respectively. According to the data, the accuracy of predicting the activity concentrations of 137Cs and 90Sr in potatoes can be improved by applying the specific activity ratios of 137Cs/Cs and 90Sr/Sr in the exchangeable fraction. This approach accounts for variable factors such as the effects of K and Ca fertilization and soil characteristics. It also emphasizes the benefit of determining the stable Cs and Sr concentrations in potatoes and other crops prior to possible future contamination.


Subject(s)
Chernobyl Nuclear Accident , Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Solanum tuberosum , Soil , Transfer Factor , Soil Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis
13.
Health Phys ; 125(3): 232-237, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37459468

ABSTRACT

ABSTRACT: Disposal of naturally occurring radioactive material (NORM) and technologically enhanced naturally occurring radioactive material (TENORM) waste in the State of Oregon is prohibited unless it can be demonstrated that the material is nonradioactive as defined by its radionuclide content and potential for emission into the environment. It was determined that a radon flux on the surface of the waste no greater than 0.37 Bq m -2 s -1 would meet this requirement. This article provides a method to estimate the radon flux through indirect measurement of the radon mass exhalation rate. It describes a device that consists of a radon accumulation chamber coupled with a continuous radon monitor and software to process the results and calculate the radon mass exhalation rate and radon flux for an unknown sample of approximately 500 g. The chamber system was tested with a uranium ore sample.


Subject(s)
Radiation Monitoring , Radioactive Waste , Radon , Soil Pollutants, Radioactive , Uranium , Radon/analysis , Exhalation , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis
14.
J Environ Radioact ; 268-269: 107246, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37506478

ABSTRACT

In this study, we present an assessment of the uranium ore tailings impact on groundwater and surface water contamination. The radioactive materials were deposited in the tailings storage facility "Dniprovske" (the city of Kamianske, Ukraine) from 1954 to 1968; now it contains about 5.85·106 m3 of hazardous waste on the area of about 76 ha in the floodplain of the Dnipro river. The lack of a proper waterproof screen below deposited tailings and in the earthen dam led to permanent watering of radioactive materials, their leaching and migration in groundwater into the nearest small Konoplianka river. We used the reports on previous site-specific studies conducted in 1999-2016, monitoring results, and the field studies conducted in 2022 with the authors' team participation. The calculations performed with the advection-dispersion model to simulate transport of radionuclides 238U, 230Th, 226Ra and 210Pb through the embankment to the Konoplianka river and dilution relations were compared to the monitoring data of the surface water quality. Among four radionuclides, uranium poses the greatest risks today; the subsurface runoff increases its concentration in the Konoplianka river water by several times over the background value. It is estimated that due to much more intensive sorption in the shallow aquifer, the contribution of 226Ra and 210Pb to the increase in radioactivity of Konoplianka river water is insignificant compared to uranium, whereas the migration front of 230Th has probably not yet reached the riverbank. In the next 50 years the radionuclide fluxes will increase by 1.3-3.7 times for different isotopes, with the uranium subsurface runoff growing at a slower rate than nowadays. These results are of high significance for improving hydrological, hydrogeological, and geotechnical monitoring on this hazardous facility to maintain its radiation safety.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Ukraine , Lead , Soil Pollutants, Radioactive/analysis , Radioisotopes/analysis , Water Pollutants, Radioactive/analysis
15.
Ecotoxicol Environ Saf ; 263: 115210, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37418943

ABSTRACT

This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Uranium , Soil , Lead/analysis , Zinc/analysis , Radioisotopes/analysis , Uranium/analysis , Radium/analysis , Thorium/analysis , Soil Pollutants, Radioactive/analysis , Mining
16.
Arch Environ Contam Toxicol ; 85(3): 302-313, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37233742

ABSTRACT

The Red River is one of the largest rivers that plays an important role in the economic development of North Vietnam. There are many radionuclides bearing rare earth, uranium ore mines, mining industrial zones and magma intrusive formations along this river. The contamination and accumulation of radionuclides could exist at high concentration in surface sediments of this river. Thus, the present investigation aims to study the activity concentrations of 226Ra, 232Th (228Ra), 40K, and 137Cs in Red River surface sediments. Thirty sediment samples were collected, and their activity concentration was calculated using high-purity germanium gamma-ray detector. The observed results ranged from 51.0 ± 2.1 to 73.6 ± 3.7 for 226Ra, 71.4 ± 3.6 to 103 ± 5.2 for 232Th, 507 ± 24.0 to 846 ± 42.3 for 40K, and ND (not detected) to 1.33 ± 0.06 Bq/kg for 137Cs, respectively. In general, the natural radionuclides concentration of 226Ra, 232Th (228Ra), and 40K is higher than the average world average values. This indicated that the natural radionuclides could contribute from similar and principal sources surrounding the upstream of Lao Cai where distributed uranium ore mines, radionuclide bearing rare earth mines, mining industrial zones and intrusive formations. Regarding the radiological hazard assessment, results of the indices computed such as absorbed gamma dose rate (D), the excess lifetime cancer risk (ELCR), and the annual effective dose equivalent (AEDE) were nearly two times higher than world average values.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , Vietnam , Uranium/analysis , Radiation Monitoring/methods , Cesium Radioisotopes , Soil Pollutants, Radioactive/analysis
17.
Environ Pollut ; 331(Pt 2): 121915, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37257812

ABSTRACT

Radon-containing water bodies in uranium mining areas inevitably release radon gas, polluting the surrounding environment via radiation. Thus, it is particularly important to develop devices with the ability to retard the radon release from such water bodies. Based upon theories of radon exhalation in water, a radon exhalation retardation device (RERD) with flexible, modular floats (a flexible polyvinyl chloride material module that floats on water) was designed and manufactured. To study the modular surface-covering floats' effectiveness in retarding radon release from water surfaces, an experimental setup was constructed to simulate radon release from water bodies, using a granular uranium ore sample from a uranium mine as sediment material. Closed-loop measurements were taken to determine the radon exhalation rate on the exposed surface of the water in uncovered and covered conditions. Radon retardation rates were also compared for different area coverage (29.6%, 59.1%, and 88.7%) and immersion depths (0.02 m and 0.04 m) in unperturbed and perturbed water bodies. The results show that: 1) the greater the area coverage, the greater the radon retardation rate in both unperturbed and perturbed water bodies; 2) under the same coverage conditions, the surface radon exhalation rate and the radon transfer velocity at the gas-liquid interface of the perturbed water are larger than those of the unperturbed water; 3) The immersion depth of modular surface-covering floats has a stronger effect on the radon retardation rate in unperturbed water bodies than in perturbed water bodies. The study shows that the proposed modular floats are effective in retarding radon release from both perturbed and unperturbed water bodies.


Subject(s)
Radiation Monitoring , Radon , Water Pollutants, Radioactive , Mining , Radiation Monitoring/methods , Radon/analysis , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Water , Water Pollutants, Radioactive/analysis
18.
Environ Monit Assess ; 195(5): 620, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37106210

ABSTRACT

The current study analyzed and interpreted airborne radiometric data from Ilesha's basement complex rock and its surroundings. At the surface, the concentrations of the most frequent primordial radionuclides notably K, elemental concentration of uranium eU, and elemental concentration of thorium eTh were measured. The weighted mean elemental and activity concentrations were 0.85%, 2.75 ppm, 10.22 ppm, and 267.54 Bq kg-1, 34.41 Bq kg-1, 41.51 Bq kg-1 for 40 K, 238U, and 232Th, respectively. The low concentration of 40 K was certainly due to the effects of weathering, kaolinization of granites, and pedogenesis activities. The abundance of uranium was ascribed to the availability of uranium minerals such as allanite, apatite, and sphene with accessories minerals, while that of thorium was due to minerals such as cheralite, thorite, uranothorite, thorianite, and uranothorianite with accessories minerals. The RPHR weighted mean 1.48 µWm-3 compared to the earth's crust mean between 0.8 and1.2 µWm-3 was higher due to significant presence of gneiss rocks in all the studied profiles. Radiological hazard, in particular, dose rates, external hazard index, internal hazard index, radium equivalent, annual gonadal dose, effective dose dispensed to various organs of the body were computed to determine the deleterious effects of rocks in the area. The weighted means of annual gonadal dose of 363.98 µSv y-1 and outdoor 0.91 × 10×3 and indoor 1.65 × 10-3 excessive life cancer risks were more than the global average 300 µSv y-1, 0.29 × 10-3 and 1.16 × 10-3. As a result, proper surveillance is required in the area in order to prevent epidemics occurrence in future.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Uranium , Environmental Monitoring , Thorium/analysis , Uranium/analysis , Radioisotopes/analysis , Minerals/analysis , Radium/analysis , Potassium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma , Background Radiation
19.
J Environ Radioact ; 262: 107148, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921389

ABSTRACT

The radioactive index value of the leachate of the uranium tailings dam is affected by the internal damage of the dam. Therefore, a way of using the deviation of the radioactive index concentration in the leachate to warn the instability of the dam is innovatively proposed in this paper. Firstly, the SSA-BP algorithm is used to predict and analyze the five groups of parameters U, Ra, ∑ α, ∑ ß and Rn. Then, the deviation between the actual value and the predicted value is computed. Finally, an early warning is given based on the entropy weight extension decision-making model. The model is verified by the leachate environment monitoring data of a uranium tailings dam in southern China from 2016 to 2020, which shows that the model can effectively caution of the instability of the uranium tailings dam and provides a reference for the subsequent decommissioning management.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Uranium , Uranium/analysis , Water , Soil Pollutants, Radioactive/analysis , China
20.
Chemosphere ; 323: 138217, 2023 May.
Article in English | MEDLINE | ID: mdl-36849023

ABSTRACT

The Chhatrapur-Gopalpur coastal area in Odisha, India is a well-known natural high background radiation (HBRA) area due to the abundance of monazite (a thorium bearing radioactive mineral) in beach sands and soils. Recent studies on Chhatrapur-Gopalpur HBRA groundwater have reported high concentrations of uranium and its decay products. Therefore, the soils of the Chhatrapur-Gopalpur HBRA are reasonably suspected as the sources of these high uranium concentrations in groundwater. In this report, first the uranium concentrations in soil samples were measured using inductively coupled plasma mass spectrometry (ICP-MS) and they were found to range from 0.61 ± 0.01 to 38.59 ± 0.16 mg kg-1. Next, the 234U/238U and 235U/238U isotope ratios were measured to establish a baseline for the first time in Chhatrapur-Gopalpur HBRA soil. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) was used for measurement of these isotope ratios. The 235U/238U ratio was observed to be the normal terrestrial value. The 234U/238U activity ratio, was calculated to understand the secular equilibrium between 234U and 238U in soil and it varied from 0.959 to 1.070. To understand the dynamics of uranium in HBRA soil, physico-chemical characteristics of soil were correlated with uranium isotope ratios and this correlation of 234U/238U activity ratio indicated the leaching of 234U from Odisha HBRA soil.


Subject(s)
Soil Pollutants, Radioactive , Uranium , Soil , Uranium/analysis , Background Radiation , Soil Pollutants, Radioactive/analysis , Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL