Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 673
Filter
Add more filters

Publication year range
1.
In Vivo ; 38(2): 691-698, 2024.
Article in English | MEDLINE | ID: mdl-38418142

ABSTRACT

BACKGROUND/AIM: This study aimed to investigate the role of NOTCH receptor 1 (NOTCH1)-mediated activation of microglia in the L5-S2 spinal dorsal horn in chronic prostatitis pain. MATERIALS AND METHODS: Rats were divided into chronic prostatitis (CP) group and control group. Complete Freund's adjuvant was injected into the prostate, and prostate pathology and pain-related behavior were monitored to assess the successful establishment of the CP-related pain model. The dorsal horn of the L5-S2 spinal cord was collected for the detection of ionized calcium-binding adapter molecule 1 (IBA-1) and NOTCH1 expression by quantitative real time polymerase chain reaction and the detection of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) by enzyme-linked immunosorbent assay. Electrical excitability was assessed with whole-cell patch clamp. In addition, NOTCH1 receptor inhibitor or inhibitor of microglial cell activation was injected into the subarachnoid space, and the pro-inflammatory cytokines in the spinal cord were detected. RESULTS: In the CP group, the expression of NOTCH1, IBA-1, TNF-α and IL-1ß began to increase at 4 days, peaked at 12 days, and began to decline at 24 days, and it was significantly higher than in the control group (p<0.01). Inhibition of microglia or NOTCH1 receptor markedly reduced the content of TNF-α and IL-1ß in the spinal cord (p<0.05). At 4, 12 and 24 days, the amplitude and frequency of neuronal action potential increased and the threshold decreased markedly as compared to the control group (p<0.05), and spontaneous action potential was noted. CONCLUSION: NOTCH1 mediates the activation of microglia in the L5-S2 spinal cord, leading to the secretion of inflammatory factors and enhanced electrical excitability of neurons, which is related to persistent and refractory chronic prostatitis-related pain.


Subject(s)
Prostatitis , Animals , Humans , Male , Rats , Chronic Disease , Microglia/metabolism , Pain , Prostatitis/therapy , Prostatitis/metabolism , Prostatitis/pathology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-37991274

ABSTRACT

Spina bifida affects spinal cord and cerebral development, leading to motor and cognitive delay. We investigated whether there are associations between thalamocortical connectivity topography, neurological function, and developmental outcomes in open spina bifida. Diffusion tensor MRI was used to assess thalamocortical connectivity in 44 newborns with open spina bifida who underwent prenatal surgical repair. We quantified the volume of clusters formed based on the strongest probabilistic connectivity to the frontal, parietal, and temporal cortex. Developmental outcomes were assessed using the Bayley III Scales, while the functional level of the lesion was assessed by neurological examination at 2 years of age. Higher functional level was associated with smaller thalamo-parietal, while lower functional level was associated with smaller thalamo-temporal connectivity clusters (Bonferroni-corrected P < 0.05). Lower functional levels were associated with weaker thalamic temporal connectivity, particularly in the ventrolateral and ventral anterior nuclei. No associations were found between thalamocortical connectivity and developmental outcomes. Our findings suggest that altered thalamocortical circuitry development in open spina bifida may contribute to impaired lower extremity function, impacting motor function and independent ambulation. We hypothesize that the neurologic function might not merely be caused by the spinal cord lesion, but further impacted by the disruption of cerebral neuronal circuitry.


Subject(s)
Spina Bifida Cystica , Spinal Dysraphism , Pregnancy , Female , Infant, Newborn , Humans , Spina Bifida Cystica/complications , Spinal Dysraphism/diagnostic imaging , Spinal Dysraphism/complications , Spinal Dysraphism/psychology , Spinal Cord/pathology , Diffusion Tensor Imaging , Thalamus/pathology
3.
J Neuroinflammation ; 20(1): 303, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110993

ABSTRACT

Acute hyperbaric O2 (HBO) therapy after spinal cord injury (SCI) can reduce inflammation and increase neuronal survival. To our knowledge, it is unknown if these benefits of HBO require hyperbaric vs. normobaric hyperoxia. We used a C4 lateralized contusion SCI in adult male and female rats to test the hypothesis that the combination of hyperbaria and 100% O2 (i.e. HBO) more effectively mitigates spinal inflammation and neuronal loss, and enhances respiratory recovery, as compared to normobaric 100% O2. Experimental groups included spinal intact, SCI no O2 therapy, and SCI + 100% O2 delivered at normobaric pressure (1 atmosphere, ATA), or at 2- or 3 ATA. O2 treatments lasted 1-h, commenced within 2-h of SCI, and were repeated for 10 days. The spinal inflammatory response was assessed with transcriptomics (RNAseq) and immunohistochemistry. Gene co-expression network analysis showed that the strong inflammatory response to SCI was dramatically diminished by both hyper- and normobaric O2 therapy. Similarly, both HBO and normobaric O2 treatments reduced the prevalence of immunohistological markers for astrocytes (glial fibrillary acidic protein) and microglia (ionized calcium binding adaptor molecule) in the injured spinal cord. However, HBO treatment also had unique impacts not detected in the normobaric group including upregulation of an anti-inflammatory cytokine (interleukin-4) in the plasma, and larger inspiratory tidal volumes at 10-days (whole body-plethysmography measurements). We conclude that normobaric O2 treatment can reduce the spinal inflammatory response after SCI, but pressured O2 (i.e., HBO) provides further benefit.


Subject(s)
Hyperbaric Oxygenation , Spinal Cord Injuries , Rats , Male , Female , Animals , Neuroinflammatory Diseases , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy , Spinal Cord Injuries/metabolism , Spinal Cord/pathology , Inflammation/metabolism , Oxygen/metabolism
4.
Curr Neurol Neurosci Rep ; 23(12): 849-856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37921944

ABSTRACT

PURPOSE OF REVIEW: Diffuse midline gliomas (DMGs) generally carry a poor prognosis, occur during childhood, and involve midline structures of the central nervous system, including the thalamus, pons, and spinal cord. RECENT FINDINGS: To date, irradiation has been shown to be the only beneficial treatment for DMG. Various genetic modifications have been shown to play a role in the pathogenesis of this disease. Current treatment strategies span targeting epigenetic dysregulation, cell cycle, specific genetic alterations, and the immune microenvironment. Herein, we review the complex features of this disease as it relates to current and past therapeutic approaches.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , Glioma/genetics , Glioma/therapy , Central Nervous System/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Thalamus , Tumor Microenvironment
5.
Dis Model Mech ; 16(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37756598

ABSTRACT

Motor neuron (MN) loss is the primary pathological hallmark of amyotrophic lateral sclerosis (ALS). Histone deacetylase 4 (HDAC4) is one of several factors involved in nerve-muscle communication during MN loss, hindering muscle reinnervation, as shown in humans and in animal models of ALS, and may explain the differential progression observed in patients with ALS - rapid versus slow progression. In this work, we inhibited HDAC4 activity through the administration of a pan-histone deacetylase inhibitor, sodium butyrate, in an in vivo model of chronic spinal MN death induced by AMPA-mediated excitotoxicity. We infused AMPA into the spinal cord at low and high doses, which mimic the rapid and slow progression observed in humans, respectively. We found that muscle HDAC4 expression was increased by high-dose infusion of AMPA. Treatment of animals with sodium butyrate further decreased expression of muscle HDAC4, although non-significantly, and did not prevent the paralysis or the MN loss induced by AMPA infusion. These results inform on the role of muscle HDAC4 in MN degeneration in vivo and provide insights for the search for more suitable therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Animals , Amyotrophic Lateral Sclerosis/pathology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , Motor Neurons/pathology , Spinal Cord/pathology
6.
J Tradit Chin Med ; 43(4): 676-685, 2023 08.
Article in English | MEDLINE | ID: mdl-37454252

ABSTRACT

OBJECTIVE: To learn the mechanisms between gut microbiome and the autoimmunity benefits on Traditional Chinese Medicine (TCM) in central nervous system (CNS), we investigated the neuro-protection effects and gut mircobiota changes of Heshouwu () on experimental autoimmune encepha-lomyelitis (EAE), an animal model of multiple sclerosis (MS). METHODS: Mice were randomly divided into four groups: EAE mice (control phosphate-buffered saline group), 50 mg·kg·d Heshouwu ()-treated EAE mice, 100 mg·kg·d Heshouwu ()-treated EAE mice, and 200 mg·kg·d Heshouwu ()-treated EAE mice. The spinal cords were stained with hematoxylin and eosin (HE) and luxol fast blue for evaluating inflammatory infiltration and demyelination. The percentages of granulocyte macrophage-colony stimulating factor (GM-CSF)+CD4+, interleukin 17 (IL-17)+CD4+, Foxp3 CD4+, and interferon-γ (IFN-γ)+CD4+ T cells in the inguinal lymph nodes (LNs) and brain were determined by flow cytometry analysis. 16S rRNA gene sequencing was employed to analyze the changes in gut microbiota. RESULTS: We found that Heshouwu () alleviated the disease severity and neuropathology of EAE as evaluated by clinical and histopathologyical scores. Heshouwu () increased the diversity and abundance of the gut microbiota, and decreased / ratio (F/B ratio). Heshouwu () also decreased the concentrations of IL-10, and IL-21 and increase the levels of GM-CSF, IL-17A, IL-17F and IL-22 in serum of EAE mice. Moreover, Heshouwu () modulated the T cell responses by inhibiting Th17 cells and restoring Treg cells in the small intestine lymphoid tissues and inguinal lymph nodes. Microbiota-depleted mice receiving Heshouwu ()-treated fecal microbiota trans-plantation had lower disease severity, neuropathology scores and alleviation of Th17/Treg imbalance compared to ad libitum group. CONCLUSIONS: Our findings suggested that the vital neuro-protection role of Heshouwu () (TCM) in immunomodulation effects partly by regulations of gut microbiome.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Encephalomyelitis , Mice , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , RNA, Ribosomal, 16S , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Spinal Cord/pathology , Encephalomyelitis/pathology , Mice, Inbred C57BL
7.
J Tradit Chin Med ; 43(4): 715-724, 2023 08.
Article in English | MEDLINE | ID: mdl-37454256

ABSTRACT

OBJECTIVE: To investigate whether the Chinese massage system, Tuina, exerts analgesic effects in a rat model of chronic constriction injury (CCI) by remodeling the synaptic structure in the spinal cord dorsal horn (SCDH). METHODS: Sixty-nine male Sprague-Dawley rats were randomly and evenly divided into the normal group, sham group, CCI group, CCI + Tuina group, CCI + MK-801 [an -methyl D-aspartate receptor subtype 2B (NR2B) antagonist] group, and CCI + MK-801 + Tuina group. The neuropathic pain model was established using CCI with right sciatic nerve ligation. Tuina was administered 4 d after CCI surgery, using pressing manipulation for 10 min, once daily. Motor function was observed with the inclined plate test, and pain behaviors were observed by the Von Frey test and acetone spray test. At 19 d after surgery, the L3-L5 spinal cord segments were removed. Glutamate, interleukin 1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) levels were detected by enzyme-linked immunosorbent assay. The protein expression levels of NR2B and postsynaptic density protein-95 (PSD-95) were detected by Western blot, and the synaptic structure was observed by transmission electron microscopy (TEM). RESULTS: CCI reduced motor function and caused mechanical and cold allodynia in rats, increased glutamate concentration and TNF-α and IL-1ß levels, and increased expression of synapse-related proteins NR2B and PSD-95 in the SCDH. TEM revealed that the synaptic structure of SCDH neurons was altered. Most of these disease-induced changes were reversed by Tuina and intrathecal injection of MK-801 ( < 0.05 or < 0.01). For the majority of experiments, no significant differences were found between the CCI + MK-801 and CCI + MK-801 + Tuina groups. CONCLUSIONS: Chinese Tuina can alleviate pain by remodeling the synaptic structure, and NR2B and PSD-95 receptors in the SCDH may be among its targets.


Subject(s)
Disks Large Homolog 4 Protein , Massage , Neuralgia , Receptors, N-Methyl-D-Aspartate , Animals , Male , Rats , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Dizocilpine Maleate/pharmacology , Glutamates/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Rats, Sprague-Dawley , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord Dorsal Horn/metabolism , Spinal Cord Dorsal Horn/pathology , Tumor Necrosis Factor-alpha/metabolism , Massage/methods , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
8.
Anat Rec (Hoboken) ; 306(12): 3156-3168, 2023 12.
Article in English | MEDLINE | ID: mdl-36866416

ABSTRACT

Spinal cord injury (SCI) is a commonly occurring and severe form of central nervous system (CNS) injury. Previous studies have demonstrated that electroacupuncture (EA) therapy promotes recovery from SCI. In this study, we observed changes in the glial scars of rats with SCI to gain insight into how EA therapy positively influences locomotor function. The experimental rats were randomly divided into three groups: the sham group, the SCI group and the SCI + EA group. Rats in the SCI + EA group received a 28-day treatment course using the Dazhui (GV14) acupoint and the Mingmen (GV4) acupoint for 20 min/day. The Basso-Beattie-Bresnahan (BBB) score was used to estimate the neural function of rats in all groups. We found that before sacrifice on Day 28, the BBB score was significantly improved in the SCI + EA group, which was higher than that observed in the SCI group. Hematoxylin-eosin staining revealed morphological improvements in spinal cord tissues of the rats in the EA + SCI group with reduced glial scars and cavities. Based on immunofluorescence staining, reactive astrocytes overpopulated both the SCI and SCI + EA groups following SCI. Moreover, improved generation of reactive astrocytes at lesions was observed in the SCI + EA group compared with the SCI group. After treatment, EA inhibited glial scar generation. EA effectively downregulated fibrillary acidic protein (GFAP) and vimentin protein and mRNA expression levels, according to the results from Western blot assays and reverse transcription-polymerase chain reaction (RT-PCR). We hypothesized that these findings described might represent the mechanism underlying EA inhibition of glial scar generation, morphological improvements in tissues and promotion of neural recovery from SCI in rats.


Subject(s)
Electroacupuncture , Spinal Cord Injuries , Rats , Animals , Rats, Sprague-Dawley , Gliosis/pathology , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Cicatrix/therapy , Cicatrix/pathology
9.
J Spinal Cord Med ; 46(5): 798-806, 2023 09.
Article in English | MEDLINE | ID: mdl-35792817

ABSTRACT

PURPOSE: Warm acupuncture (WA) therapy has been applied to treat spinal cord injury (SCI), but the underlying mechanism is unclear. The current study attempted to explore the WA therapy on neuronal apoptosis of SCI and the relationship with the extracellular signal-regulated kinase (ERK) signaling pathway. METHODS: The rat SCI models were established by the impact method. SCI rat models were subjected to WA treatment at Dazhui (GV14) and Jiaji points (T10), Yaoyangguan (GV3), Zusanli (ST36), and Ciliao (BL32). The rat SCI models were established by the impact method. WA and U0126 treatments were performed on the SCI rats. Motor function and neuronal apoptosis were detected. The relative mRNA of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), the phosphorylation level of ERK 1/2 and levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and caspase-3 in spinal cord tissue were tested. RESULTS: After WA treatment, the Basso, Beattie & Bresnahan locomotor rating scale (BBB scale) of SCI rats in the WA treatment was significantly raised from 7 to 14 days after SCI. WA and U0126 treatment significantly diminished apoptotic cells and preserved the neurons in the injured spinal cord. WA and U0126 treatment alleviated the production of inflammatory cytokines in the spinal cord. The distinct increase of p-ERK 1/2 induced by SCI was reversed in WA and U0126 treatment groups. WA and U0126 treatment augmented the level of Bcl-2 and reversed the elevated cleaved caspase-3 protein level after SCI. CONCLUSION: Our study demonstrated that WA might be associated with the downregulation of the ERK signaling pathway. In summary, our findings indicated that WA promotes the recovery of SCI via the protection of nerve cells and the prevention of apoptosis. Meanwhile, the anti-apoptotic effect of WA might be associated with the downregulation of the ERK signaling pathway, which could be one of the mechanisms of WA in the treatment of SCI.


Subject(s)
Acupuncture Therapy , Spinal Cord Injuries , Animals , Rats , Apoptosis , Caspase 3/metabolism , Caspase 3/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Rats, Sprague-Dawley , Recovery of Function/physiology , Signal Transduction , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
10.
J Proteomics ; 272: 104776, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36423857

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron degenerative disease, and the pathogenic mechanism that underlies ALS is still unclear. We analyzed the differentially expressed proteins (DEPs) in the spinal cord between SOD1-G93A transgenic mice at the onset stage and non-transgenic (NTG) littermates based on 4D label-free quantitative proteomics (4D-LFQ) with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In our study, 189 DEPs were screened, of which 166 were up-regulated and 23 down-regulated. Clusters of Orthologous Groups (COG)/ EuKaryotic Orthologous Groups (KOG) classification, subcellular localization annotation, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, clustering analysis and protein-protein interaction (PPI) network analyses were performed. Parallel reaction monitoring (PRM) analysis validated 48 proteins from immunity and inflammation-related pathways of KEGG. We described the function and distribution of DEPs, most of which were involved in the following pathways: complement and coagulation cascades, antigen processing and presentation, NF-kappa B signaling pathway, Retinoic acid-inducible gene I (RIG) -I-like receptor signaling pathway, the extracellular matrix-receptor (ECM-receptor) interaction, focal adhesion, phagosome and lysosome. PPI network analysis identified Fn1, Fga, Serpina1e and Serpina3n as potential biomarkers. Our discoveries broaden the view and expand our understanding of immunity and inflammation in ALS. SIGNIFICANCE: This study gives a comprehensive description of DEPs in the spinal cord proteomics of SOD1-G93A mice at the onset period. Compared with a previous study focusing on progressive stage, we showed that immunity and inflammation play an important role at the onset stage of ALS. Several pathways validated by PRM bring new insight to the pathological mechanisms of ALS. The participation of RIG-I-like signaling pathway in ALS and potential biomarkers Fga, Fn1, Serpina1e and Serpina3n are supplements to existing knowledge.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Transgenic , Spinal Cord/metabolism , Spinal Cord/pathology , Inflammation/metabolism , Disease Models, Animal , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
11.
Biomed Mater ; 17(6)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36263707

ABSTRACT

Exosomes show great potential in treating diseases of the central nervous system including spinal cord injury (SCI), still better engineered exosomes have more advantages. In this study, we purified exosomes from K+-Cl-co-transporter (KCC2) overexpressed bone marrow mesenchymal stem cells (ExoKCC2), to investigate the effect of ExoKCC2on neural differentiationin vitroand the repairing function of ExoKCC2in SCI micein vivo. Compared to bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exo), ExoKCC2could better promote neural stem cell differentiated into neurons, ameliorate the function recovery of SCI mice, and accelerate the neural regeneration at the lesion site. Altogether, engineered ExoKCC2may prove to be an advantageous strategy for SCI treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Spinal Cord Injuries , Symporters , Mice , Animals , Mesenchymal Stem Cells/physiology , Recovery of Function , Spinal Cord/pathology
12.
Lasers Med Sci ; 37(9): 3433-3442, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35816215

ABSTRACT

The study aimed to design a reliable and straightforward PBM method by implanting a medical scattering fiber above surgically exposed spinal cord in SCI patients. Moreover, the safety of this method was examined. Twelve patients with acute SCI (ASIA B) requiring posterior decompression were recruited. The medical scattering fiber was implanted above the spinal cord, and was continuously irradiated at 810 nm, 300 mW, 30 min/day, once per day for 7 days. The vital signs (temperature, blood pressure, respiratory rate, heart rate, and oxygen saturation), infection indicators (WBC, NEUT, hs-CRP, and PCT), photo-allergic reaction indicators (Eosinophil and Basophil), coagulation function indicators (PT, APTT, TT) and neurological stability indicators (ASIA sensory and motor scores) were recorded to evaluate the safety of PBM. Three months after surgery, 12 patients completed follow-up. In our study, direct PBM on SCI site did not cause clinically pathologic changes in vital signs of the patients. All patients had higher WBC, NEUT, and hs-CRP at day 3 during irradiation than those before surgery, and returned to normal at day 7. The changes in Eosinophil and Basophil that were closely associated with allergic reactions were within normal limits throughout the course of irradiation. The coagulation function (PT, APTT, and TT) of patients were also in the normal range. The ASIA sensory and motor scores of all patients had no changes throughout the irradiation process. However, in the follow-up, both ASIA sensory and motor scores of all patients had minor improvement than those in pre-irradiation, and 7 patients had adverse events, but they were not considered to be related to PBM. Our study might firstly employ direct PBM in the SCI by using scattered optical fibers. In a limited sample size, our study concluded that direct PBM at the site of SCI would not produce adverse effects within the appropriate irradiation parameters. The method is safe, feasible, and does not add additional trauma to the patient. Our preliminary study might provide a new methodology for the clinical PBM treatment of acute SCI.


Subject(s)
C-Reactive Protein , Low-Level Light Therapy , Spinal Cord Injuries , Humans , Recovery of Function , Spinal Cord/pathology , Spinal Cord Injuries/radiotherapy , Spinal Cord Injuries/pathology
13.
Mediators Inflamm ; 2022: 4754732, 2022.
Article in English | MEDLINE | ID: mdl-35832305

ABSTRACT

Amyotrophic lateral sclerosis (ALS), a multicomplex neurodegenerative disease, has multiple underlying pathological factors and can induce other neuromuscular diseases, leading to muscle atrophy and respiratory failure. Currently, there is no effective drug for treating patients with ALS. Herbal medicine, used to treat various diseases, has multitarget effects and does not usually induce side effects. Each bioactive component in such herbal combinations can exert a mechanism of action to increase therapeutic efficacy. Herein, we investigated the efficacy of an herbal formula, comprising Achyranthes bidentata Blume, Eucommia ulmoides Oliver, and Paeonia lactiflora Pallas, in suppressing the pathological mechanism of ALS in male hSOD1G93A mice. Herbal formula extract (HFE) (1 mg/g) were orally administered once daily for six weeks, starting at eight weeks of age, in hSOD1G93A transgenic mice. To evaluate the effects of HFE, we performed footprint behavioral tests, western blotting, and immunohistochemistry to detect protein expression and quantitative PCR to detect mRNA levels in the muscles and spinal cord of hSOD1G93A mice. HFE-treated hSOD1G93A mice showed increased anti-inflammation, antioxidation, and regulation of autophagy in the muscles and spinal cord. Thus, HEF can be therapeutic candidates for inhibiting disease progression in patients with ALS. This study has some limitations. Although this experiment was performed only in male hSOD1G93A mice, studies that investigate the efficacy of HEF in various ALS models including female mice, such as mice modeling TAR DNA-binding protein 43 (TDP43) and ORF 72 on chromosome 9 (C9orf72) ALS, are required before it can be established that HEF are therapeutic candidates for patients with ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Muscles/metabolism , Neurodegenerative Diseases/metabolism , Spinal Cord/pathology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
14.
Neurol Sci ; 43(8): 5157-5159, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35482156

ABSTRACT

We present a case of a 23-year-old woman with a history of celiac disease who presented with a 2-month history of progressive gait unsteadiness and falls. Neurologic examination exhibited preserved motor strength, diffuse areflexia, and ataxic gait. Autoimmune and infectious workups were unremarkable, including vitamin B12. Electrodiagnostic testing showed absent diffuse sensory responses, consistent with sensory ganglionopathy. Total spine magnetic resonance imaging (MRI) revealed a non-enhancing, posterior cord, hyperintense signal from C1-T11. Partial improvement in her sensory ataxia was noted after 6 months of high-dose steroids without dorsal cord signals change on repeat MRI that suggests Wallerian degeneration of sensory axons.


Subject(s)
Spinal Cord Diseases , Adult , Female , Gait Ataxia , Humans , Magnetic Resonance Imaging , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord Diseases/complications , Spinal Cord Diseases/diagnostic imaging , Vitamin B 12 , Young Adult
15.
Neuroreport ; 33(1): 33-42, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34874327

ABSTRACT

OBJECTIVES: Spinal cord injury (SCI) is a disastrous central nervous system (CNS) disorder, which was intimately associated with oxidative stress. Studies have confirmed that Iridoids Effective Fraction of Valeriana jatamansi Jones (IEFV) can scavenge reactive oxygen species. This study aimed to confirm the efficacy of IEFV in ameliorating SCI. METHODS: For establish the SCI model, the Sprague-Dawley rats underwent a T10 laminectomy with transient violent oppression by aneurysm clip. Then, the rats received IEFV intragastrically for 8 consecutive weeks to evaluate the protective effect of IEFV on motor function, oxidative stress, inflammation and neurotrophic factors in SCI rats. RESULTS: Basso, Beattie and Bresnahan scores, hematoxylin and eosin (H&E) staining and transmission electron microscopy experiments found IEFV protected motor function and alleviated neuron damage. Meanwhile, IEFV treatment decreased the release of malondialdehyde, interleukin-6 (IL-6), cyclooxygenase-2 and tumor necrosis factor-α. Moreover, IEFV treatment elevated the expression levels of brain-derived neurotrophic factor and nerve growth factor of SCI rats. Finally, administration of IEFV significantly inhibited the expression of p-p65 and toll-like receptor 4 (TLR4). CONCLUSIONS: This study suggests that IEFV could attenuate the oxidative stress and inflammatory response of the spinal cord after SCI, which was associated with inhibition of the TLR4/nuclear factor-kappaB signaling pathway.


Subject(s)
Motor Activity/drug effects , Plant Extracts/pharmacology , Recovery of Function/drug effects , Spinal Cord Injuries/pathology , Spinal Cord/drug effects , Animals , Female , Free Radical Scavengers/pharmacology , Iridoids/pharmacology , Male , Neurons/drug effects , Neurons/pathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology , Valerian
17.
J Spinal Cord Med ; 45(6): 930-939, 2022 11.
Article in English | MEDLINE | ID: mdl-33830902

ABSTRACT

OBJECTIVE: Recent studies revealed the neuroprotective effects of hyperbaric oxygen (HBO) on spinal cord injury (SCI). Meanwhile, the use of methylprednisolone (MP) is one of the current protocols with limited effects in SCI patients. Accordingly, the aim of the present study was to investigate the effect of combined HBO and MP treatment on SCI. DESIGN: The present study was conducted on five groups of rats each as follows: Sham group (underwent laminectomy alone at T9 level vertebra); SCI group (underwent moderate contusive SCI); MP group (underwent SCI and received MP); HBO group (underwent SCI and received HBO); HBO + MP group (underwent SCI and simultaneously received MP and HBO). Blood serum and Spinal cord tissue samples were taken 48 h after SCI for analysis of serum ferric reducing antioxidant power (FRAP) and tissue malodialdehyde (MDA) levels as well as immunohistochemistry of caspase-3 and tumor necrosis factor-alpha (TNF-α). Neurological function was evaluated by the Basso-Beattie-Bresnehan (BBB) locomotion scores until the end of experiments. Additionally, histopathology was assessed at the end of the study. SETTING: Mazandaran University of Medical Sciences, Sari, Iran. RESULTS: Combination therapy with HBO and MP in the HBO + MP group significantly decreased MDA as well as increased FRAP levels compared to other treatment groups. Meanwhile, attenuated TNF-α and Caspase-3 expression could be significantly detected in the HBO + MP group. At the end of treatment, the neurological outcome was significantly improved and the extent of injured spinal tissue was also significantly reduced in the HBO + MP compared to other treatment groups. CONCLUSION: The results suggest that combined therapy with MP and HBO has synergistic effects on SCI treatment.


Subject(s)
Hyperbaric Oxygenation , Neuroprotective Agents , Spinal Cord Injuries , Rats , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Caspase 3/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Hyperbaric Oxygenation/methods , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Rats, Sprague-Dawley , Spinal Cord/pathology , Oxygen
18.
Anesth Analg ; 134(1): 204-215, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34652301

ABSTRACT

BACKGROUND: The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein-coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA). METHODS: The pain and sensory deficit behaviors of mice were examined by von Frey test and adhesive removal test. The expression of neuronal GRK2 in the spinal cord is regulated by intraspinal injection of adeno-associated virus (AAV) containing neuron-specific promoters. The protein levels of GRK2, triggering receptor expressed on myeloid cells 2 (TREM2), and DNAX-activating protein of 12 kDa (DAP12) in spinal dorsal horn were detected by Western blot, the density of intraepidermal nerve fibers (IENFs) was detected by immunofluorescence, and microglia activation were evaluated by real-time polymerase chain reaction (PCR). RESULTS: In this study, cisplatin treatment led to the decrease of GRK2 expression in the dorsal horn of spinal cord. Overexpression of neuronal GRK2 in spinal cord by intraspinal injection of an AAV vector expressing GRK2 with human synapsin (hSyn) promotor significantly inhibited the loss of IENFs and alleviated the mechanical pain and sensory deficits induced by cisplatin. Real-time PCR analysis showed that the overexpression of neuronal GRK2 significantly inhibited the messenger RNA (mRNA) upregulation of proinflammatory cytokine interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase (iNOS), and M1 microglia marker cluster of differentiation (CD)16 induced by cisplatin. Furthermore, the TREM2 and DAP12, which has been demonstrated to play a role in microglia activation and in the development of CIPN, were also downregulated by overexpression of neuronal GRK2 in this study. Interestingly, preventive treatment with EA completely mimics the effect of overexpression of neuronal GRK2 in the spinal cord in this mouse model of cisplatin-induced CIPN. EA increased GRK2 level in spinal dorsal horn after cisplatin treatment. Intraspinal injection of AAV vector specifically downregulated neuronal GRK2, completely reversed the regulatory effect of EA on CIPN and microglia activation. All these indicated that the neuronal GRK2 mediated microglial activation contributed to the process of CIPN. CONCLUSIONS: Neuronal GRK2 in the spinal cord contributed to the preventive effect of EA on CIPN. The neuronal GRK2 may be a potential target for CIPN intervention.


Subject(s)
Cisplatin , Electroacupuncture , G-Protein-Coupled Receptor Kinase 2/genetics , Peripheral Nervous System Diseases/chemically induced , Spinal Cord/pathology , Animals , Behavior, Animal , Dependovirus , Humans , Hyperalgesia/metabolism , Inflammation , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Nerve Fibers , Neuralgia/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type II/metabolism , Pain , Spinal Cord Dorsal Horn/metabolism , Time Factors
19.
Fitoterapia ; 156: 105099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896483

ABSTRACT

The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-ß) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1ß and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-ß and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.


Subject(s)
Antioxidants/therapeutic use , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Flavones/therapeutic use , Multiple Sclerosis/drug therapy , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Cytokines/drug effects , DNA, Complementary/biosynthesis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Flavones/pharmacology , Immunohistochemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/prevention & control , RNA/genetics , RNA/isolation & purification , Real-Time Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology
20.
Nat Commun ; 12(1): 7344, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34937876

ABSTRACT

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Subject(s)
Lymphocytes/metabolism , Nucleic Acid Heteroduplexes/metabolism , Oligonucleotides/metabolism , RNA/metabolism , Administration, Intravenous , Adoptive Transfer , Animals , Demyelinating Diseases/genetics , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Endocytosis/drug effects , Female , Gene Expression Regulation , Gene Silencing , Graft vs Host Disease/genetics , Graft vs Host Disease/immunology , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Jurkat Cells , Male , Mice, Inbred C57BL , Nucleic Acid Heteroduplexes/administration & dosage , Nucleic Acid Heteroduplexes/pharmacokinetics , Nucleic Acid Heteroduplexes/pharmacology , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/pathology , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL