Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Nutr ; 154(6): 1781-1789, 2024 06.
Article in English | MEDLINE | ID: mdl-38615734

ABSTRACT

BACKGROUND: Infant formulas are typically manufactured using skimmed milk, whey proteins, and vegetable oils, which excludes milk fat globule membranes (MFGM). MFGM contains polar lipids, including sphingomyelin (SM). OBJECTIVE: The objective of this study was comparison of infant plasma SM and acylcarnitine species between infants who are breastfed or receiving infant formulas with different fat sources. METHODS: In this explorative study, we focused on SM and acylcarnitine species concentrations measured in plasma samples from the TIGGA study (ACTRN12608000047392), where infants were randomly assigned to receive either a cow milk-based infant formula (CIF) with vegetable oils only or a goat milk-based infant formula (GIF) with a goat milk fat (including MFGM) and vegetable oil mixture to the age ≥4 mo. Breastfed infants were followed as a reference group. Using tandem mass spectrometry, SM species in the study formulas and SM and acylcarnitine species in plasma samples collected at the age of 4 mo were analyzed. RESULTS: Total SM concentrations (∼42 µmol/L) and patterns of SM species were similar in both formulas. The total plasma SM concentrations were not different between the formula groups but were 15 % (CIF) and 21% (GIF) lower in the formula groups than in the breastfed group. Between the formula groups, differences in SM species were statistically significant but small. Total carnitine and major (acyl) carnitine species were not different between the groups. CONCLUSIONS: The higher total SM concentration in breastfed than in formula-fed infants might be related to a higher SM content in human milk, differences in cholesterol metabolism, dietary fatty acid intake, or other factors not yet identified. SM and acylcarnitine species composition in plasma is not closely related to the formula fatty acid composition. This trial was registered at Australian New Zealand Clinical Trials Registry as ACTRN12608000047392.


Subject(s)
Carnitine , Goats , Infant Formula , Milk, Human , Milk , Sphingomyelins , Humans , Infant Formula/chemistry , Animals , Carnitine/blood , Carnitine/analogs & derivatives , Milk, Human/chemistry , Infant , Sphingomyelins/blood , Milk/chemistry , Female , Male , Cattle , Breast Feeding , Esters/blood , Infant, Newborn , Plant Oils/chemistry
2.
BMC Pulm Med ; 24(1): 37, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233819

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) leads to serious respiratory problems. This study investigated the effectiveness of high-intensity interval training (HIIT) on T2D-induced lung injuries at histopathological and molecular levels. METHODS: Forty-eight male Wistar rats were randomly allocated into control (CTL), Diabetes (Db), exercise (Ex), and Diabetes + exercise (Db + Ex) groups. T2D was induced by a high-fat diet plus (35 mg/kg) of streptozotocin (STZ) administration. Rats in Ex and Db + Ex performed HIIT for eight weeks. Tumor necrosis factor-alpha (TNFα), Interleukin 10 (IL-10), BAX, Bcl2, Lecithin, Sphingomyelin (SPM) and Surfactant protein D (SPD) levels were measured in the bronchoalveolar lavage fluid (BALF) and malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were measured in lung tissue. Lung histopathological alterations were assessed by using H&E and trichrome mason staining. RESULTS: Diabetes was significantly associated with imbalance in pro/anti-inflammatory, pro/anti-apoptosis and redox systems, and reduced the SPD, lecithin sphingomyelin and alveolar number. Performing HIIT by diabetic animals increased Bcl2 (P < 0.05) and IL10 (P < 0.01) levels as well as surfactants components and TAC (P < 0.05) but decreased fasting blood glucose (P < 0.001), TNFα (P < 0.05), BAX (P < 0.05) and BAX/Bcl2 (P < 0.001) levels as well as MDA (P < 0.01) and MDA/TAC (P < 0.01) compared to the diabetic group. Furthermore, lung injury and fibrosis scores were increased by T2D and recovered in presence of HIIT. CONCLUSION: These findings suggested that the attenuating effect of HIIT on diabetic lung injury mediated by reducing blood sugar, inflammation, oxidative stress, and apoptosis as well as improving pulmonary surfactants components.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , High-Intensity Interval Training , Lung Injury , Rats , Male , Animals , Rats, Wistar , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Lecithins/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Sphingomyelins/adverse effects , bcl-2-Associated X Protein/pharmacology , Lung/metabolism , Antioxidants/metabolism
3.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139092

ABSTRACT

The role of sphingomyelin metabolism and vitamin C in cancer has been widely described with conflicting results ranging from a total absence of effect to possible preventive and/or protective effects. The aim of this study was to establish the possible involvement of sphingomyelin metabolism in the changes induced by vitamin C in breast cancer cells. The MCF7 cell line reproducing luminal A breast cancer and the MDA-MB-231 cell line reproducing triple-negative breast cancer were used. Cell phenotype was tested by estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 expression, and proliferation index percentage. Sphingomyelin was localized by an EGFP-NT-Lys fluorescent probe. Sphingomyelin metabolism was analyzed by RT-PCR, Western blotting and UFLC-MS/MS. The results showed that a high dose of vitamin C produced reduced cell viability, modulated cell cycle related genes, and changed the cell phenotype with estrogen receptor downregulation in MCF7 cell. In these cells, the catabolism of sphingomyelin was promoted with a large increase in ceramide content. No changes in viability and molecular expression were observed in MB231 cells. In conclusion, a high dose of vitamin C induces changes in the luminal A cell line involving sphingomyelin metabolism.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , MCF-7 Cells , Breast Neoplasms/metabolism , Sphingomyelins , Ascorbic Acid/pharmacology , Tandem Mass Spectrometry , Vitamins/pharmacology , Cell Line, Tumor , Cell Proliferation
4.
Nutrients ; 15(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37686719

ABSTRACT

This feeding trial evaluated the impact of the Dietary Approaches to Stop Hypertension diet on changes in plasma choline, choline metabolites, and ceramides in obese older adults; 28 adults consumed 3oz (n = 15) or 6oz (n = 13) of beef within a standardized DASH diet for 12 weeks. Plasma choline, betaine, methionine, dimethylglycine (DMG), phosphatidylcholine (PC), lysophosphotidylcholine (LPC), sphingomyelin, trimethylamine-N-oxide (TMAO), L-carnitine, ceramide, and triglycerides were measured in fasted blood samples. Plasma LPC, sphingomyelin, and ceramide species were also quantified. In response to the study diet, with beef intake groups combined, plasma choline decreased by 9.6% (p = 0.012); DMG decreased by 10% (p = 0.042); PC decreased by 51% (p < 0.001); total LPC increased by 281% (p < 0.001); TMAO increased by 26.5% (p < 0.001); total ceramide decreased by 22.1% (p < 0.001); and triglycerides decreased by 18% (p = 0.021). All 20 LPC species measured increased (p < 0.01) with LPC 16:0 having the greatest response. Sphingomyelin 16:0, 18:0, and 18:1 increased (all p < 0.001) by 10.4%, 22.5%, and 24%, respectively. In contrast, we observed that sphingomyelin 24:0 significantly decreased by 10%. Ceramide 22:0 and 24:0 decreased by 27.6% and 10.9% (p < 0.001), respectively, and ceramide 24:1 increased by 36.8% (p = 0.013). Changes in choline and choline metabolites were in association with anthropometric and cardiometabolic outcomes. These findings show the impact of the DASH diet on choline metabolism in older adults and demonstrate the influence of diet to modify circulating LPC, sphingomyelin, and ceramide species.


Subject(s)
Ceramides , Dietary Approaches To Stop Hypertension , Aged , Humans , Choline , Lecithins , Meat , Sphingomyelins
5.
Langmuir ; 39(43): 15189-15199, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37729012

ABSTRACT

Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.


Subject(s)
Phospholipids , Sphingomyelins , Phospholipids/metabolism , Proton Magnetic Resonance Spectroscopy , Lipid Bilayers/chemistry , Lecithins , Unilamellar Liposomes/chemistry
6.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Article in English | MEDLINE | ID: mdl-37558060

ABSTRACT

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Subject(s)
Asthma , Vitamin D , Child, Preschool , Female , Humans , Pregnancy , Metabolome , Prospective Studies , Respiratory Sounds , Sphingomyelins , Clinical Trials as Topic
7.
Biophys J ; 122(12): 2445-2455, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37120716

ABSTRACT

We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.


Subject(s)
Phosphatidylcholines , Phospholipids , Animals , Cell Membrane/chemistry , Phospholipids/chemistry , Membranes , Phosphatidylcholines/chemistry , Sphingomyelins , Lipid Bilayers/chemistry , Mammals
8.
J Agric Food Chem ; 71(16): 6326-6337, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040528

ABSTRACT

Human milk phospholipids are important for the regular growth and development of infants. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was employed to qualitatively and quantitatively analyze 277 phospholipid molecular species in 112 human milk samples to obtain a detailed profile of human milk phospholipids along the lactation stage. MS/MS fragmentation patterns of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were characterized in detail. Phosphatidylcholine is the most dominant group, followed by sphingomyelin. PC(18:0/18:2), SM(d18:1/24:1), PE(18:0/18:0), PS(18:0/20:4), and PI(18:0/18:2) showed the highest average concentration among all of the phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol molecular species, respectively. The fatty acids attached to the phospholipid molecules were mainly palmitic, stearic, oleic, and linoleic acids, and the plasmalogens decreased along the lactation stage. The increase of sphingomyelins and phosphatidylethanolamines and the decrease of phosphatidylcholines are the key changes from colostrum to transitional milk; the increase of lysophosphatidylcholines and lysophosphatidylethanolamines and the continuous decrease of phosphatidylcholines are the vital changes from transitional milk to mature milk.


Subject(s)
Milk, Human , Phospholipids , Female , Humans , Lactation , Lecithins , Milk, Human/chemistry , Phosphatidylcholines/analysis , Phosphatidylethanolamines , Phosphatidylinositols/analysis , Phosphatidylserines , Phospholipids/analysis , Sphingomyelins , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid
9.
Chem Phys Lipids ; 252: 105289, 2023 05.
Article in English | MEDLINE | ID: mdl-36813145

ABSTRACT

Sphingomyelin (SM) and cholesterol complex to form functional liquid-ordered (Lo) domains. It has been suggested that the detergent resistance of these domains plays a key role during gastrointestinal digestion of the milk fat globule membrane (MFGM), which is rich in both SM and cholesterol. Small-angle X-ray scattering was employed to determine the structural alterations that occur when milk sphingomyelin (MSM)/cholesterol, egg sphingomyelin (ESM)/cholesterol, soy phosphatidylcholine (SPC)/cholesterol, and milk fat globule membrane (MFGM) phospholipid/cholesterol model bilayer systems were incubated with bovine bile under physiological conditions. The persistence of diffraction peaks was indicative of multilamellar vesicles of MSM with cholesterol concentrations > 20 % mol, and also for ESM with or without cholesterol. The complexation of ESM with cholesterol is therefore capable of inhibiting the resulting vesicles from disruption by bile at lower cholesterol concentrations than MSM/cholesterol. After subtraction of background scattering by large aggregates in the bile, a Guinier fitting was used to determine changes in the radii of gyration (Rgs) over time for the biliary mixed micelles after mixing the vesicle dispersions with bile. Swelling of the micelles by phospholipid solubilization from vesicles was a function of cholesterol concentration, with less swelling of the micelles occurring as the cholesterol concentration was increased. With 40% mol cholesterol, the Rgs of the bile micelles mixed with MSM/cholesterol, ESM/cholesterol, and MFGM phospholipid/cholesterol were equal to the control (PIPES buffer + bovine bile), indicating negligible swelling of the biliary mixed micelles.


Subject(s)
Bile , Phospholipids , Animals , Cattle , Micelles , Sphingomyelins/chemistry , Bile Acids and Salts , Phosphatidylcholines/chemistry , Cholesterol/chemistry , Lecithins
10.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770679

ABSTRACT

The influence of kaempferol (K), myricetin (M) and lipoic acid (LA) on the properties of natural erythrocytes, isolated from animal blood and biological membrane models (monolayers and liposomes) made of phosphatidylcholine (PC), cholesterol (CHOL), and sphingomyelin (SM), CHOL in a ratio of 10:9, was investigated. The Langmuir method, Brewster angle microscopy (BAM) and microelectrophoresis were used. The presented results showed that modification of liposomes with kaempferol, myricetin and lipoic acid caused changes in the surface charge density and the isoelectric point value. Comparing the tested systems, several conclusions were made. (1) The isoelectric point for the DPPC:Chol:M (~2.2) had lower pH values compared to lipoic acid (pH~2.5) and kaempferol (pH~2.6). (2) The isoelectric point for the SM-Chol with myricetin (~3.0) had lower pH values compared to kaempferol (pH~3.4) and lipoic acid (pH~4.7). (3) The surface charge density values for the DPPC:Chol:M system in the range of pH 2-9 showed values from 0.2 to -2.5 × 10-2 C m-2. Meanwhile, for the DPPC:Chol:K and DPPC:Chol:LA systems, these values were higher at pH~2 (0.7 × 10-2 C m-2 and 0.8 × 10-2 C m-2) and lower at pH~9 (-2.1 × 10-2 C m-2 and -1.8 × 10-2 C m-2), respectively. (4) The surface charge density values for the SM:Chol:M system in the range of pH 2-9 showed values from 0.5 to -2.3 × 10-2 C m-2. Meanwhile, for the DPPC:Chol:K and DPPC:Chol:LA systems, these values were higher at pH~2 (0.8 × 10-2 C m-2), and lower at pH~9 (-1.0 × 10-2 C m-2 and -1.8 × 10-2 C m-2), respectively. (5) The surface charge density values for the erythrocytes with myricetin in the range of pH 2-9 showed values from 1.0 to -1.8 × 10-2 C m-2. Meanwhile, for the erythrocytes:K and erythrocytes:LA systems, these values, at pH~2, were 1.3 × 10-2 C m-2 and 0.8 × 10-2 C m-2 and, at pH~9, -1.7 × 10-2 C m-2 and -1.0 × 10-2 C m-2, respectively.


Subject(s)
Liposomes , Thioctic Acid , Animals , Liposomes/chemistry , Kaempferols , Thioctic Acid/pharmacology , Sphingomyelins/chemistry , Cholesterol/chemistry , Lecithins , Cell Membrane , 1,2-Dipalmitoylphosphatidylcholine/chemistry
11.
Nutrition ; 107: 111942, 2023 03.
Article in English | MEDLINE | ID: mdl-36621260

ABSTRACT

OBJECTIVES: High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS: Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS: The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS: This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.


Subject(s)
Diet, High-Protein , Sphingolipids , Rats , Animals , Sphingomyelins , Lipid Peroxidation , Sphingomyelin Phosphodiesterase/metabolism , Cerebral Cortex/metabolism , Hypothalamus/metabolism
12.
Anim Reprod Sci ; 248: 107184, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36587591

ABSTRACT

The definition of new reliable markers for neonatal maturity evaluation is crucial in canine clinical practice. Concerns about the safety of amniotic sampling in pregnant dogs have prevented its collection for diagnostic purposes. Moreover, amniotic fluid had been considered waste material until the latest studies reported amniocentesis as a reliable and safe procedure, even in the canine species. In our study, amniotic fluid (n = 63) collected at birth from ten dogs undergoing elective Caesarean sections at term was analysed to discover new potential indices of canine neonatal maturity. Based on gestational age, mothers and puppies were divided into two groups: the early group (≤65 days from luteinizing hormone (LH) surge, n = 5) and the late group (>65 days from LH surge, n = 5). Amniotic parameters of the lightest and heaviest puppy in individual/each litter, with a birth weight difference of at least 20% among littermates, were also compared. In particular, the content of lecithin, sphingomyelin, surfactant protein A (SP-A), cortisol, and pentraxin 3 (PTX3) in amniotic fluid, which is considered predictive of foetal development in humans, were investigated. Maternal serum SP-A and cortisol were also measured simultaneously. All amniotic parameters were detectable in canine amniotic fluid. Interestingly, the concentrations of different amniotic parameters correlated with each other. Lecithin was positively correlated with sphingomyelin (p < 0.0001), maternal SP-A (p < 0.0005), and the ratio of amniotic and maternal cortisol (p < 0.004). Amniotic SP-A was inversely correlated to maternal SP-A (p < 0.05), lecithin (p < 0.005), and lecithin-sphingomyelin ratio (p < 0.05). A positive correlation was also recorded between amniotic and maternal cortisol (p < 0.008). Considering that all puppies were born alive and mature, these data could provide a potential range of expected amniotic values in full-term new-born dogs. Furthermore, since gestational age was positively correlated with both maternal and amniotic cortisol (p < 0.0001) and amniotic PTX3 (p < 0.05), amniotic fluid seems to be an attractive, innovative, and minimally invasive matrix with potential diagnostic and prognostic utility for the investigation of canine maturity.


Subject(s)
Amniotic Fluid , Lecithins , Animals , Dogs , Female , Pregnancy , Amniotic Fluid/metabolism , Gestational Age , Hydrocortisone/metabolism , Parturition , Sphingomyelins/analysis , Sphingomyelins/metabolism
13.
Biochem Biophys Res Commun ; 632: 129-138, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36209581

ABSTRACT

Recently, with increasing awareness of health issues, non-alcoholic fatty liver disease (NAFLD) has become an epidemic attracting global attention. As a serious chronic disease, NAFLD is clinically managed with pharmacological interventions that are usually associated with poor long-term efficacy and adverse effects. In this scenario, traditional Chinese medicine (TCM) characterized by "multiple ingredients-multiple targets-multiple pathways" shows promise as a potential option to treat NAFLD. Zexie decoction (ZXD) is a classical TCM formula that possesses favorable lipid-lowering and anti-inflammatory activities. Accumulating evidence indicates that ZXD displays robust efficacy in treating NAFLD. The effectiveness of ZXD against NAFLD has been evaluated in our previous studies. This study further examines its probable mechanism of action in an in-depth manner using multi-omic analysis based on the gut-liver axis and sheds light on the potential relationship among genes, hepatic lipid metabolites, and gut microbiotas. Totally, 71 differentially expressed genes (34 upregulated and 37 downregulated genes), 31 differential lipid molecules (8 upregulated and 23 downregulated), and 56 differential gut microbiotas (37 upregulated and 19 downregulated) were identified in the ZXD-treated group rats compared with the negative control group rats. Of these, owing to their key role in the association analysis, g_Blautia, g_Romboutsia, and g_Lactobacillus were hypothesized to be crucial gut microbiotas in the ZXD-mediated treatment of NAFLD. These microbiotas were found to synergize with key genes, such as AKR1B8, CCN1, and TNKS2, and hepatic lipid metabolites, such as glycerophospholipid and sphingomyelin, which might play a therapeutic role by regulating fatty acid synthesis, correcting lipid metabolism disorder, or reducing the inflammatory response. Overall, the present study provides fresh insights into the ZXD-mediated treatment of NAFLD, which, in turn, is expected to give a push to the modernization of TCM.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Rats , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Sphingomyelins/metabolism , Liver/metabolism , Fatty Acids/metabolism , Glycerophospholipids/metabolism , Glycerophospholipids/pharmacology , Glycerophospholipids/therapeutic use , Diet, High-Fat/adverse effects
14.
Mol Nutr Food Res ; 66(22): e2200177, 2022 11.
Article in English | MEDLINE | ID: mdl-36068654

ABSTRACT

SCOPE: Milk fat globule membrane (MFGM) is an essential component of milk. Bovine MFGM (bMFGM) has been shown to support cognitive development and increase relative concentrations of serum phospholipids. This study investigates bioavailability of bMFGM components after oral administration in two preclinical models to explore whether dietary bMFGM induces parallel changes to plasma and brain lipidomes. METHODS AND RESULTS: Transgenic APOE*3.Leiden mice (n = 18 per group) and Sprague-Dawley rats (n = 12 per group) are fed bMFGM-enriched (MFGM+) or Control diet, followed by phospholipid profile-determination in plasma, hippocampus, and prefrontal cortex tissue by targeted mass spectrometry. Multivariate analysis of lipidomic profiles demonstrates a separation between MFGM+ and Control plasma across rodents. In plasma, sphingomyelins contributed the most to the separation of lipid patterns among both models, where three sphingomyelins (d18:1/14:0, d18:1/23:0, d18:1/23:1[9Z]) are consistently higher in the circulation of MFGM+ groups. A similar trend is observed in rat prefrontal cortex, although no significant separation of the brain lipidome is demonstrated. CONCLUSION: bMFGM-enriched diet alters plasma phospholipid composition in rodents, predominantly increasing sphingomyelin levels in the systemic circulation with similar, but non-significant, trends in central brain regions. These changes may contribute to the beneficial effects of bMFGM on neurodevelopment during early life.


Subject(s)
Dietary Supplements , Glycolipids , Glycoproteins , Lipid Droplets , Lipidomics , Animals , Mice , Rats , Brain , Lipid Droplets/chemistry , Phospholipids/pharmacology , Rats, Sprague-Dawley , Sphingomyelins/pharmacology , Glycoproteins/administration & dosage , Glycolipids/administration & dosage
15.
Anal Chem ; 94(40): 13753-13761, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36173256

ABSTRACT

Localization of lipidomes and tracking their spatial changes by mass spectrometry imaging (MSI) is critical for the mechanism studies on living process, disease, and therapeutic treatment. However, due to the strong ion suppression in complex biotissue, the imaging coverage for lipids with low polarity or low abundances, such as glycerolipids and sphingolipids, is usually limited. To address this issue, we utilized a porous graphitic carbon (PGC) material to imprint brain tissue sections for selective enrichment of neutral lipids with polar phospholipids removed. Then, the tissue imprint was scanned for desorption by the ambient liquid extraction MSI system. It was found that on the PGC surface, hydrophobic interaction dominates in protic solvents, and polar interaction dominates in aprotic solvents. Accordingly, methanol was selected as the spray solvent for tissue imprinting, and 75% acetonitrile-methanol was selected as the desorption solvent for the ambient liquid extraction MSI system. The results showed that glycerides had high recoveries after the imprinting-desorption process (recovery ∼ 70%) with phospholipids eliminated (recovery < 7%). To increase the transferring efficiencies of lipids from tissue onto PGC, electrospray was used for solvent application during imprinting, and the signals of diglycerides (DGs) in the imprint MSI of brain tissue increased by 2-3 times as compared to those via air spray. Finally, the new imprint MSI approach was applied to the imaging of the rat cerebellum and was compared with direct tissue MSI. The results showed that with imprint MSI, the coverage of DGs, sphingomyelins (SMs), and ceramides was enhanced by 4-5-fold (32 vs 6, 4 vs 1, and 5 vs 0). The ion images showed that with imprint MSI, higher signal intensities and clearer spatial distribution of DGs and SMs were obtained without interference from phosphatidylcholine signals compared with tissue MSI. This new method provides a complementary approach for traditional MSI to address the issues in imaging poorly ionizable or low-abundance lipids.


Subject(s)
Graphite , Sphingolipids , Acetonitriles , Animals , Brain/diagnostic imaging , Carbon , Ceramides , Diglycerides , Methanol , Phosphatidylcholines , Porosity , Rats , Solvents , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sphingomyelins
16.
Langmuir ; 38(34): 10478-10491, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35984899

ABSTRACT

The ginsenoside Rh2 (Rh2) is a saponin of medicinal ginseng, and it has attracted much attention for its pharmacological activities. In this study, we investigated the interaction of Rh2 with biological membranes using model membranes. We examined the effects of various lipids on the membrane-disrupting activity of Rh2 and found that cholesterol and sphingomyelin (SM) had no significant effect. Furthermore, the effects of Rh2 on acyl chain packing (DPH anisotropy) and water molecule permeability (GP340 values) did not differ significantly between bilayers containing SM and saturated phosphatidylcholine. These results suggest that the formation of the liquid-ordered (Lo) phase affects the behavior of Rh2 in the membrane rather than a specific interaction of Rh2 with a particular lipid. We investigated the effects of Rh2 on the Lo and liquid-disordered (Ld) phases using surface tension measurements and fluorescence experiments. In the surface tension-area isotherms, we compared the monolayers of the Ld and Lo lipid compositions and found that Rh2 is abundantly bound to both monolayers, with the amount being greater in the Ld phase than in the Lo phase. In addition, the hydration state of the bilayers, mainly consisting of the Lo or Ld phase, showed that Rh2 tends to bind to the surface of the bilayer in both phases. At higher concentrations, Rh2 tends to bind more abundantly to the relatively shallow interior of the Ld phase than the Lo phase. The phase-dependent membrane behavior of Rh2 is probably due to the phase-selective affinity and binding mode of Rh2.


Subject(s)
Saponins , Triterpenes , Cholesterol/chemistry , Ginsenosides , Lecithins , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Sphingomyelins
17.
J Nutr Biochem ; 105: 109004, 2022 07.
Article in English | MEDLINE | ID: mdl-35351615

ABSTRACT

Patients with inflammatory bowel diseases tend to show alteration of lipid profiles. It remains unknown whether dietary intake with specific lipids, such as phosphatidylcholine (PC) and sphingomyelin (SM), have distinguishable effects against IBD. Here, a preclinical study using dextran sulphate sodium (DSS)-induced colitis mice model was applied to explore/compare the effects by PC, and SM. Results showed that PC treatment (p.o., 30 mg/kg b.w., 15 d) exerted higher inhibitory activity than the same dosage of SM supplementation on colonic tissue lesions and pro-inflammatory cytokines expressions induced by DSS. Integrative analysis of the metabolome and microbiome indicated that PC and SM supplementation could modulate endogenous tryptophan metabolism, arginine and proline metabolism, purine metabolism, bile secretion, as well as vitamin digestion and absorption, closely correlated with their regulation on the abundance of Lactobacillus, Faecalibacterium, Dubosiella, Turicibacter, and Parasutterella communities in the gut. Based on these data, PC is a more promising candidate for preventing colitis than SM. Our findings provided a scientific foundation for further clinical research to screen more efficient dietary intervention strategy for colitis prevention.


Subject(s)
Colitis , Gastrointestinal Microbiome , Animals , Colitis/metabolism , Colon/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Phosphatidylcholines/metabolism , Sphingomyelins/pharmacology
18.
J Agric Food Chem ; 70(10): 3228-3238, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35229592

ABSTRACT

Ceramide is a natural functional ingredient as food additive and medicine that has attracted extensive attention in the food, medical, and cosmetic industries. Here, we developed a biotechnological strategy based on a recombinant whole-cell biocatalyst for efficiently producing ceramide from crude soybean oil sediment (CSOS) waste. A novel phospholipase C (PLCac) from Acinetobacter calcoaceticus isolated from soil samples was identified and characterized. Furthermore, recombinant Komagataella phaffii displaying PLCac (dPLCac) on the cell surface was constructed as a whole-cell biocatalyst with better thermostability (30-60 °C) and pH stability (8.0-10.0) to successfully produce ceramide. After synergistical optimization of reaction time and dPLCac dose, the ceramide yield of hydrolyzing from CSOS using dPLCac was 51% (the theoretical maximum yield of converting sphingomyelin, ∼70%) and the relative yield was over 50% after seven consecutive 4 h batches under the optimized conditions. Our study provides a potentially promising strategy for the commercial production of ceramide.


Subject(s)
Ceramides , Soybean Oil , Soybean Oil/chemistry , Sphingomyelins/metabolism , Type C Phospholipases/metabolism
19.
Anal Chem ; 94(7): 3165-3172, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35138834

ABSTRACT

Bone and bone marrow are vital to mammalian structure, movement, and immunity. These tissues are also commonly subjected to molecular alterations giving rise to debilitating diseases like rheumatoid arthritis and osteomyelitis. Technologies such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) facilitate the discovery of spatially resolved chemical information in biological tissue samples to help elucidate the complex molecular processes underlying pathology. Traditionally, preparation of osseous tissue for MALDI IMS has been difficult due to its mineralized composition and heterogeneous morphology, and compensation for these challenges with decalcification and fixation protocols can remove or delocalize molecular species. Here, sample preparation methods were advanced to enable multimodal MALDI IMS of undecalcified, fresh-frozen murine femurs, allowing the distribution of endogenous lipids to be linked to tissue structures and cell types. Adhesive-bound bone sections were mounted onto conductive glass slides with microscopy-compatible glue and freeze-dried to minimize artificial bone marrow damage. High spatial resolution (10 µm) MALDI IMS was employed to characterize lipid distributions, and use of complementary microscopy modalities aided tissue and cell assignments. For example, various phosphatidylcholines localize to the bone marrow, adipose tissue, marrow adipose tissue, and muscle. Further, sphingomyelin(42:1) was abundant in megakaryocytes, whereas sphingomyelin(42:2) was diminished in this cell type. These data reflect the vast molecular and cellular heterogeneity indicative of the bone marrow and the soft tissue surrounding the femur. Multimodal MALDI IMS has the potential to advance bone-related biomedical research by offering deep molecular coverage with spatial relevance in a preserved native bone microenvironment.


Subject(s)
Bone and Bones , Microscopy , Animals , Mice , Muscles , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sphingomyelins
20.
J Enzyme Inhib Med Chem ; 36(1): 1922-1930, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34425714

ABSTRACT

A rational-based process was adopted for repurposing pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs bearing variable acyl chains, different stereochemical configuration and/or positional relationships. Structural features were highly influential on activity. Amongst, enantiomer 1e having 1,2-vicinal relationship for the -CH2O- and the N-acyl moieties, a saturated palmitoyl chain and an opposite stereochemical configuration to natural sphingolipids was the most potent hit compound against promastigotes showing IC50 value of 28.32 µM. The corresponding enantiomer 1a was 2-fold less potent showing a eudismic ratio of 0.54 in promastigotes. Compounds 1a and 1e inhibited the growth of amastigotes more potently relative to promastigotes. Amongst, enantiomer 1a as the more selective and safer. In silico docking study using a homology model of Leishmania donovani inositol phosphoceramide synthase (IPCS) provided plausible reasoning for the molecular factors underlying the found activity. Collectively, this study suggests compounds 1a and 1e as potential hit compounds for further development of new antileishmanial agents.


Subject(s)
Antiprotozoal Agents/chemistry , Leishmania donovani/drug effects , Phosphorylcholine/chemistry , Pyrrolidines/chemistry , Amide Synthases/metabolism , Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Conformation , Molecular Docking Simulation , Palmitates/chemistry , Pyrrolidines/pharmacology , Sphingomyelins/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL