Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Nutrients ; 16(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612951

ABSTRACT

BACKGROUND: The study investigated the impact of starch degradation products (SDexF) as prebiotics on obesity management in mice and overweight/obese children. METHODS: A total of 48 mice on a normal diet (ND) and 48 on a Western diet (WD) were divided into subgroups with or without 5% SDexF supplementation for 28 weeks. In a human study, 100 overweight/obese children were randomly assigned to prebiotic and control groups, consuming fruit and vegetable mousse with or without 10 g of SDexF for 24 weeks. Stool samples were analyzed for microbiota using 16S rRNA gene sequencing, and short-chain fatty acids (SCFA) and amino acids (AA) were assessed. RESULTS: Results showed SDexF slowed weight gain in female mice on both diets but only temporarily in males. It altered bacterial diversity and specific taxa abundances in mouse feces. In humans, SDexF did not influence weight loss or gut microbiota composition, showing minimal changes in individual taxa. The anti-obesity effect observed in mice with WD-induced obesity was not replicated in children undergoing a weight-loss program. CONCLUSIONS: SDexF exhibited sex-specific effects in mice but did not impact weight loss or microbiota composition in overweight/obese children.


Subject(s)
Pediatric Obesity , Solanum tuberosum , Child , Humans , Male , Female , Animals , Mice , Dextrins , Diet, Western , Dysbiosis , Overweight , RNA, Ribosomal, 16S/genetics , Body Weight , Starch/pharmacology , Fruit
2.
Molecules ; 29(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257283

ABSTRACT

Obesity has become a major disease that endangers human health. Studies have shown that dietary interventions can reduce the prevalence of obesity and diabetes. Resistant starch (RS) exerts anti-obesity effects, alleviates metabolic syndrome, and maintains intestinal health. However, different RS types have different physical and chemical properties. Current research on RS has focused mainly on RS types 2, 3, and 4, with few studies on RS1. Therefore, this study aimed to investigate the effect of RS1 on obesity and gut microbiota structure in mice. In this study, we investigated the effect of potato RS type 1 (PRS1) on obesity and inflammation. Mouse weights, as well as their food intake, blood glucose, and lipid indexes, were assessed, and inflammatory factors were measured in the blood and tissues of the mice. We also analyzed the expression levels of related genes using PCR, with 16S rRNA sequencing used to study intestinal microbiota changes in the mice. Finally, the level of short-chain fatty acids was determined. The results indicated that PRS1 promoted host obesity and weight gain and increased blood glucose and inflammatory cytokine levels by altering the gut microbiota structure.


Subject(s)
Gastrointestinal Microbiome , Solanum tuberosum , Humans , Animals , Mice , Resistant Starch , Diet, High-Fat/adverse effects , Blood Glucose , RNA, Ribosomal, 16S , Starch/pharmacology , Obesity/etiology
3.
J Med Food ; 26(10): 760-767, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38039382

ABSTRACT

Diabetes prevalence achieved 470B in 2021. Diabetics are looking for foods that allow them to better manage the postprandial glycemia. Owing to its large amylose fraction, pea starch may contribute to formulate recipes with a lower glycemic index (GI). This study measured the rapidly, slowly digested and resistant fractions in pea starch and in a powder mix recipe. Starch fractions were determined according to the Englyst methodology. A nonblind repeat measure crossover design trial in healthy humans was used to study the GI of pea starch and maltodextrin powder mix recipes against glucose. Gastrointestinal symptoms were measured. Thirteen healthy volunteers aged 18-60 years with body mass index <30 kg/m2 and fasting blood glucose <6.1 mmol/L participated in the study. They consumed 25 g available carbohydrate portions of the test products. Blood glucose was measured at -5 and 0 min before consumption till 180 min after starting to eat. The slow digestible starch (SDS) content of native pea starch was 30% of the total starch content. The pea-based powder mix recipe contained 25% SDS in comparison with 9% for the maltodextrin-based recipe. The glucose response after pea starch was significantly lower compared with maltodextrin. The glucose response after pea starch recipe was significantly lower compared with maltodextrin recipe. There was no significant difference in mean scores for well-being and gastrointestinal symptoms after consumption of pea starch and maltodextrin or between the two recipes. In conclusion, this study has demonstrated the presence of high SDS content in pea starch, which reduced postprandial glycemic response compared with maltodextrin. The pea starch recipe did not induce any negative gastrointestinal symptoms. Pea starch may, therefore, prove to be a beneficial ingredient in developing food products for improving glycemic control without undesirable side effects.


Subject(s)
Blood Glucose , Starch , Humans , Adult , Starch/pharmacology , Pisum sativum , Powders , Glucose , Glycemic Index , Postprandial Period , Cross-Over Studies
4.
Nutr Res ; 118: 12-28, 2023 10.
Article in English | MEDLINE | ID: mdl-37536013

ABSTRACT

Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.


Subject(s)
Diet, High-Fat , Resistant Starch , Male , Mice , Animals , Mice, Obese , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Starch/pharmacology , Starch/metabolism , Carnitine
5.
Nutrients ; 15(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049425

ABSTRACT

The effects of resistant starch at high doses have been well-characterized, but the potential prebiotic effects of resistant starch at doses comparable to oligosaccharide prebiotics have not been evaluated. A three-arm randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the effect of 3.5 g and 7 g daily doses of Solnul™ resistant potato starch (RPS) on beneficial populations of gut bacteria and stool consistency after a 4-week period. The relative abundance of Bifidobacterium and Akkermansia was determined by employing 16Sv4 sequencing of stool samples. To assess the effect of RPS on laxation and bowel movements, stools were recorded and scored using the Bristol Stool Form Scale. Participants consuming 3.5 g/day of RPS experienced significantly greater changes in Bifidobacterium and Akkermansia compared to the placebo after 4 weeks. The number of diarrhea- and constipation-associated bowel movements were both significantly lower in the 3.5 g RPS arm compared to the placebo group. Participants consuming 7 g of RPS responded similarly to those in the 3.5 g arm. Our analyses demonstrate that Solnul™ RPS has a prebiotic effect when consumed for 4 weeks at the 3.5 g per day dose, stimulating increases in beneficial health-associated bacteria and reducing diarrhea- and constipation-associated bowel movements when compared to the placebo group.


Subject(s)
Prebiotics , Solanum tuberosum , Humans , Resistant Starch , Constipation/drug therapy , Feces/microbiology , Diarrhea/microbiology , Starch/pharmacology , Bacteria , Double-Blind Method
6.
Curr Opin Clin Nutr Metab Care ; 26(4): 334-340, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37057658

ABSTRACT

PURPOSE OF REVIEW: Resistant starch has received much attention recently as a healthy carbohydrate component of the diet. Resistant starch is not digested in the small intestine and can thus affect the gut microbiota of the host because of its fermentability. This review summarizes the interactions along the resistant starch-gut microbiota-host axis to help understand the health effects of resistant starch. RECENT FINDINGS: Recent studies indicate that resistant starch can be a helpful dietary component for special disease states like diabetes, metabolic syndrome, chronic kidney disease, constipation, and colitis. Its health effects are associated with modulation of the gut microbiota, and with gut microbes converting resistant starch into active and bioavailable metabolites that promote intestinal health. SUMMARY: The results from human clinical trials and studies in animal models indicate that supplementation of the diet with resistant starch in different metabolic diseases help remodel gut microbiota, especially increasing short-chain fatty acid (SCFA)-producing bacteria, and produce bioactive metabolites like SCFA, bile acids, and amino acids responsible for a variety of health effects. The gut microbiota and microbial metabolites probably mediate the effects of resistant starch on intestinal health.


Subject(s)
Resistant Starch , Starch , Animals , Humans , Resistant Starch/pharmacology , Starch/chemistry , Starch/metabolism , Starch/pharmacology , Diet , Bacteria , Fatty Acids, Volatile/metabolism , Dietary Supplements
7.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36130296

ABSTRACT

Three experiments (EXP) were conducted to determine the effect of feed additives on performance, intestinal integrity, gastrointestinal volatile fatty acids (VFA), and energy and nutrient digestion in nonchallenged nursery pigs. In EXP 1, 480 pigs (6.36-kg body weight, BW) were placed into 96 pens with 5 pigs/pen, and allotted to 1 of 10 dietary treatments: 1) negative control containing no feed additive (NC), 2) NC + 44 mg chlortetracycline and 38.5 mg tiamulin/kg diet (CTsb), 3) NC + 5% resistant potato starch (RSpo), 4) NC + 5% soluble corn fiber (SCF), 5) NC + 5% sugar beet pulp (SBP), 6) NC + 0.30% fatty acid mix (FAM), 7) NC + 0.10% phytogenic blend of essential oils and flavoring compounds (PHY), 8) NC + 50 mg Cu and 1,600 mg zinc oxide/kg diet (CuZn), 9) NC + 5% resistant corn starch (RScn), and 10) NC + 0.05% ß-glucan (BG) for 28 d. There was no impact of dietary treatment on BW gain or feed intake (P ≥ 0.22). Pigs fed diets containing SCF, CTsb, and RSpo resulted in microbial community differences compared to pigs fed the NC (P < 0.05). In EXP 2, 48 barrows (12.8 kg BW) were selected at the end of EXP 1 and fed the same dietary treatments they had previously received: 1) NC, 2) NC + 5% RScn, 3) NC + 5% SCF, and 4) NC + FAM for 8 d. There was no effect of feeding diets containing RScn, SCF, or FAM on in vivo intestinal permeability (P ≤ 0.21). Ileal or colon pH, concentrations of VFA did not differ due to dietary treatment (P ≥ 0.36), but pigs fed diets containing FAM resulted in a greater butyric acid concentration in the cecum compared to pigs fed the NC (P ≤ 0.05). In EXP 3, 156 pigs (6.11 kg BW) were placed into 52 pens with 3 pigs/pen and allotted to 1 of 4 dietary treatments arranged in a factorial manner: 1) NC, 2) NC + 5% RSpo, 3) NC + 0.30% FAM, and 4) NC + 5% RSpo + 0.30% FAM for 24 d. Feeding pigs diets containing RSpo did not affect BW gain (P = 0.91) while pigs fed diets containing FAM grew improved BW gain (P = 0.09). Colonic butyric acid concentrations were greater in pigs fed diets containing RSpo (P = 0.03), while pigs fed diets containing FAM exhibited reduced total VFA concentrations (P = 0.11). The results indicate that supplementing diets with digestively resistant but fermentable fibers, short- and medium-chain fatty acids, or antibiotics do not have a consistent effect, positive or negative, on markers of intestinal integrity or barrier function, intestinal VFA patterns, ATTD of energy and nutrients, or on pig performance.


In-feed antimicrobials have been an important technology in swine production for protecting health and supporting growth. However, with legislative restrictions on the use of most antibiotics for growth promotion, research is needed to evaluate in-feed additives in replacing this growth promoting technology. Thus, strategies to enhance energy and nutrient digestibility, intestinal function and integrity, gastrointestinal volatile fatty acid concentrations, and microbial ecology in nursery pigs are desirable targets. The results of the three experiments conducted herein do not indicate that supplementing diets with digestively resistant but fermentable fibers, short-medium-chain fatty acids, or antibiotics have a consistent positive or negative effect on markers of intestinal integrity or barrier function, VFA patterns (ileal, cecal, or colon), ATTD of energy and nutrients, or pig performance.


Subject(s)
Animal Nutritional Physiological Phenomena , Trace Elements , Swine , Animals , Animal Feed/analysis , Digestion , Trace Elements/pharmacology , Anti-Bacterial Agents/pharmacology , Diet/veterinary , Zea mays , Fatty Acids, Volatile/pharmacology , Starch/pharmacology , Butyrates/pharmacology
8.
Int J Biol Macromol ; 220: 117-123, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35963356

ABSTRACT

Pecan has been widely recognized for its high phenolic content and related health benefits. Previous studies indicated that pecan consumption might be beneficial in treating type 2 diabetes mellitus (T2DM). The objective of this study was to investigate the enzyme inhibitory activities of pecan phenolic compounds (PPC) and the effect in starch hydrolysis by in vitro simulation digestion. PPC was extracted with a solvent mixture from pecan powder and freeze-dried. PPC was tested for the inhibitory effects on α-amylase and α-glucosidase via enzyme kinetics study. Static in vitro digestion trials were conducted to evaluate the effect of intake of PPC and pecan powder on starch digestion. PPC displayed a potent inhibition effect against α-amylase and α-glucosidase with IC50 of 77.9 µg/mL and 9.02 µg/mL, respectively. Both PPC and pecan powder inhibited starch hydrolysis during in vitro digestion. However, the level of inhibition was lower than that from the catalytic kinetics study, and PPC exhibited a higher inhibition effect than pecan powder. The results confirmed the potential of PPC as a novel enzyme inhibitor for T2DM management. The information is helpful to promote the intake of pecan nuts for health-enhancing effects.


Subject(s)
Carya , Diabetes Mellitus, Type 2 , Digestion , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Powders/pharmacology , Solvents/pharmacology , Starch/pharmacology , alpha-Amylases , alpha-Glucosidases
9.
Food Chem ; 394: 133561, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35763904

ABSTRACT

Combination of dietary flavonoid-baicalein and acarbose reduces the risk that prediabetes will develop into type 2 diabetes mellitus; however, the mechanism underlying this effect has not been clarified. In this study, the in vitro culture conditions of intestinal microorganisms from prediabetic mice were optimized to increase over 30% similarity between in vitro cultured and fecal samples. Baicalein and acarbose alone and in combination, and their corresponding starch hydrolysate were assayed by the in vitro model. The results indicated that the combination of baicalein with acarbose decreased gas production by reducing the residual starch ratio in starch hydrolysate and decreasing the dosage of acarbose, and that reducing the relative abundance of gut bacteria correlated with gas production is the main mechanism. This study provided a theoretical foundation for the development of flavonoid dietary supplements to enhance the efficacy of oral hypoglycemic agents with fewer side effects and higher efficacy.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Acarbose/pharmacology , Animals , Flavanones , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Mice , Starch/pharmacology
10.
ACS Appl Mater Interfaces ; 14(22): 25104-25114, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35621184

ABSTRACT

This study describes the preparation, characterization, and antimicrobial properties of novel hybrid biopolymer materials doped with bioactive silver(I) coordination polymers (bioCPs). Two new bioCPs, [Ag2(µ6-hfa)]n (1) and [Ag2(µ4-nda)(H2O)2]n (2), were assembled from Ag2O and homophthalic (H2hfa) or 2,6-naphthalenedicarboxylic (H2nda) acids as unexplored building blocks. Their structures feature 2D metal-organic and supramolecular networks with 3,6L64 or sql topology. Both compounds act as active antimicrobial agents for producing bioCP-doped biopolymer films based on epoxidized soybean oil acrylate (SBO) or potato starch (PS) as model biopolymer materials with a different rate of degradability and silver release. BioCPs and their hybrid biopolymer films (1@[SBO]n, 2@[SBO]n, 1@[PS]n, and 2@[PS]n) with a very low loading of coordination polymer (0.05-0.5 wt %) show remarkable antimicrobial activity against Staphylococcus aureus and Staphylococcus epidermidis (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacteria. Biopolymer films also effectively impair the formation of bacterial biofilms, allowing total biofilm inhibition in several cases. By reporting on new bioCPs and biopolymer films obtained from renewable biofeedstocks (soybean oil and PS), this study blends highly important research directions and widens a limited antimicrobial application of bioCPs and derived functional materials. This research thus opens up the perspectives for designing hybrid biopolymer films with outstanding bioactivity against bacterial biofilms.


Subject(s)
Anti-Infective Agents , Solanum tuberosum , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Escherichia coli , Gram-Negative Bacteria , Microbial Sensitivity Tests , Polymers/chemistry , Polymers/pharmacology , Silver/chemistry , Silver/pharmacology , Soybean Oil , Staphylococcus epidermidis , Starch/pharmacology
11.
Horm Mol Biol Clin Investig ; 43(3): 307-314, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35355503

ABSTRACT

OBJECTIVES: Diet is the major modifiable risk factor for the onset of insulin resistance and its progression into diabetes. In the present study the effect of various dietary fats on inflammatory homeostasis and glucose tolerance is investigated in high fat and high fructose fed mice model. METHODS: C57/BL6J mice were divided into four groups and fed a casein-based diet containing high fructose (45%) and high fat (24%) (clarified butter oil [CBO]; safflower oil [SFFO] and lard oil [LO]) for 120 days; oral glucose tolerance (OGTT), plasma lipid profile and plasma & adipose tissue cytokines levels were compared with the control diet (10% groundnut oil and 59.5% starch) fed animals. RESULTS: The total cholesterol and triglycerides were higher in CBO and LO fed animals with glucose intolerance and increased body weights; liver and white adipose tissue weights were higher in CBO and LO fed animals respectively. CBO feeding increased the plasma (IFN-γ) and adipose tissue cytokines (IFN-γ, IL-10, IL-6 & TNF-α). LO feeding increased plasma IFN-γ, TNF-α and IL-1ß and adipose tissue IL-6. SFFO feeding decreased body weight and tissue cytokines and increased plasma IFN-γ levels without causing impairment in the glucose tolerance. CONCLUSIONS: Consumption of a high fructose and high fat diet which mimic the present-day dietary pattern resulted in altered inflammatory homeostasis and impairment in glucose tolerance in 24% CBO and LO fed animals. The deleterious effects of high fructose feeding were reversed in SFFO fed mice possibly due to the presence of oleic and linoleic acids.


Subject(s)
Ghee , Glucose Intolerance , Insulin Resistance , Adipose Tissue , Animals , Blood Glucose , Caseins/pharmacology , Cholesterol , Dietary Fats/adverse effects , Fructose/adverse effects , Glucose Intolerance/etiology , Inflammation/etiology , Insulin , Interleukin-10/pharmacology , Interleukin-6 , Linoleic Acids/pharmacology , Mice , Safflower Oil/pharmacology , Starch/pharmacology , Triglycerides , Tumor Necrosis Factor-alpha
12.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 888-898, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35049105

ABSTRACT

This study evaluated the effects of starch sources on pellet-processing characteristics as well as the growth performance and caecal microflora of rabbits. Ninety-six 35-day-old rabbits were randomly allocated to four groups with 24 rabbits per group and were fed diets with different starch sources (corn, wheat, potato or pea starch). The trial lasted for 40 days. The greatest hardness and lowest powder ratio of feed pellets was associated with the use of potato starch (p > 0.05). Pellet bulk density was the highest with corn starch, and the density was greater than that of pea starch by 5.91% (p < 0.05). The pulverisation ratio of corn starch pellets was the lowest, 43.67% lower than that of the pea starch pellets (p < 0.05). The average daily gain of rabbits in the corn starch group was higher than in the potato and pea starch groups, by 7.89% and 10.81%, respectively (p < 0.05). Rabbits in the corn starch group had the best feed conversion ratio (p > 0.05). The feed intake of rabbits in the potato starch group was higher than in the wheat and pea starch groups, by 4.30% and 5.16% respectively (p < 0.05). The dominant caecal bacteria phyla were Firmicutes, Bacteroidetes, Verrucomicrobia and Proteobacteria. There were 12 bacterial genera with proportions greater than 0.1%. The caecal proportion of Clostridium in the pea starch group was 1.8%, which was higher than those of the other groups (p = 0.057). There was no significant difference in caecal microbial diversity among groups (p > 0.05). The highest microbial clustering effect was found in the corn starch treatment. In conclusion, the best pellet quality was found using potato starch; for rabbit growth, the optimal source was corn starch.


Subject(s)
Gastrointestinal Microbiome , Solanum tuberosum , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Carbohydrates , Digestion , Meat , Rabbits , Starch/pharmacology , Triticum
13.
J Dairy Sci ; 105(3): 2288-2300, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35086703

ABSTRACT

The objective of this study was to investigate the effects of supplementation of an exogenous enzyme preparation (EEP) on performance, total-tract digestibility of nutrients, plasma AA profile, and milk fatty acids composition in lactating dairy cows fed a reduced-starch diet compared with a normal-starch diet (i.e., positive control). Forty-eight Holstein cows (28 primiparous and 20 multiparous) were enrolled in a 10-wk randomized complete block design experiment with 16 cows per treatment. Treatments were as follows: (1) normal-starch diet (control) containing (% dry matter basis) 24.8% starch and 33.0% neutral detergent fiber (NDF), (2) reduced-starch diet (RSD) containing 18.4% starch and 39.1% NDF, or (3) RSD supplemented with 10 g/cow per day of an EEP (ENZ). The EEP contained amylolytic and fibrolytic activities and was top-dressed on the total mixed ration at the time of feeding. Compared with normal-starch diet, dry matter intake and milk and energy-corrected milk (ECM) yields were lower (on average by 7.1, 9.5, and 7.2%, respectively) for cows on the RSD treatments. Concentrations, but not yields, of milk fat and total solids were increased by RSD. Energy-corrected milk feed efficiency did not differ among treatments. Total-tract digestibility of NDF tended to increase by RSD treatments. Plasma AA concentrations were not affected by treatment, except that of 3-methylhistidine was increased by ENZ, compared with RSD. Blood glucose concentration tended to be lower in cows on the RSD treatments, but ENZ increased glucose and tended to increase insulin concentrations at 4 h after feeding when compared with RSD. Cows on the RSD treatments had decreased concentrations of de novo fatty acids and tended to have increased concentrations of preformed fatty acids in milk. Overall, decreasing dietary starch concentration by 26% decreased dry matter intake, milk, and ECM yields, but ECM feed efficiency was not different among treatments. The negative effects of reducing dietary starch on production were not attenuated by the EEP.


Subject(s)
Lactation , Starch , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Supplements , Digestion , Female , Milk , Rumen , Starch/pharmacology
14.
Int J Biol Macromol ; 195: 264-273, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34920054

ABSTRACT

This study aimed to develop a composite bilayer film based on corn starch (CS)/polylactic acid (PLA). The film had a hydrophobic outer layer and an absorbent inner layer. A natural bioactive substance was incorporated into the inner layer, namely, eucalyptus essential oil microcapsules (EOM). This allowed most of the bioactive substance to be released inside the storage environment. The effects of different amounts of EOM on the physical, mechanical, antioxidant, and antimicrobial properties of the films were investigated. Based on the results of scanning electron microscopy (SEM), the addition of 10-15 mL/100 mL of EOM could be uniformly distributed in the film. The addition of less than 15 mL/100 mL of EOM to the film improved its tensile strength, barrier properties, and elongation at break. The addition of too much EOM led to cracks in the film. The addition of EOM also greatly improved the antioxidant and antibacterial properties of the bilayer film. The best performance was obtained when the added amount was 15 mL/100 mL. Films with the best overall properties were used for preserving Agaricus bisporus. In preservation experiments, this film inhibited the respiration rate of A. bisporus, slowed down the consumption of organic matter, and maintained its moisture content. Compared with other cling films, the shelf life of A. bisporus was greatly extended.


Subject(s)
Eucalyptus Oil/chemistry , Polyesters/chemistry , Starch/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Eucalyptus , Eucalyptus Oil/pharmacology , Food Packaging/methods , Oils, Volatile/chemistry , Plant Leaves/drug effects , Polyesters/pharmacology , Starch/pharmacology , Tensile Strength , Zea mays/drug effects
15.
J Sci Food Agric ; 102(2): 794-800, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34223648

ABSTRACT

BACKGROUND: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively. RESULTS: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days. The F6/SB coating reduced weight loss and gas exchange compared to uncoated fruit after 2 and 4 weeks of storage at 12 °C plus a shelf life of 1 week at 20 °C, without adversely affecting the lemon physicochemical quality. CONCLUSION: Overall, the F6/SB coating formulation, composed of pregelatinized potato starch, glyceryl monostearate, glycerol, emulsifiers and SB, with a total solid content of 5.5%, showed the best results in reducing citrus sour rot and maintaining the postharvest quality of cold-stored 'Fino' lemons. Therefore, it showed potential as a new cost-effective postharvest treatment suitable to be included in integrated disease management programs for citrus international markets with zero tolerance to chemical residues. © 2021 Society of Chemical Industry.


Subject(s)
Citrus/microbiology , Food Preservation/methods , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Geotrichum/drug effects , Plant Diseases/microbiology , Starch/chemistry , Starch/pharmacology , Citrus/chemistry , Drug Compounding , Food Storage , Fruit/chemistry , Fruit/microbiology , Geotrichum/growth & development , Plant Diseases/prevention & control , Sodium Benzoate/chemistry , Solanum tuberosum/chemistry
16.
Front Immunol ; 12: 755481, 2021.
Article in English | MEDLINE | ID: mdl-34603341

ABSTRACT

The beneficial effect of short-chain fatty acids (SCFAs) on host health has been well recognized based on the booming knowledge from gut microbiome research. The role of SCFA in influencing psychological function is highlighted in recent years but has not been fully elucidated. In this study, the SCFA-acylated starches were used to accomplish a sizeable intestine-targeted release of the SCFAs, and the neurobehavioral, immunological, and microbial effects were further investigated. Acetylated-, butylated-, and isobutylated-starch could attenuate the depression-like behaviors and excessive corticosterone production in chronically stressed mice. Butylated- starch significantly reduced the colonic permeability via increasing the tight junction proteins (including ZO-1, Claudin, and Occludin) gene expression and reduced the level of the inflammatory cytokines (including IL-1ß and IL-6). The butylated starch's neurological and immunological benefits may be derived from the gut microbiome modifications, including normalizing the abundance of certain beneficial microbes (Odoribacter and Oscillibacter) and metabolomic pathways (Tryptophan synthesis and Inositol degradation). The present findings further validate the brain-beneficial effect of butyrate and offer novel guidance for developing novel food or dietary supplements for improving mental health.


Subject(s)
Brain-Gut Axis/drug effects , Butyrates/pharmacology , Fatty Acids, Volatile/pharmacology , Gastrointestinal Microbiome/drug effects , Starch/pharmacology , Animals , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Mice , Permeability/drug effects , Restraint, Physical , Stress, Psychological/complications , Tight Junction Proteins/drug effects
17.
Int J Biol Macromol ; 175: 294-303, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33571585

ABSTRACT

Microbial infections are considered common and dangerous for humans among other infections; therefore the synthesis of high efficacy antimicrobial and anti-biofilm composites is continuous to fight microbial resistance. In our study, a new and novel tertiary composite (TC) was synthesized, it composed of TEMPO cellulose (TOC), chitosan, starch, and myco-synthesized Se-NPs. Myco-synthesized Se-NPs and TC were fully characterized using UV, FT-IR, XRD, SEM with EDX, particle distribution, and mapping. The antimicrobial and anti-biofilm properties of selenium nanoparticles (Se-NPs) were effectively established for Pseudomonas aeruginosa and Staphylococcus aureus biofilms. The possible impact of myco-synthesized novel cellulose-based selenium nanoparticles tertiary composite on the biofilm formation of P. aeruginosa, S. aureus, and Candida albicans was evaluated in this study. TC exhibited constant biofilm inhibition against P. aeruginosa, S. aureus, and C. albicans, while the results obtained from cytotoxicity of Se-NPs and TC showed that, alteration occurred in the normal cell line of lung fibroblast cells (Wi-38) was shown as loss of their typical cell shape, granulation, loss of monolayer, shrinking or rounding of Wi-38 cell with an IC50 value of where 461 and 550 ppm respectively.


Subject(s)
Cellulose/chemistry , Metal Nanoparticles/chemistry , Selenium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Cellulose/pharmacology , Chitosan/pharmacology , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Selenium/pharmacology , Spectroscopy, Fourier Transform Infrared/methods , Staphylococcus aureus/drug effects , Starch/pharmacology
18.
Mol Nutr Food Res ; 65(8): e2000922, 2021 04.
Article in English | MEDLINE | ID: mdl-33629501

ABSTRACT

SCOPE: The availability of studies related to the effects of natural macronutrients on inflammatory bowel disease (IBD) remain relatively limited. This study investigates whether and to what extent the consumption of five different native starches alleviate the clinical symptoms and dysbiosis of gut microbiota associated with colitis. METHODS AND RESULTS: Using dextran sodium sulfate (DSS)-induced mouse model of colitis, the potential effects of native potato starch (PS), pea starch (PEAS), corn starch (CS), Chinese yam starch (CYS), and red sorghum starch (RSS) on the clinical manifestations and dysbiosis of gut microbiota are studied. Compared to CS and RSS, the consumption of PEAS, PS, and CYS significantly diminishes clinical enteritis symptoms, including reduced disease activity index, and the alleviated degree of colonic histological damage. Furthermore, the analysis of gut microbiota reveals the significant prebiotic characteristics of PEAS, PS and CYS, as indicated by the maintenance of gut microbiota hemostasis and the inhibition of typically pathogenic bacteria, including Escherichia coli and Helicobacter hepaticus. CONCLUSION: Starches from potato, pea, and Chinese yam alleviate colitis symptoms in a mouse model, and also show significant prebiotic characteristics. These findings suggest a cost-effective and convenient dietary strategy for the management of IBD.


Subject(s)
Colitis/diet therapy , Gastrointestinal Microbiome/physiology , Prebiotics , Starch/pharmacology , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Dioscorea/chemistry , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Inflammatory Bowel Diseases/diet therapy , Male , Mice, Inbred C57BL , Pisum sativum/chemistry , Solanum tuberosum/chemistry , Sorghum/chemistry , Tumor Necrosis Factor-alpha/metabolism , Zea mays/chemistry
19.
Food Funct ; 11(11): 9789-9800, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33079126

ABSTRACT

Potato resistant starch (RS) was prepared by microwave-toughening treatment (MTT). This study investigated the beneficial effects of RS on high-fat diet (HFD)-induced hyperlipidemia in C57BL/6J mice by evaluating changes in the gut microbiota. The mice were fed low-fat diet with corn starch, HFD with corn starch, HFD with potato starch (HFP), or HFD with RS (HFR) for 6 weeks. The results showed that the HFR group had lower body weight and total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels compared with the HFP group. Moreover, the brown adipose tissue levels of uncoupling protein 1 (UCP-1), ß3-adrenoceptor (ß3-AR), peroxisome proliferator-activated receptor-γ (PPAR-γ), and PPAR-γ coactivator-1α (PGC-1α) were increased. Our results showed that RS supplementation increased the Bacteroidetes/Firmicutes ratio and the abundance of short-chain fatty acid-producing Allobaculum, Ruminococcus, and Blautia. Our data suggest that RS prepared by MTT may be used as a prebiotic agent to prevent gut dysbiosis and obesity-related chronic diseases, such as hyperlipidemia, and obesity.


Subject(s)
Solanum tuberosum , Starch/pharmacology , Adipose Tissue, Brown/metabolism , Animals , Cooking , Functional Food , Gastrointestinal Microbiome/drug effects , Hyperlipidemias/prevention & control , Male , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , Prebiotics , Specific Pathogen-Free Organisms , Starch/administration & dosage , Starch/metabolism , Uncoupling Protein 1/metabolism
20.
Carbohydr Polym ; 247: 116696, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32829824

ABSTRACT

Antimicrobial starch/gum-based edible emulsion coatings were developed to improve the storage stability of rice cakes by retarding starch retrogradation and inhibiting microbial growth. Rice cakes were coated with mung bean starch (MBS) and guar gum (GG) containing various concentrations of sunflower seed oil (SO). Among these, the (2 g MBS +0.75 g GG +1.5 g SO) / 100 g (optimum) decreased the hardness of rice cakes by 29 % and the crystallization rate (k) by 24 % compared with those of uncoated samples. The moisture loss in uncoated samples was markedly higher than that in the optimum blend-coated samples. Crystallinity analysis revealed the retarding effect of the developed coatings in starch retrogradation. Furthermore, adding 0.8 % (w/w) grapefruit seed extract to the optimum blend led to a distinct antimicrobial activity. Therefore, the newly developed edible coating was effective in maintaining the quality and safety of rice cakes.


Subject(s)
Anti-Infective Agents/chemistry , Emulsions/chemistry , Food Safety/methods , Galactans/chemistry , Mannans/chemistry , Plant Gums/chemistry , Starch/chemistry , Vigna/chemistry , Anti-Infective Agents/pharmacology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Calorimetry, Differential Scanning , Edible Films , Emulsions/pharmacology , Food Preservation/methods , Galactans/pharmacology , Hardness , Kinetics , Mannans/pharmacology , Microscopy, Electron, Scanning , Oryza/chemistry , Oryza/metabolism , Penicillium/drug effects , Penicillium/growth & development , Plant Gums/pharmacology , Seeds/chemistry , Starch/pharmacology , Sunflower Oil/chemistry , Water/analysis , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL