Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.223
Filter
Add more filters

Complementary Medicines
Publication year range
1.
PLoS One ; 19(4): e0301713, 2024.
Article in English | MEDLINE | ID: mdl-38593141

ABSTRACT

Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.


Subject(s)
Evoked Potentials, Somatosensory , Thalamus , Rats , Animals , Thalamus/physiology , Evoked Potentials , Thalamic Nuclei , Cerebral Cortex , Somatosensory Cortex/physiology
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652551

ABSTRACT

Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.


Subject(s)
Acupuncture Therapy , Electroencephalography , Motor Cortex , Humans , Acupuncture Therapy/methods , Electroencephalography/methods , Motor Cortex/physiology , Male , Adult , Female , Somatosensory Cortex/physiology , Young Adult , Sensorimotor Cortex/physiology , Brain Mapping/methods
3.
Zhen Ci Yan Jiu ; 49(4): 341-348, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649201

ABSTRACT

OBJECTIVES: To study the regularity of central response to thermal needle stimulation of "Zusanli" (ST36) at different temperature, and to analyze the temperature difference of central responses. METHODS: Six male C57BL/6j adult mice were used in the present study. For observing activities of neurons in the hindlimb region of left primary somatosensory cortex (S1HL, A/P=0.46 mm, M/L=1.32 mm, D/V=-0.14 mm) by using a fast high-resolution miniature two-photon microscopy (FHIRM-TPM), the mice were anesthetized with 3% isoflurane (inhalation), with its head fixed in a stereotaxic apparatus, then, adeno-associated virus (AAV-hSyn-GCaMP6f-WPRE-hGHpA, for showing intracellular calcium transients in neurons transfected) was injected into the left S1HL region using a micro-syringe after scalp surgical operation. The mice's right ST36 were stimulated using internal thermal needles with the temperature being 43 ℃, or 45 ℃, or 47 ℃, separately. Image J software and MATLAB 2020b software were used to process the image data of neuronal calcium activity (Ca2+ signaling) in the left S1HL region, including the instant maximum calcium peak value (ΔF/F) in 2 s, instant calcium spike frequency in 2 s, short-term calcium peak value (ΔF/F) in 3.5 min, short-term calcium spike frequency in 3.5 min, calcium peak duration in 3.5 min, maximum calcium peak value (ΔF/F) at the 1st , 2nd and 3rd min, and calcium spike frequency at the 1st, 2nd and 3rd min after thermal needle stimulation. RESULTS: In comparison with the normal temperature needle stimulation, the instant intracellular maximum calcium peak value, instant calcium spike frequency, short-term maximum calcium peak value, short-term calcium spike frequency, and calcium peak duration of S1HL neurons in response to 43 ℃, 45 ℃ and 47 ℃ internal thermal needle stimulation of ST36 were significantly increased (P<0.001, P<0.01). Comparison among the 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation showed that the 45 ℃ thermal needle stimulation was obviously superior to 43 ℃ and 47 ℃ thermal needle stimulation in increasing instant calcium spike frequency, short-term calcium spike frequency and calcium peak duration of S1HL neurons (P<0.001, P<0.01). The 47 ℃ thermal needle stimulation was stronger than 43 ℃ and 45 ℃ thermal needle stimulation in increasing the instant maximum calcium peak value (P<0.001). The maximum calcium peak value was apparently higher (P<0.001) at the 2nd min than that at the 1st and 3rd min after 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation. No significant differences were found in the short-term maximum calcium peak value among the 3 thermal needle stimulation and in the calcium spike frequency among the 3 time points after 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation. CONCLUSIONS: S1HL neurons respond to all 43 ℃, 45 ℃ and 47 ℃ thermal needle stimulation of ST36 in mice, while more actively to 45 ℃ thermal needle stimulation.


Subject(s)
Hindlimb , Mice, Inbred C57BL , Neurons , Somatosensory Cortex , Animals , Mice , Male , Neurons/physiology , Somatosensory Cortex/physiology , Somatosensory Cortex/metabolism , Acupuncture Points , Humans , Needles , Hot Temperature , Temperature
4.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664415

ABSTRACT

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Subject(s)
Optogenetics , Somatosensory Cortex , Thalamus , Vibrissae , Wakefulness , Animals , Wakefulness/physiology , Somatosensory Cortex/physiology , Mice , Thalamus/physiology , Vibrissae/physiology , Neurons/physiology , Male , Neural Pathways/physiology , Ventral Thalamic Nuclei/physiology , Action Potentials/physiology , Female , Mice, Inbred C57BL
5.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457332

ABSTRACT

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Subject(s)
Thalamic Nuclei , Thalamus , Rats , Animals , Thalamus/physiology , Thalamic Nuclei/physiology , Neurons/physiology , Pain , Face , Somatosensory Cortex/physiology
6.
Sci Rep ; 14(1): 6302, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491035

ABSTRACT

Multisensory integration is necessary for the animal to survive in the real world. While conventional methods have been extensively used to investigate the multisensory integration process in various brain areas, its long-range interactions remain less explored. In this study, our goal was to investigate interactions between visual and somatosensory networks on a whole-brain scale using 15.2-T BOLD fMRI. We compared unimodal to bimodal BOLD fMRI responses and dissected potential cross-modal pathways with silencing of primary visual cortex (V1) by optogenetic stimulation of local GABAergic neurons. Our data showed that the influence of visual stimulus on whisker activity is higher than the influence of whisker stimulus on visual activity. Optogenetic silencing of V1 revealed that visual information is conveyed to whisker processing via both V1 and non-V1 pathways. The first-order ventral posteromedial thalamic nucleus (VPM) was functionally affected by non-V1 sources, while the higher-order posterior medial thalamic nucleus (POm) was predominantly modulated by V1 but not non-V1 inputs. The primary somatosensory barrel field (S1BF) was influenced by both V1 and non-V1 inputs. These observations provide valuable insights for into the integration of whisker and visual sensory information.


Subject(s)
Magnetic Resonance Imaging , Thalamus , Mice , Animals , Thalamus/physiology , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology , Vibrissae/physiology
7.
Neuroscience ; 544: 128-137, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38447690

ABSTRACT

In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.


Subject(s)
Motor Cortex , Somatosensory Cortex , Mice , Animals , Somatosensory Cortex/physiology , Vibrissae/physiology , Motor Cortex/physiology , Thalamus/diagnostic imaging , Trigeminal Nuclei
8.
J Neurophysiol ; 130(6): 1492-1507, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37937368

ABSTRACT

Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.


Subject(s)
Neurons , Thalamus , Animals , Mice , Female , Male , Neurons/physiology , Thalamus/physiology , Synaptic Transmission/physiology , Synapses/physiology , Cerebral Cortex , Somatosensory Cortex/physiology
9.
Nat Commun ; 14(1): 6077, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770450

ABSTRACT

Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.


Subject(s)
Neurons , Vibrissae , Animals , Vibrissae/physiology , Neurons/metabolism , Pyramidal Cells/physiology , Neurites , Somatosensory Cortex/physiology , Thalamus/physiology
10.
Neurosci Biobehav Rev ; 152: 105332, 2023 09.
Article in English | MEDLINE | ID: mdl-37524138

ABSTRACT

The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.


Subject(s)
Peripheral Nerve Injuries , Mice , Animals , Thalamus , Neurons/physiology , Brain Stem/physiology , Synapses/physiology , Somatosensory Cortex/physiology
11.
PLoS Comput Biol ; 19(5): e1009616, 2023 05.
Article in English | MEDLINE | ID: mdl-37186588

ABSTRACT

In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities.


Subject(s)
Neurons , Thalamus , Neurons/physiology , Thalamus/physiology , Somatosensory Cortex/physiology
12.
eNeuro ; 10(6)2023 06.
Article in English | MEDLINE | ID: mdl-37221090

ABSTRACT

The imagination of tactile stimulation has been shown to activate primary somatosensory cortex (S1) with a somatotopic specificity akin to that seen during the perception of tactile stimuli. Using fMRI and multivariate pattern analysis, we investigate whether this recruitment of sensory regions also reflects content-specific activation (i.e., whether the activation in S1 is specific to the mental content participants imagined). To this end, healthy volunteers (n = 21) either perceived or imagined three types of vibrotactile stimuli (mental content) while fMRI data were acquired. Independent of the content, during tactile mental imagery we found activation of frontoparietal regions, supplemented with activation in the contralateral BA2 subregion of S1, replicating previous reports. While the imagery of the three different stimuli did not reveal univariate activation differences, using multivariate pattern classification, we were able to decode the imagined stimulus type from BA2. Moreover, cross-classification revealed that tactile imagery elicits activation patterns similar to those evoked by the perception of the respective stimuli. These findings promote the idea that mental tactile imagery involves the recruitment of content-specific activation patterns in sensory cortices, namely in S1.


Subject(s)
Brain Mapping , Somatosensory Cortex , Humans , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology , Parietal Lobe/physiology , Touch , Imagination/physiology , Magnetic Resonance Imaging
13.
Sci Rep ; 13(1): 6578, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085590

ABSTRACT

Perception is subject to ongoing alterations by learning and top-down influences. Although abundant studies have shown modulation of perception by attention, motivation, content and context, there is an unresolved controversy whether these examples provide true evidence that perception is penetrable by cognition. Here we show that tactile perception assessed as spatial discrimination can be instantaneously and systematically altered merely by the semantic content during hypnotic suggestions. To study neurophysiological correlates, we recorded EEG and SEPs. We found that the suggestion "your index finger becomes bigger" led to improved tactile discrimination, while the suggestion "your index finger becomes smaller" led to impaired discrimination. A hypnosis without semantic suggestions had no effect but caused a reduction of phase-locking synchronization of the beta frequency band between medial frontal cortex and the finger representation in somatosensory cortex. Late SEP components (P80-N140 complex) implicated in attentional processes were altered by the semantic contents, but processing of afferent inputs in SI remained unaltered. These data provide evidence that the psychophysically observed modifiability of tactile perception by semantic contents is not simply due to altered perception-based judgments, but instead is a consequence of modified perceptual processes which change the perceptual experience.


Subject(s)
Semantics , Touch Perception , Touch Perception/physiology , Suggestion , Touch , Somatosensory Cortex/physiology
14.
Cell Rep ; 42(2): 112009, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36701237

ABSTRACT

Numerous psychophysical studies show that Bayesian inference governs sensory decision-making; however, the specific neural circuitry underlying this probabilistic mechanism remains unclear. We record extracellular neural activity along the somatosensory pathway of mice while delivering sensory stimulation paradigms designed to isolate the response to the surprise generated by Bayesian inference. Our results demonstrate that laminar cortical circuits in early sensory areas encode Bayesian surprise. Systematic sensitivity to surprise is not identified in the somatosensory thalamus, rather emerging in the primary (S1) and secondary (S2) somatosensory cortices. Multiunit spiking activity and evoked potentials in layer 6 of these regions exhibit the highest sensitivity to surprise. Gamma power in S1 layer 2/3 exhibits an NMDAR-dependent scaling with surprise, as does alpha power in layers 2/3 and 6 of S2. These results show a precise spatiotemporal neural representation of Bayesian surprise and suggest that Bayesian inference is a fundamental component of cortical processing.


Subject(s)
Evoked Potentials , Thalamus , Mice , Animals , Bayes Theorem , Somatosensory Cortex/physiology
15.
J Neurosci ; 43(4): 584-600, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36639912

ABSTRACT

High-throughput anatomic data can stimulate and constrain new hypotheses about how neural circuits change in response to experience. Here, we use fluorescence-based reagents for presynaptic and postsynaptic labeling to monitor changes in thalamocortical synapses onto different compartments of layer 5 (L5) pyramidal (Pyr) neurons in somatosensory (barrel) cortex from mixed-sex mice during whisker-dependent learning (Audette et al., 2019). Using axonal fills and molecular-genetic tags for synapse identification in fixed tissue from Rbp4-Cre transgenic mice, we found that thalamocortical synapses from the higher-order posterior medial thalamic nucleus showed rapid morphologic changes in both presynaptic and postsynaptic structures at the earliest stages of sensory association training. Detected increases in thalamocortical synaptic size were compartment specific, occurring selectively in the proximal dendrites onto L5 Pyr and not at inputs onto their apical tufts in L1. Both axonal and dendritic changes were transient, normalizing back to baseline as animals became expert in the task. Anatomical measurements were corroborated by electrophysiological recordings at different stages of training. Thus, fluorescence-based analysis of input- and target-specific synapses can reveal compartment-specific changes in synapse properties during learning.SIGNIFICANCE STATEMENT Synaptic changes underlie the cellular basis of learning, experience, and neurologic diseases. Neuroanatomical methods to assess synaptic plasticity can provide critical spatial information necessary for building models of neuronal computations during learning and experience but are technically and fiscally intensive. Here, we describe a confocal fluorescence microscopy-based analytical method to assess input, cell type, and dendritic location-specific synaptic plasticity in a sensory learning assay. Our method not only confirms prior electrophysiological measurements but allows us to predict functional strength of synapses in a pathway-specific manner. Our findings also indicate that changes in primary sensory cortices are transient, occurring during early learning. Fluorescence-based synapse identification can be an efficient and easily adopted approach to study synaptic changes in a variety of experimental paradigms.


Subject(s)
Neurons , Pyramidal Cells , Mice , Animals , Fluorescence , Neurons/physiology , Thalamus/physiology , Dendrites/physiology , Synapses/physiology , Mice, Transgenic , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology
16.
J Neurophysiol ; 129(2): 421-430, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36542405

ABSTRACT

Neural plasticity of the brain or its ability to reorganize following injury has likely coincided with the successful clinical correction of severe deformity by facial transplantation since 2005. In this study, we present the cortical reintegration outcomes following syngeneic hemifacial vascularized composite allograft (VCA) in a small animal model. Specifically, changes in the topographic organization and unit response properties of the rodent whisker-barrel somatosensory system were assessed following hemifacial VCA. Clear differences emerged in the barrel-cortex system when comparing naïve and hemiface transplanted animals. Neurons in the somatosensory cortex of transplanted rats had decreased sensitivity albeit increased directional sensitivity compared with naïve rats and evoked responses in transplanted animals were more temporally dispersed. In addition, receptive fields were often topographically mismatched with the indication that the mismatched topography reorganized within adjacent barrel (same row-arc bias following hemifacial transplant). These results suggest subcortical changes in the thalamus and/or brainstem play a role in hemifacial transplantation cortical plasticity and demonstrate the discrete and robust data that can be derived from this clinically relevant small animal VCA model for use in optimizing postsurgical outcomes.NEW & NOTEWORTHY Robust rodent hemifacial transplant model was used to record functional changes in somatosensory cortex after transplantation. Neurons in the somatosensory cortex of face transplant recipients had decreased sensitivity to stimulation of whiskers with increased directional sensitivity vs. naive rats. Transplant recipient cortical unit response was more dispersed in temporary vs. naive rats. Despite histological similarities to naive cortices, transplant recipient cortices had a mix of topographically appropriate and inappropriate whiskered at barrel cortex relationships.


Subject(s)
Facial Transplantation , Rats , Animals , Neurons/physiology , Thalamus/physiology , Somatosensory Cortex/physiology , Vibrissae/physiology , Physical Stimulation
17.
Cereb Cortex ; 33(8): 4870-4885, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36255325

ABSTRACT

In the thermal system, skin cooling is represented in the primary somatosensory cortex (S1) and the posterior insular cortex (pIC). Whether S1 and pIC are nodes in anatomically separate or overlapping thermal sensorimotor pathways is unclear, as the brain-wide connectivity of the thermal system has not been mapped. We address this using functionally targeted, dual injections of anterograde viruses or retrograde tracers into the forelimb representation of S1 (fS1) and pIC (fpIC). Our data show that inputs to fS1 and fpIC originate from separate neuronal populations, supporting the existence of parallel input pathways. Outputs from fS1 and fpIC are more widespread than their inputs, sharing a number of cortical and subcortical targets. While, axonal projections were separable, they were more overlapping than the clusters of input cells. In both fS1 and fpIC circuits, there was a high degree of reciprocal connectivity with thalamic and cortical regions, but unidirectional output to the midbrain and hindbrain. Notably, fpIC showed connectivity with regions associated with thermal processing. Together, these data indicate that cutaneous thermal information is routed to the cortex via parallel circuits and is forwarded to overlapping downstream regions for the binding of somatosensory percepts and integration with ongoing behavior.


Subject(s)
Neurons , Thalamus , Mice , Animals , Neural Pathways/physiology , Thalamus/physiology , Brain Mapping , Brain , Somatosensory Cortex/physiology
18.
Cereb Cortex ; 33(5): 1693-1707, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35512682

ABSTRACT

Establishing neuronal circuits requires interactions between pre- and postsynaptic neurons. While presynaptic neurons were shown to play instructive roles for the postsynaptic neurons, how postsynaptic neurons provide feedback to regulate the presynaptic neuronal development remains elusive. To elucidate the mechanisms for circuit formation, we study the development of barrel cortex (the primary sensory cortex, S1), whose development is instructed by presynaptic thalamocortical axons (TCAs). In the first postnatal weeks, TCA terminals arborize in layer (L) 4 to fill in the barrel center, but it is unclear how TCA development is regulated. Here, we reported that the deletion of Lhx2 specifically in the cortical neurons in the conditional knockout (cKO) leads to TCA arborization defects, which is accompanied with deficits in sensory-evoked and spontaneous cortical activities and impaired lesion-induced plasticity following early whisker follicle ablation. Reintroducing Lhx2 back in L4 neurons in cKO ameliorated TCA arborization and plasticity defects. By manipulating L4 neuronal activity, we further demonstrated that Lhx2 induces TCA arborization via an activity-dependent mechanism. Additionally, we identified the extracellular signaling protein Sema7a as an activity-dependent downstream target of Lhx2 in regulating TCA branching. Thus, we discovered a bottom-up feedback mechanism for the L4 neurons to regulate TCA development.


Subject(s)
Neurons , Thalamus , Feedback , Thalamus/physiology , Neurons/physiology , Axons/physiology , Signal Transduction , Somatosensory Cortex/physiology
19.
Neuron ; 110(24): 4176-4193.e10, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36240769

ABSTRACT

Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.


Subject(s)
Motivation , Motor Cortex , Mice , Animals , Goals , Learning/physiology , Motor Cortex/physiology , Perception , Somatosensory Cortex/physiology , Vibrissae/physiology
20.
Nat Neurosci ; 25(10): 1339-1352, 2022 10.
Article in English | MEDLINE | ID: mdl-36171427

ABSTRACT

Neurons in frontal cortex exhibit diverse selectivity representing sensory, motor and cognitive variables during decision-making. The neural circuit basis for this complex selectivity remains unclear. We examined activity mediating a tactile decision in mouse anterior lateral motor cortex in relation to the underlying circuits. Contrary to the notion of randomly mixed selectivity, an analysis of 20,000 neurons revealed organized activity coding behavior. Individual neurons exhibited prototypical response profiles that were repeatable across mice. Stimulus, choice and action were coded nonrandomly by distinct neuronal populations that could be delineated by their response profiles. We related distinct selectivity to long-range inputs from somatosensory cortex, contralateral anterior lateral motor cortex and thalamus. Each input connects to all functional populations but with differing strength. Task selectivity was more strongly dependent on thalamic inputs than cortico-cortical inputs. Our results suggest that the thalamus drives subnetworks within frontal cortex coding distinct features of decision-making.


Subject(s)
Motor Cortex , Thalamus , Animals , Mice , Motor Cortex/physiology , Neurons/physiology , Somatosensory Cortex/physiology , Thalamus/physiology , Touch
SELECTION OF CITATIONS
SEARCH DETAIL