Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 684
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38639924

ABSTRACT

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Subject(s)
Boronic Acids , Molecular Imprinting , Nanoparticles , Shikimic Acid , Silicon Dioxide , Solid Phase Extraction , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Molecular Imprinting/methods , Shikimic Acid/chemistry , Shikimic Acid/isolation & purification , Boronic Acids/chemistry , Solid Phase Extraction/methods , Molecularly Imprinted Polymers/chemistry , Adsorption , Herbal Medicine/methods
2.
J Chromatogr A ; 1724: 464915, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38663319

ABSTRACT

Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 µg L-1), low limits of detection (1.4-35 µg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.


Subject(s)
Drugs, Chinese Herbal , Limit of Detection , Solid Phase Extraction , Zearalenone , Chromatography, High Pressure Liquid/methods , Zearalenone/analysis , Zearalenone/chemistry , Zearalenone/isolation & purification , Solid Phase Extraction/methods , Adsorption , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Medicine, Chinese Traditional , Porosity , Magnetite Nanoparticles/chemistry
3.
Food Chem ; 447: 138998, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38503068

ABSTRACT

As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 µg L-1 and the limit of detection was 0.1 µg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.


Subject(s)
Molecular Imprinting , Oxytetracycline , Oxytetracycline/analysis , Boron , Molecular Imprinting/methods , Carbon , Fluorescent Dyes , Reproducibility of Results , Polymers , Anti-Bacterial Agents , Solid Phase Extraction/methods , Tea , Magnetic Phenomena , Limit of Detection
4.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542125

ABSTRACT

In recent years, there has been a growing interest in plant pigments as readily available nutraceuticals. Photosynthetic pigments, specifically chlorophylls and carotenoids, renowned for their non-toxic antioxidant properties, are increasingly finding applications beyond their health-promoting attributes. Consequently, there is an ongoing need for cost-effective methods of isolation. This study employs a co-precipitation method to synthesize magnetic iron oxide nanoparticles. Scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) confirms that an aqueous environment and oxidizing conditions yield nanosized iron oxide with particle sizes ranging from 80 to 140 nm. X-ray photoelectron spectroscopy (XPS) spectra indicate the presence of hydrous iron oxide FeO(OH) on the surface of the nanosized iron oxide. The Brunauer-Emmett-Teller (BET) surface area of obtained nanomaterial was 151.4 m2 g-1, with total pore volumes of pores 0.25 cm3 g-1 STP. The material, designated as iron oxide nanoparticles (IONPs), serves as an adsorbent for magnetic solid phase extraction (MSPE) and isolation of photosynthetic pigments (chlorophyll a, lutein) from extracts of higher green plants (Mentha piperita L., Urtica dioica L.). Sorption of chlorophyll a onto the nanoparticles is confirmed using UV-vis spectroscopy, Fourier transform infrared photoacoustic spectroscopy (FT-IR/PAS), and high-performance liquid chromatography (HPLC). Selective sorption of chlorophyll a requires a minimum of 3 g of IONPs per 12 mg of chlorophyll a, with acetone as the solvent, and is dependent on a storage time of 48 h. Extended contact time of IONPs with the acetone extract, i.e., 72 h, ensures the elimination of remaining components except lutein, with a spectral purity of 98%, recovered with over 90% efficiency. The mechanism of chlorophyll removal using IONPs relies on the interaction of the pigment's carbonyl (C=O) groups with the adsorbent surface hydroxyl (-OH) groups. Based on molecular dynamics (MD) simulations, it has been proven that the selective adsorption of pigments is also influenced by more favorable dispersion interactions between acetone and chlorophyll in comparison with other solutes. An aqueous environment significantly promotes the removal of pigments; however, it results in a complete loss of selectivity.


Subject(s)
Ferric Compounds , Lutein , Plant Extracts , Plant Extracts/chemistry , Chlorophyll A , Chlorophyll , Spectroscopy, Fourier Transform Infrared , Acetone , Water , Adsorption , Solid Phase Extraction/methods , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena
5.
J Sep Sci ; 47(5): e2300870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38471979

ABSTRACT

Mycotoxin contamination is widespread in plants and herbs, posing serious threats to the consumer and human health. Of them, alternariol (AOH) has attracted great attention as an "emerging" mycotoxin in medicinal herbs. However, a specific and high-throughput extraction method for AOH is currently lacking. Thus, developing an efficient pre-treatment technique for AOH detection is extremely vital. Here, a novel automated magnetic solid-phase extraction method was proposed for the highly efficient extraction of AOH. Combining the aptamer-functionalized magnetic nanoparticles (AMNPs) and the automatic purification instrument, AOH could be extracted in medicinal herbs in high throughput (20 samples) and a short time (30 min). The main parameters affecting extraction were optimized, and the method was finally carried out by incubation AMNPs with 3 mL of sample solution for 10 min, and then desorption in 75% methanol for liquid-phase detection. Under optimal conditions, good reproducibility, stability, and selectivity were realized with an adsorption capacity of 550.84 ng/mg. AOH extraction in three edible herbs showed good resistance to matrix interference with recovery rates from 86% to 111%. In combination with AMNPs and the automatic purification instrument, high-throughput and labor-free extraction of AOH in different complex matrices was achieved, which could be extended in other complex matrices.


Subject(s)
Lactones , Magnetite Nanoparticles , Mycotoxins , Plants, Medicinal , Humans , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Mycotoxins/analysis , Oligonucleotides , Solid Phase Extraction/methods
6.
Sci Total Environ ; 920: 170898, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369155

ABSTRACT

Azole compounds are utilized to combat fungal infections in plants to protect them and also used for treating mycosis in humans. The LC-MS/MS method is a technique that combines liquid chromatography with tandem mass spectrometry for analysis of twelve azole compounds from wastewater (influent, effluent) and sewage sludge. The compounds were isolated from waste water using automatic extraction in the solid phase. Sludge samples were dried by lyophilization, after which they were subjected to ultrasound extraction with methanol. The quantification limits ranged from 0.3 ng/L (clotrimazole-CLO and prochloraz-PRO) to 1.5 ng/L (tetraconazole-TEB and penconazole-PEN), for wastewater samples and for sewage sludge, the LOQs ranged from 0.1 ng/g to 0.6 ng/g. High concentrations of climbazole-CLI (207-391 ng/L), tebuconazole (92-424 ng/L), and clotrimazole (6.9-93-ng/L) were observed in influent samples of the 8 urban wastewater treatment plants, followed by fluconazole (49.3-76.8 ng/L), and prochloraz (7.3-72 ng/L). The ∑Azoles had a maximum of 676 ng/L in the Galati effluent, followed by the Bucharest station 357 ng/L, and 345 ng/L in the Braila effluent. The highest value of the daily mass loading (input) level was observed for climbazole, 265 mg/day/1000 in Iasi station, followed by tebuconazole, 238 mg/day/1000 people in the Bucharest station, and 203 mg/day/1000 people for climbazole in the Targoviste station. The daily mass emission presented values between 0.7 and 247 mg/day/1000 people. The highest emissions were observed for climbazole, 247 mg/day/1000 people in Braila station; 174 mg/day/1000 people in the Iasi station and 129 mg/day/1000 people in the Bucharest station. The concentrations of climbazole detected in the effluent can present a high risk for the plants Lemna minor and Navicula pelliculosa. Clotrimazole may present a high risk to the plant Desmodesmus subspicatus and to the invertebrate Daphnia magna. PRO may present high risk to the invertebrate Mysidopsis Bahia.


Subject(s)
Araceae , Water Pollutants, Chemical , Water Purification , Humans , Antifungal Agents/analysis , Sewage/chemistry , Wastewater , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Clotrimazole/analysis , Romania , Azoles , Water Pollutants, Chemical/analysis , Solid Phase Extraction/methods
7.
Environ Pollut ; 344: 123422, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38272170

ABSTRACT

This article reports a comprehensive analytical method for the identification and quantification of a broad range of pesticides in green plant crops. The sample preparation method for pesticides involved an optimization of the QuEChERS-based extraction protocol, with sample mass, volume of added water, and the type of cleanup sorbent as variables. A sorbent combination based on ENVI-Carb and ChloroFiltr was examined. A highly efficient method was developed for the purification of plant extracts with 900 mg MgSO4, 150 mg PSA, and 15 mg ENVI-Carb at the d-SPE stage, combined with gas chromatography and liquid tandem mass spectrometry for the determination of 197 pesticides in crop plants containing chlorophyll. The method was validated in accordance with the requirements of international guidelines SANTE/11312/2021. The method was applied to quantify pesticide residues in 29 pairs of green crop plants and plants from the corresponding crop protection zone to verify whether the zones are effective barriers to prevent pesticides from penetrating outside agricultural areas. The number and types of agrochemical preparations were chosen by farmers. In total, more than 60 one- and several-component pesticide formulations were applied to the crops included in the study. The pesticide residues were detected in 21 crop samples and 3 samples from protection zones. Epoxiconazole, an active substance that was banned for use in 2021, was found in a spring barley sample. Based on the conducted research, the effectiveness of the protection zones has been clearly demonstrated, and it has been proven that environmental migration of pesticides and unauthorized agricultural practices pose a risk to ecosystems.


Subject(s)
Pesticide Residues , Pesticides , Pesticides/analysis , Pesticide Residues/analysis , Ecosystem , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry/methods , Crops, Agricultural/chemistry , Solid Phase Extraction/methods
8.
Anal Sci ; 40(2): 319-333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38085445

ABSTRACT

In present work, a method for enrichment, purification, and content determination of oleanolic acid (OA) in medicinal plants was established based on on-line solid phase extraction (SPE). A metal organic frameworks-porous organic polymer monolith (MOF-POPM) was prepared with functionalized UiO-66-(OH)2 as monomer and was used as SPE column for online enrichment and purification of OA. The ratio of adsorbent, enriching and eluting solvent, mobile phase pH, and flow rate had been systematically investigated. Under the optimum conditions, the linear range of OA was 0.59-2500 µg/mL with r = 0.9996. The limit of detection (LOD) was 0.18 µg/mL and the limit of quantification (LOQ) was 0.59 µg/mL. The intra-day relative standard deviations (RSDs) and inter-day RSDs of retention time and peak area were less than 0.3% and 1.3%, respectively. The average recoveries of OA in medicinal plants samples ranged from 87.7 to 104.6%. The results demonstrated that the online system was reliable and accurate for enrichment, purification, and content determination of OA in medicinal plants.


Subject(s)
Oleanolic Acid , Plants, Medicinal , Chromatography, High Pressure Liquid/methods , Solid Phase Extraction/methods , Polymers/chemistry
9.
Food Chem ; 437(Pt 2): 137917, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37944391

ABSTRACT

A novel methodology based on ultrasonic-assisted sequential extraction, dispersive-SPE purification, and single-injection on liquid chromatography-tandem mass spectrometry (LC-MS/MS) is proposed, for the first time, to simultaneously measure 14 tri-OPEs and 9 di-OPEs in plant tissues. The samples were successively ultrasonicated with a mixture of hexane:dichloromethane (1:1, v/v) and 8% acetic acid in acetonitrile for extracting tri- and di-OPEs purified with graphitized carbon black and quantitated on LC-MS/MS at the same time. The recoveries of targeted tri- and di-OPEs in the matrix spike ranged from 66% to 120% and 71% to 110% respectively. The proposed method was validated by processing eight types of common vegetables including spinach (Spinacia oleracea L.), lettuce (Lactuca sativa), carrot (Daucus carota var. sativa Hoffm.), sweet potato (Solanum tuberosum L.), cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), green beans (Phaseolus vulgaris), and cowpeas (Vigna unguiculata), with the recoveries of surrogates ranging from 84% to 98%.


Subject(s)
Organophosphates , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Organophosphates/analysis , Esters/analysis , Ultrasonics , Lactuca , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid
10.
J Chromatogr A ; 1715: 464599, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38150874

ABSTRACT

Overweight and obesity are the causes of many diseases and have become global "epidemics". Research on natural active components with anti-adipogenesis effects in plants has aroused the interest of researchers. One of the most critical problems is establishing sample preparation and analytical techniques for quickly and selectively extracting and determining the active anti-adipogenesis components in complex plant matrices for developing new anti-adipogenic drugs. In this study, a new poly(deep eutectic solvents) surface imprinted graphene oxide composite (PDESs-MIP/GO) with high selectivity for phenolic acids was prepared using deep eutectic solvents as monomers and crosslinkers. A miniaturized centrifugation-accelerated pipette-tip matrix solid-phase dispersion method (CPT-MSPD) with PDESs-MIP/GO as adsorbent, coupled with high-performance liquid chromatography, was further developed for the rapid determination of anti-adipogenesis markers in Solidago decurrens Lour. (SDL). The established method was successfully used to determination anti-adipogenesis markers in SDL from different regions, with the advantages of accuracy (recoveries: 94.4 - 115.9 %, RSDs ≤ 9.8 %), speed (CPT-MSPD time: 11 min), selectivity (imprinting factor: ∼2.0), and economy (2 mg of adsorbent and 1 mL of solvents), which is in line with the current advanced principle of "3S+2A" in analytical chemistry.


Subject(s)
Deep Eutectic Solvents , Graphite , Solidago , Solid Phase Extraction/methods , Solvents/chemistry , Chromatography, High Pressure Liquid
11.
Food Res Int ; 175: 113690, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129032

ABSTRACT

This study proposed an integrated and automated procedure to extract, separate, and quantify bioactive compounds from a coffee co-product by pressurized liquid extraction (PLE) coupled inline with solid phase extraction (SPE) and online with HPLC-PDA (PLE-SPE × HPLC-PDA). The efficiency of the two-dimensional system in performing real-time analysis was verified by comparing HPLC-PDA results acquired by the system (online) and carried out after the extract fraction collection (offline). Different flow rates (1.5 mL/min for 336 min, 2 mL/min for 246.4 min, and 2.5 mL/min for 201.6 min) were evaluated to optimize the extraction, separation, and analysis method by PLE-SPE × HPLC-PDA. Subcritical water at 125 °C and 15 min of static time allowed the highest extraction yields of caffeine and 5-caffeoylquinic acid (5-CQA). Caffeine was retained during the aqueous extraction in the SPE adsorbent and eluted from the column by exchanging the solvent for a hydroethanolic mixture. Thus, caffeine was separated from 5-CQA and other phenolic compounds, producing extracts with different compositions. The solvent flow rate did not have a significant effect (p-value ≥ 0.05) on the extraction, separation, and analysis (by online and offline methods) of 5-CQA. However, the online quantification of retained compounds in the SPE (i.e., caffeine) can underestimate concentration compared to offline analysis. Nevertheless, the results suggest that coupling of advanced techniques can be used to efficiently extract, separate, and analyze fractions of phenolic compounds, supplying an integrated method to produce high-added value ingredients for several applications.


Subject(s)
Caffeine , Coffee , Chromatography, High Pressure Liquid/methods , Caffeine/analysis , Phenols/analysis , Solid Phase Extraction/methods , Solvents/analysis
12.
Toxins (Basel) ; 15(12)2023 11 24.
Article in English | MEDLINE | ID: mdl-38133176

ABSTRACT

An analysis methodology was optimised and validated for the quantification of opium alkaloids (OAs) in ground poppy seeds. This involved ultrasound-assisted extraction (UAE) and solid-phase extraction (SPE) purification before analysis using a high-performance liquid chromatography mass spectrometry detector (HPLC-MS/MS). UAE was optimised through the design of experiments with three factors and a three-level full factorial design. For SPE optimisation, a commercial material was compared with a previously synthesised material of SBA-15 silica functionalised with sulfonic groups (SBA-15-SO3-). The synthesised material demonstrated superior efficiency with only 25 mg and proved to be reusable for up to four cycles. The methodology was properly validated in terms of linearity, limits of detection and quantification, and selectivity. Matrix effects were negligible; adequate recovery values (85-100%) and inter-day and intra-day precision (≤15%) were obtained. The greenness of the method was evaluated with the AGREEprep metric scale, being more environmentally friendly compared to OA analysis methods. Finally, the method was applied to different samples of ground poppy seeds and revealed a concentration of 140 mg/kg of morphine equivalents in one of the samples, surpassing the legislatively established limits by sevenfold. This highlights the need to analyse these types of samples to mitigate potential public health issues.


Subject(s)
Papaver , Papaver/chemistry , Opium , Tandem Mass Spectrometry/methods , Morphine , Silicon Dioxide/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods
13.
J Chromatogr A ; 1712: 464474, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37924618

ABSTRACT

A magnetic metal-organic framework MIL-68(Al) and a covalent organic framework were used as magnetic solid-phase extraction (MSPE) adsorbents in combination with high-performance liquid chromatography ultraviolet detection (HPLC-UV) to detect carbendazim (CBZ) and thiabendazole (TBZ). The main parameters affecting the extraction in the MSPE process were studied and optimized. Fe3O4@MIL-68(Al) coated with 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde (Fe3O4@MIL-68(Al)@TAPB-PDA-COF) was analyzed and verified. The material was proven to be suitable for adsorbing CBZ and TBZ. Various adsorption models were used to study its adsorption mechanism. The adsorption results were in good agreement with the pseudo-second-order kinetic model and Langmuir isotherm model. The maximum adsorption capacities of Fe3O4@MIL-68(Al)@TAPB-PDA-COF over CBZ and TBZ were 54.24 and 67.87 mg g-1, respectively, and the equilibrium adsorption time was 200 min. Fe3O4@MIL-68(Al)@TAPB-PDA-COF with excellent recyclability showed higher adsorption capacity and selectivity. A method based on Fe3O4@MIL-68(Al)@TAPB-PDA-COF combined with HPLC-UV was established under the optimal extraction conditions and used to separate and detect trace imidazole drugs in Chinese herbal samples, achieving a low limit of detection (0.65-1.30 µg L-1) with excellent linear correlation (r > 0.999). The recovery rate and relative standard deviation were 86.05-99.78 % and 0.15-4.90 %, respectively. Therefore, the Fe3O4@MIL-68@TAPB-PDA-COF can be regarded as an effective adsorbent for the pretreatment of CBZ and TBZ drugs in Chinese herbal samples.


Subject(s)
Drugs, Chinese Herbal , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Thiabendazole , Solid Phase Extraction/methods , Adsorption , Magnetic Phenomena , Chromatography, High Pressure Liquid/methods , Limit of Detection
14.
J Chromatogr A ; 1711: 464466, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37897923

ABSTRACT

Here, a novel nanohybrid material (Ag@CD@ANS) based on oat starch was produced, characterized, and applied to extract persistent organic pollutants in a shrimp sample. By the characterization experiments, Ag@CD@ANS was successfully synthesized. The functionalization of the material by 1,2-naphthoquinone-4-sulphonic acid (ANS) was confirmed using the infrared technique and CHN elemental analysis. The isotherm study showed that the material has a high adsorption capacity for the pesticides of interest (flutriafol, atrazine, heptachlor, DDT and bifenthrin) allowing their extraction from shrimp samples. The optimal condition for extraction was obtained using multivariate analysis. The nature of the elution solvent (hexane, methanol, acetonitrile) and the mass ratio between sample:adsorbent (1:1; 1:5 and 1:10) were the evaluated factors for extraction using Ag@CD@ANS and commercial adsorbents (neutral alumina, octadecyl, silica gel). From the multivariate analysis, it was observed that the optimal condition for pesticide extraction using Ag@CD@ANS was reached, using a 1:5 ratio (sample:adsorbent) and acetonitrile (10 mL) as elution solvent. For the commercial adsorbents, the optimal condition for pesticide extraction was reached, using a 1:3 ratio (sample:adsorbent), acetonitrile (10 mL) and neutral alumina as commercial adsorbent. Ag@CD@ANS efficiency was compared with an optimal commercial adsorbent (neutral alumina). No significant difference (p < 0.05) between neutral alumina and Ag@CD@ANS was observed. Recoveries ranging from 75 to 105 % with coefficients of variation ≤ 15 % (n = 3) were obtained using neutral alumina while using Ag@CD@ANS, recoveries ranging from 73 to 102 %, with coefficient of variation ≤ 13 % (n = 3) were obtained for the target pesticides. Limits of detection ranging from 0.5 to 1.0 µg Kg-1 and limits of quantification ranging from 1.6 to 3.3 µg Kg-1 were reached. The results demonstrated that Ag@CD@ANS can alternatively be used as a support for the extraction of persistent organic pollutants, having the advantage of being reusable for up to three cycles.


Subject(s)
Persistent Organic Pollutants , Pesticides , Solvents , Aluminum Oxide , Acetonitriles , Solid Phase Extraction/methods
15.
Sci Rep ; 13(1): 17544, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845244

ABSTRACT

Within the world of natural food supplements, organic extracts deriving from young plant meristematic tissue (bud-derivatives) are becoming attractive, thanks to their richness in bioactive molecules. This natural source is scarce, but every year, tons of plant material, including buds, come from city pruning. If this sustainable source is rather promising from a circular economy point of view, the safety of the obtained supplements must be assessed. In fact, anthropic microcontaminants, such as polycyclic aromatic hydrocarbons (PAHs), could adsorb onto the urban buds, leading to a possible contamination of the bud-derivatives. In this study, we developed a magnetic dispersive solid phase extraction (m-dSPE) based on molecularly imprinted microparticles, combined with GC-MS, to quantify the 16 priority PAHs in such extracts. The D-optimal experimental design was implemented to maximize analytes' recovery with the smallest set of experiments. The optimized method was characterized by great selectivity thanks to the molecular imprinted polymer and ease of use provided by m-dSPE. Moreover, it complies with green principles, thanks to the minimum consumption of organic solvent (1.5 mL of acetone per sample). The recoveries ranged from 76 to 100% and procedural precision was below 10% for most PAHs. Despite the matrix complexity, low quantification limits (0.7-12.6 µg kg-1) were reached. This guaranteed the PAHs' quantitation at levels below those indicated as safe by a European Community regulation on food supplements. None of the analyzed samples, coming from different anthropically impacted areas, showed concerning PAHs levels.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Gas Chromatography-Mass Spectrometry/methods , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Extraction/methods , Magnetic Phenomena , Dietary Supplements
16.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513364

ABSTRACT

Rosmarinus officinalis leaves (ROLs) are widely used in the food and cosmetics industries due to their high antioxidant activity and fascinating flavor properties. Carnosic acid (CA) and rosmarinic acid (RA) are regarded as the characteristic antioxidant components of ROLs, and the selective separation of CA and RA remains a significant challenge. In this work, the feasibility of achieving the selective separation of CA and RA from ROLs by solid-phase extraction (SPE) and liquid-liquid extraction (LLE) was studied and compared. The experiments suggested that SPE with CAD-40 macroporous resin as the adsorbent was a good choice for selectively isolating CA from the extracts of ROLs and could produce raw CA with purity levels as high as 76.5%. The LLE with ethyl acetate (EA) as the extraction solvent was more suitable for extracting RA from the diluted extracts of ROLs and could produce raw RA with a purity level of 56.3%. Compared with the reported column chromatography and LLE techniques, the developed SPE-LLE method not only exhibited higher extraction efficiency for CA and RA, but can also produce CA and RA with higher purity.


Subject(s)
Plant Extracts , Rosmarinus , Plant Extracts/chemistry , Solid Phase Extraction/methods , Cinnamates/chemistry , Liquid-Liquid Extraction/methods , Rosmarinus/chemistry , Antioxidants/analysis , Chromatography, High Pressure Liquid , Rosmarinic Acid
17.
J AOAC Int ; 106(6): 1608-1619, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37449906

ABSTRACT

BACKGROUND: Solid phase extraction (SPE) techniques, based on computationally designed magnetic-based multi-targeting molecular imprinted polymer (MT-MIP), combined with UV spectrophotometric approaches provide advantages in the examination of counterfeit samples. OBJECTIVE: The current work describes an innovative and sustainable methodology for the simultaneous determination of tadalafil (TAD) and dapoxetine hydrochloride (DAP) in aphrodisiac counterfeit products (honey and instant coffee) utilizing SPE exploiting MT-MIP. Additionally, an innovative UV spectrophotometric method capable of resolving TAD in its pharmaceutical binary mixtures with DAP was developed. A novel computational approach was implemented to tailor the synthesis and design of the MT-MIP particles. METHODS: We applied a newly developed UV spectrophotometric method which was based on a Fourier self-deconvolution (FSD) method coupled with the isoabsorptive point for determination of TAD and DAP in pharmaceutical dosage form. We also applied an SPE process based on MT-MIP designed particles, assisting in the analysis of both drugs in counterfeit food samples. The SPE process and the UV spectroscopic methodology were assessed regarding their greenness using the pioneering green analytical procedure index (GAPI), analytical greeness including sample preparation (AGREEprep) and AGREE tools. The synthesized MT-MIP particles were characterized by scanning electron microscopy and energy-dispersive x-ray spectroscopy. RESULTS: The suggested spectrophotometric methods revealed a wide linear concentration range of 2-50 µg/mL with lower LODs in the range of 0.604-0.994 µg/mL. Additionally, the suggested method demonstrated the utmost sensitivity and eco-friendliness for their target in its mixed dosage form and counterfeit food products. CONCLUSION: The SPE process and the developed analytical UV spectroscopic methodology were validated as per the ICH guidelines, and were found to be suitable for overseeing some counterfeiting activities in commercially available honey and instant coffee aphrodisiac products. HIGHLIGHTS: An SPE method based on MT-MIP magnetic-based polymer and a UV spectroscopic method were successfully developed for analysis of TAD and DAP in different matrices.


Subject(s)
Aphrodisiacs , Molecular Imprinting , Polymers/chemistry , Molecular Imprinting/methods , Coffee , Solid Phase Extraction/methods , Computer-Aided Design , Pharmaceutical Preparations , Magnetic Phenomena
18.
J Environ Sci Health B ; 58(7): 515-520, 2023.
Article in English | MEDLINE | ID: mdl-37458407

ABSTRACT

Green tea is one of people's favorite drinks. However, pesticide residues in green tea can cause harm to the human body, and therefore, detection of pesticide residues in green tea is very important. In recent years, the detection of pesticide residues in tea has become a research hotspot. In this paper, a gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) detection method of tolfenpyrad pesticide residues in green tea was established by using acetonitrile extractant, dispersive solid-phase extraction purification, temperature programming and application retention time lock with the database. After the sample was extracted with acetonitrile, then the sample was purified by QuEChERS extraction purification tube, afterward isomer B was used as the internal standard for the determination by multiple reaction monitoring mode (MRM) of GC-MS/MS. The results indicated that the experimental data accorded with the criterion on quality control of laboratoris(chemical testing of food), and the requirements of recovery, calibration curve, precision.This method was used to detect tolfenpyrad residues in actual green tea samples in multiple batches, and the satisfactory results were obtained.


Subject(s)
Pesticide Residues , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Tea/chemistry , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/analysis , Solid Phase Extraction/methods
19.
Talanta ; 265: 124916, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37442001

ABSTRACT

Covalent organic framework coated nickel foam (NF@COF) was prepared as a sorbent for the dispersive solid phase extraction (DSPE) of polycyclic aromatic hydrocarbons (PAHs) from Chinese herbal medicines (CHMs) prior to their determination by gas chromatography-mass spectrometry (GC-MS). The structure and morphology of the as-synthesized NF@COF were characterized by different techniques. Various key parameters affecting the performance of the DSPE method, including the amount of sorbent, desorption solvent, desorption volume and time, extraction time, and sample volume, were investigated. Under the optimized conditions, NF@COF combined with GC-MS was successfully applied to the determination of 16 PAHs in CHMs. The method showed wide linearity (20-2000 ng mL-1), low limits of determination (0.3-2.7 ng mL-1), and high recoveries (78.0-124%). These results revealed that NF@COF has the potential for efficient extraction of PAHs from complex samples.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Nickel/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Limit of Detection , Solid Phase Extraction/methods , Plant Extracts , Water Pollutants, Chemical/analysis
20.
J Chromatogr A ; 1705: 464209, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37453174

ABSTRACT

Glyphosate, a widely used herbicide, and its primary metabolite aminomethyl phosphonic acid have been found to cause environmental and ecological issues and threaten human health. The conventional pretreatment method was insufficient for the extraction, concentration, and enrichment of trace substances, resulting in poor specificity. Thus, our objective was to develop a method for glyphosate pesticide detection using dummy molecularly imprinted solid-phase extraction (DMI-SPE) combined with liquid chromatography-tandem quadrupole mass spectrometry (DMI-SPE-LC/MS/MS). The sol-gel method was used to prepare the molecularly imprinted material, using glyphosine as the dummy template molecule, to achieve specific adsorption to glyphosate and reduce costs. The optimized polymerization conditions achieved maximum adsorption of 28.6 µg/mg glyphosate by the molecularly imprinted material. The established DMI-SPE-LC/MS/MS method was used to detect glyphosate and its metabolite (aminomethyl)phosphonic acid in tea. The concentration ranges of glyphosate and (aminomethyl)phosphonic acid (from 0.05 to 4 µg/mL) were linear with correlation coefficients of 0.999 and 0.991, respectively. The recoveries of (aminomethyl)phosphonic acid at three spiked levels ranged from 79.95% to 83.74%, with RSDs between 6.40% and 7.45%, while the recoveries of glyphosate ranged from 98.69% to 106.26%, with RSDs between 0.91% and 1.18%. Our results demonstrate that the developed DMI-SPE-LC/MS/MS method achieves high sensitivity and specific detection of glyphosate and its metabolite (aminomethyl)phosphonic acid in tea matrices.


Subject(s)
Molecular Imprinting , Pesticides , Humans , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Molecular Imprinting/methods , Solid Phase Extraction/methods , Chromatography, Liquid , Tea/chemistry , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL