Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Genetics ; 223(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36449523

ABSTRACT

Early-life malnutrition increases adult disease risk in humans, but the causal changes in gene regulation, signaling, and metabolism are unclear. In the roundworm Caenorhabditis elegans, early-life starvation causes well-fed larvae to develop germline tumors and other gonad abnormalities as adults. Furthermore, reduced insulin/IGF signaling during larval development suppresses these starvation-induced abnormalities. How early-life starvation and insulin/IGF signaling affect adult pathology is unknown. We show that early-life starvation has pervasive effects on adult gene expression which are largely reversed by reduced insulin/IGF signaling following recovery from starvation. Early-life starvation increases adult fatty-acid synthetase fasn-1 expression in daf-2 insulin/IGF signaling receptor-dependent fashion, and fasn-1/FASN promotes starvation-induced abnormalities. Lipidomic analysis reveals increased levels of phosphatidylcholine in adults subjected to early-life starvation, and supplementation with unsaturated phosphatidylcholine during development suppresses starvation-induced abnormalities. Genetic analysis of fatty-acid desaturases reveals positive and negative effects of desaturation on development of starvation-induced abnormalities. In particular, the ω3 fatty-acid desaturase fat-1 and the Δ5 fatty-acid desaturase fat-4 inhibit and promote development of abnormalities, respectively. fat-4 is epistatic to fat-1, suggesting that arachidonic acid-containing lipids promote development of starvation-induced abnormalities, and supplementation with ARA enhanced development of abnormalities. This work shows that early-life starvation and insulin/IGF signaling converge on regulation of adult lipid metabolism, affecting stem-cell proliferation and tumor formation.


Subject(s)
Caenorhabditis elegans Proteins , Starvation , Humans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipid Metabolism , Insulin/metabolism , Starvation/genetics
2.
Aging Cell ; 20(4): e13342, 2021 04.
Article in English | MEDLINE | ID: mdl-33724708

ABSTRACT

One of the most fundamental challenges for all living organisms is to sense and respond to alternating nutritional conditions in order to adapt their metabolism and physiology to promote survival and achieve balanced growth. Here, we applied metabolomics and lipidomics to examine temporal regulation of metabolism during starvation in wild-type Caenorhabditis elegans and in animals lacking the transcription factor HLH-30. Our findings show for the first time that starvation alters the abundance of hundreds of metabolites and lipid species in a temporal- and HLH-30-dependent manner. We demonstrate that premature death of hlh-30 animals under starvation can be prevented by supplementation of exogenous fatty acids, and that HLH-30 is required for complete oxidation of long-chain fatty acids. We further show that RNAi-mediated knockdown of the gene encoding carnitine palmitoyl transferase I (cpt-1) only impairs survival of wild-type animals and not of hlh-30 animals. Strikingly, we also find that compromised generation of peroxisomes by prx-5 knockdown renders hlh-30 animals hypersensitive to starvation, which cannot be rescued by supplementation of exogenous fatty acids. Collectively, our observations show that mitochondrial functions are compromised in hlh-30 animals and that hlh-30 animals rewire their metabolism to largely depend on functional peroxisomes during starvation, underlining the importance of metabolic plasticity to maintain survival.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Signal Transduction/genetics , Starvation/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Dietary Supplements , Fatty Acids/administration & dosage , Fatty Acids/metabolism , Gene Knockdown Techniques , Longevity/genetics , Mutation , Oxidation-Reduction , Peroxisomes/metabolism , RNA Interference , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Starvation/genetics
3.
Proc Natl Acad Sci U S A ; 114(9): 2413-2418, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28196880

ABSTRACT

Mammalian reproductive function depends upon a neuroendocrine circuit that evokes the pulsatile release of gonadotropin hormones (luteinizing hormone and follicle-stimulating hormone) from the pituitary. This reproductive circuit is sensitive to metabolic perturbations. When challenged with starvation, insufficient energy reserves attenuate gonadotropin release, leading to infertility. The reproductive neuroendocrine circuit is well established, composed of two populations of kisspeptin-expressing neurons (located in the anteroventral periventricular hypothalamus, Kiss1AVPV, and arcuate hypothalamus, Kiss1ARH), which drive the pulsatile activity of gonadotropin-releasing hormone (GnRH) neurons. The reproductive axis is primarily regulated by gonadal steroid and circadian cues, but the starvation-sensitive input that inhibits this circuit during negative energy balance remains controversial. Agouti-related peptide (AgRP)-expressing neurons are activated during starvation and have been implicated in leptin-associated infertility. To test whether these neurons relay information to the reproductive circuit, we used AgRP-neuron ablation and optogenetics to explore connectivity in acute slice preparations. Stimulation of AgRP fibers revealed direct, inhibitory synaptic connections with Kiss1ARH and Kiss1AVPV neurons. In agreement with this finding, Kiss1ARH neurons received less presynaptic inhibition in the absence of AgRP neurons (neonatal toxin-induced ablation). To determine whether enhancing the activity of AgRP neurons is sufficient to attenuate fertility in vivo, we artificially activated them over a sustained period and monitored fertility. Chemogenetic activation with clozapine N-oxide resulted in delayed estrous cycles and decreased fertility. These findings are consistent with the idea that, during metabolic deficiency, AgRP signaling contributes to infertility by inhibiting Kiss1 neurons.


Subject(s)
Agouti-Related Protein/genetics , Fertility/genetics , Hypothalamus/metabolism , Kisspeptins/genetics , Neurons/metabolism , Starvation/genetics , Agouti-Related Protein/deficiency , Animals , Circadian Clocks/drug effects , Circadian Clocks/physiology , Clozapine/analogs & derivatives , Clozapine/pharmacology , Estrous Cycle/drug effects , Estrous Cycle/physiology , Female , Fertility/drug effects , Gene Expression Regulation , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/drug effects , Kisspeptins/metabolism , Leptin/genetics , Leptin/metabolism , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Male , Mice , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Optogenetics , Reproduction/drug effects , Reproduction/genetics , Signal Transduction , Stereotaxic Techniques
4.
J Clin Invest ; 126(12): 4727-4734, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27906690

ABSTRACT

Leptin is an adipose tissue hormone that functions as an afferent signal in a negative feedback loop that maintains homeostatic control of adipose tissue mass. This endocrine system thus serves a critical evolutionary function by protecting individuals from the risks associated with being too thin (starvation) or too obese (predation and temperature dysregulation). Mutations in leptin or its receptor cause massive obesity in mice and humans, and leptin can effectively treat obesity in leptin-deficient patients. Leptin acts on neurons in the hypothalamus and elsewhere to elicit its effects, and mutations that affect the function of this neural circuit cause Mendelian forms of obesity. Leptin levels fall during starvation and elicit adaptive responses in many other physiologic systems, the net effect of which is to reduce energy expenditure. These effects include cessation of menstruation, insulin resistance, alterations of immune function, and neuroendocrine dysfunction, among others. Some or all of these effects are also seen in patients with constitutively low leptin levels, such as occur in lipodystrophy. Leptin is an approved treatment for generalized lipodystrophy, a condition associated with severe metabolic disease, and has also shown potential for the treatment of other types of diabetes. In addition, leptin restores reproductive capacity and increases bone mineral density in patients with hypothalamic amenorrhea, an infertility syndrome in females. Most obese patients have high endogenous levels of leptin, in some instances as a result of mutations in the neural circuit on which leptin acts, though in most cases, the pathogenesis of leptin resistance is not known. Obese patients with leptin resistance show a variable response to exogenous leptin but may respond to a combination of leptin plus amylin. Overall, the identification of leptin has provided a framework for studying the pathogenesis of obesity in the general population, clarified the nature of the biologic response to starvation, and helped to advance our understanding of the neural mechanisms that control feeding.


Subject(s)
Adipose Tissue , Diabetes Mellitus , Leptin , Lipodystrophy , Obesity , Starvation , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Leptin/genetics , Leptin/metabolism , Leptin/therapeutic use , Lipodystrophy/drug therapy , Lipodystrophy/genetics , Lipodystrophy/metabolism , Lipodystrophy/pathology , Mice , Neurons/metabolism , Neurons/pathology , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Starvation/drug therapy , Starvation/genetics , Starvation/metabolism , Starvation/pathology
5.
Yi Chuan ; 38(9): 821-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27644743

ABSTRACT

Vertebrate feeding behavior is regulated by neuropeptide Y (NPY), GALANIN and GMAP prepropeptide (GAL), agouti related neuropeptide (AGRP) and proopiomelanocortin (POMC) in the hypothalamus. However, there are few studies on the relationship between these neuropeptides and feeding in zebrafish larvae. In the present study, real-time quantitative PCR and in situ hybridization were applied to examine the expression levels of npy, galanin, agrp and pomca in the hypothalamus of zebrafish larvae after starvation and re-feeding. The results showed the expression of agrp and galanin increased significantly after starvation compared to the control group, whilst the expression of pomca decreased significantly compared to control. If the animals were re-fed for two days after starvation, the expression of pomca, agrp and galanin showed no significant difference from the control. Expression of npy did not alter in either condition. These results indicate that starvation increases expression levels of agrp and galanin, and reduces the pomca expression. In addition, these starvation-induced changes can be reversed by re-feeding.


Subject(s)
Feeding Behavior/physiology , Gene Expression/genetics , Hypothalamus/physiology , Larva/genetics , Neuropeptides/genetics , Starvation/genetics , Starvation/physiopathology , Zebrafish/genetics , Animals
6.
Endocrinology ; 157(8): 3253-65, 2016 08.
Article in English | MEDLINE | ID: mdl-27323240

ABSTRACT

Hypothalamic-pituitary-thyroid (HPT) axis activity is important for energy homeostasis, and is modified by stress. Maternal separation (MS) alters the stress response and predisposes to metabolic disturbances in the adult. We therefore studied the effect of MS on adult HPT axis activity. Wistar male and female pups were separated from their mothers 3 h/d during postnatal day (PND)2-PND21 (MS), or left nonhandled (NH). Open field and elevated plus maze tests revealed increased locomotion in MS males and anxiety-like behavior in MS females. At PND90, MS females had increased body weight gain, Trh expression in the hypothalamic paraventricular nucleus, and white adipose tissue mass. MS males had increased expression of TRH-degrading enzyme in tanycytes, reduced TSH and T3, and enhanced corticosterone serum concentrations. MS stimulated brown adipose tissue deiodinase 2 activity in either sex. Forty-eight hours of fasting (PND60) augmented serum corticosterone levels similarly in MS or NH females but more in MS than in NH male rats. MS reduced the fasting-induced drop in hypothalamic paraventricular nucleus-Trh expression of males but not of females and abolished the fasting-induced increase in Trh expression in both sexes. Fasting reduced serum concentrations of TSH, T4, and T3, less in MS than in NH males, whereas in females, TSH decreased in MS but not in NH rats, but T4 and T3 decreased similarly in NH and MS rats. In conclusion, MS produced long-term changes in the activity of the HPT axis that were sex specific; response to fasting was partially blunted in males, which could affect their adaptive response to negative energy balance.


Subject(s)
Aminopeptidases/genetics , Hypothalamus/metabolism , Maternal Deprivation , Pyrrolidonecarboxylic Acid/analogs & derivatives , Starvation/physiopathology , Thyroid Gland/physiology , Thyrotropin-Releasing Hormone/genetics , Aminopeptidases/metabolism , Animals , Animals, Newborn , Female , Male , Pyrrolidonecarboxylic Acid/metabolism , Rats , Rats, Wistar , Sex Characteristics , Starvation/genetics , Starvation/metabolism , Thyrotropin-Releasing Hormone/metabolism
7.
J Mol Endocrinol ; 55(2): 95-106, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26162607

ABSTRACT

Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhß) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshß), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.


Subject(s)
Bass/genetics , Energy Metabolism/genetics , Fish Proteins/genetics , Neuropeptide Y/genetics , Neuropeptides/genetics , Amino Acid Sequence , Animals , Appetite/genetics , Base Sequence , Cloning, Molecular , Eating/genetics , Follicle Stimulating Hormone, beta Subunit/biosynthesis , Hypothalamus/cytology , Hypothalamus/metabolism , In Situ Hybridization , Luteinizing Hormone, beta Subunit/genetics , Molecular Sequence Data , Neuropeptide Y/biosynthesis , Neuropeptides/biosynthesis , Orexins/biosynthesis , Pituitary Gland/metabolism , Prolactin/biosynthesis , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sequence Analysis, DNA , Starvation/genetics
8.
Mol Endocrinol ; 29(9): 1303-19, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26168034

ABSTRACT

Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.


Subject(s)
Acid Anhydride Hydrolases/genetics , Insulin/metabolism , Obesity/genetics , Pyrophosphatases/genetics , Starvation/genetics , Acid Anhydride Hydrolases/biosynthesis , Acid Anhydride Hydrolases/metabolism , Amygdala/metabolism , Animals , Cell Line, Tumor , Drosophila , Drosophila Proteins/biosynthesis , Gene Knockdown Techniques , HCT116 Cells , HeLa Cells , Humans , Hyperinsulinism/genetics , Hyperphagia/genetics , Hypothalamus/metabolism , Insect Hormones/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Oligopeptides/biosynthesis , Pyrrolidonecarboxylic Acid/analogs & derivatives , RNA, Messenger/biosynthesis , Signal Transduction/genetics , Somatomedins/biosynthesis , Trehalose/blood
9.
J Biol Chem ; 289(32): 21909-25, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24891504

ABSTRACT

Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure, and in aging. In fact, excessive proteolysis causes cachexia, accelerates disease progression, and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes, and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, whereas transcriptional control of the atrophy-related genes peaks at 3 days, changes of miRNA expression maximized at 7 days after denervation. Among the different miRNAs, microRNA-206 and -21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for fine-tuning the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.


Subject(s)
MicroRNAs/genetics , Muscular Atrophy/etiology , Muscular Atrophy/genetics , 3' Untranslated Regions , Animals , Base Sequence , Cachexia/genetics , Cachexia/metabolism , Disease Models, Animal , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Profiling , Male , Mice , Mice, Inbred BALB C , MicroRNAs/metabolism , Molecular Sequence Data , Muscle Denervation , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Starvation/genetics , Starvation/metabolism , Time Factors , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
10.
J Integr Bioinform ; 11(1): 235, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24675236

ABSTRACT

Our understanding of complex biological processes can be enhanced by combining different kinds of high-throughput experimental data, but the use of incompatible identifiers makes data integration a challenge. We aimed to improve methods for integrating and visualizing different types of omics data. To validate these methods, we applied them to two previous studies on starvation in mice, one using proteomics and the other using transcriptomics technology. We extended the PathVisio software with new plugins to link proteins, transcripts and pathways. A low overall correlation between proteome and transcriptome data was detected (Spearman rank correlation: 0.21). At the level of individual genes, correlation was highly variable. Many mRNA/protein pairs, such as fructose biphosphate aldolase B and ATP Synthase, show good correlation. For other pairs, such as ferritin and elongation factor 2, an interesting effect is observed, where mRNA and protein levels change in opposite directions, suggesting they are not primarily regulated at the transcriptional level. We used pathway diagrams to visualize the integrated datasets and found it encouraging that transcriptomics and proteomics data supported each other at the pathway level. Visualization of the integrated dataset on pathways led to new observations on gene-regulation in the response of the gut to starvation. Our methods are generic and can be applied to any multi-omics study. The PathVisio software can be obtained at http://www.pathvisio.org. Supplemental data are available at http://www.bigcat.unimaas.nl/data/jib-supplemental/ , including instructions on reproducing the pathway visualizations of this manuscript.


Subject(s)
Genomics/methods , Intestinal Mucosa/metabolism , Starvation/genetics , Starvation/metabolism , Amino Acids/metabolism , Animals , Intestines/pathology , Male , Metabolic Networks and Pathways , Mice , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Gene Expr ; 14(5): 279-89, 2009.
Article in English | MEDLINE | ID: mdl-19630271

ABSTRACT

The expression of five genes involved in nitrogen assimilation in cyanobacteria, namely glnA, glsF, icd, ntcA, and glnB, encoding three key enzymes from that pathway (glutamine synthetase, glutamate synthase, isocitrate dehydrogenase) and two regulatory proteins (NtcA and PII), was studied in this work. Their changes under different conditions were analyzed by quantitative real-time RT-PCR. Nutrient limitation induced clear modifications on the expression of most studied genes: lack of nitrogen provoked an initial increase, followed by a marked decrease; in the cases of phosphorus and iron starvation, a general, stronger expression decrease was observed, particularly striking in the case of iron. Darkness and addition of the photosynthethic inhibitors DCMU and DBMIB also had a strong effect on gene expression. Methionine sulfoximine and azaserine, inhibitors of glutamine synthetase and glutamate synthase, respectively, provoked a sharp increase in icd expression. These results, together with previous studies, suggest that 2-oxoglutarate could be the molecule utilized by Prochlorococcus to sense the C/N balance. Besides, our results confirm the different regulation of nitrogen assimilation in Prochlorococcus with regard to other cyanobacteria.


Subject(s)
Carbon/metabolism , Genes, Bacterial , Nitrogen/metabolism , Prochlorococcus/genetics , Electron Transport/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/physiology , Iron/metabolism , Iron Deficiencies , Light , Metabolic Networks and Pathways/genetics , Phosphorus/deficiency , Phosphorus/metabolism , Photosynthesis/genetics , Prochlorococcus/metabolism , Quorum Sensing/genetics , Species Specificity , Starvation/genetics , Starvation/metabolism
12.
Int J Biochem Cell Biol ; 40(9): 1775-91, 2008.
Article in English | MEDLINE | ID: mdl-18289917

ABSTRACT

The peroxisome proliferator-activated receptor alpha (PPARalpha) has been known to play a pivotal role in maintaining the energy balance during fasting; however, the battery of PPARalpha target genes involved in this metabolic response is still not fully characterized. Here, we report the identification and characterization of Ppsig (for PPARalpha-regulated and starvation-induced gene) with unknown biological function from mouse liver. Multiple Ppsig cDNAs which differed in the 3'-untranslated regions were identified. The open reading frame of Ppsig cDNA is 1830 bp which encodes a protein of 67.33 kDa. Ppsig contains 11 exons spanning at least 10 kb. Although the exact biological function of Ppsig is still not known, we found that Ppsig mRNA transcript was dramatically up-regulated during 72 h fasting and following treatment with a potent PPARalpha agonist, in a tissue-specific and PPARalpha-dependent manner. A functional peroxisome proliferator-response element was found in the intron 1 of Ppsig, thus confirming that Ppsig is a novel direct mouse PPARalpha target gene. This finding might help in elucidating the transcriptional regulatory mechanism of Ppsig in the cellular response to fasting.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , PPAR alpha/metabolism , Starvation/genetics , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/genetics , Fasting/metabolism , Genomics , Humans , Introns/genetics , Lipid Metabolism , Male , Mice , Mice, Knockout , Molecular Sequence Data , Oxidoreductases Acting on CH-CH Group Donors/biosynthesis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Up-Regulation
13.
DNA Cell Biol ; 26(6): 415-24, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17570765

ABSTRACT

The cDNA and genomic DNA of zebrafish (Danio rerio) protein kinase Cmu (PKCmu), with its promoter region, were obtained. The 508-amino acid zebrafish PKCmu has 86.17% similarity to human PKCmu. Real-time reverse-transcription polymerase chain reaction analysis with starvation and hormonal treatment found significant differences between the control group and the experimental group after 14 days of starvation. After injecting insulin-like growth factor II (IGF-II), growth hormone (GH), insulin, or human chorionic gonadotropin, significant differences were observed between the control and experimental groups 24 h after treatment. After injecting the gonadotropin-releasing hormone or luteotropin-releasing hormone, significant differences were seen between the control and experimental groups 15 h after treatment. These results suggest that in vivo PKCmu expression is regulated by the insulin family or by the GH, but other sex hormones produced a significant expression level more quickly than the insulin family and GH. The zebrafish PKCmu gene is located on zebrafish chromosome 17 and consists of 16 exons. A 2.6 kilobase pair on the 5' flanking region displayed maximal promoter activity in the zebrafish liver (ZFL) cell line after treatment with IGF-I, IGF-II, and GH. However, a 1.6 kilobase pair on the 5' flanking region displayed maximal promoter activity in the HeLa cell line after treatment with IGF-I, IGF-II, and GH. Finally, PKCmu may have important nuclear effects on cell growth and may involve nuclear localization. By transiently transfecting ZFL cells with various zebrafish PKCmu segments, we identified a nuclear localization signal: the amino acid sequence between amino acids 206 and 209 was able to predominantly direct enhanced green fluorescence protein (EGFP) into the nucleus, whereas a deletion of this motif abrogated the nuclear localization property.


Subject(s)
Protein Kinase C/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , 5' Untranslated Regions , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA Primers/genetics , DNA, Complementary/genetics , Gene Expression Regulation, Enzymologic/drug effects , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hormones/pharmacology , Humans , Molecular Sequence Data , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Promoter Regions, Genetic , Protein Kinase C/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Starvation/enzymology , Starvation/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry
14.
Neuroendocrinology ; 79(2): 100-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15004432

ABSTRACT

In this study, we examined (i) the preprandial, postprandial and starvation-induced changes in the preproghrelin mRNA expression and serum ghrelin levels, and (ii) the effects of intracerebroventricular and intraperitoneal administration of ghrelin on food intake in goldfish. Slot blot analysis revealed a significant postprandial decrease in preproghrelin mRNA expression in the hypothalamus (1 and 3 h after feeding) and gut (3 h after feeding). A similar postprandial decrease (1 and 3 h after feeding) in serum ghrelin levels was also detected. In the fish that were unfed at the regular feeding time, the hypothalamic preproghrelin mRNA expression and the serum ghrelin levels remained unchanged, while the preproghrelin mRNA expression in the gut decreased 3 h after the regular feeding time. Starvation increased preproghrelin mRNA expression in the hypothalamus and gut on the 7th day. Serum ghrelin levels were significantly elevated on days 3 and 5 of starvation. Intracerebroventricular injections of n-octanoylated ghrelin-like peptides (gGRL([1-12])) (10 ng/g body weight) and human ghrelin (1 and 10 ng/g body weight) and intraperitoneal injections of n-octanoylated gGRL([1-12]) (10 ng/g body weight), gGRL([1-19]) (100 ng/g body weight) and human ghrelin (10 and 100 ng/g body weight) stimulated food intake in goldfish. The patterns of synthesis, secretion and actions indicate that ghrelin is an orexigen in goldfish.


Subject(s)
Appetite/physiology , Digestive System/metabolism , Feeding Behavior/physiology , Goldfish/physiology , Hypothalamus/metabolism , Peptide Hormones/physiology , Animals , Eating/physiology , Female , Ghrelin , Growth Hormone/physiology , Male , Peptide Hormones/genetics , Peptide Hormones/metabolism , Postprandial Period , Protein Precursors/genetics , Protein Precursors/metabolism , RNA, Messenger/analysis , Starvation/genetics , Starvation/metabolism
15.
Article in English | MEDLINE | ID: mdl-12381384

ABSTRACT

The calpain system is a family of calcium activated proteases that degrade myofibrillar protein. Male broiler chickens (Ross) were provided a standard starter diet top-dressed with Oasis((R)) nutritional supplement (fed; Novus International, St. Louis, MO, USA), or they were not provided any feed (starved) for the first 3 days posthatch. Subsequently, the standard starter diet was provided to all chickens between 3 and 7 days posthatch. RNA was extracted from the Pectoralis thoracicus, and skeletal muscle-specific n-calpain-1 (p94) calpain, mu-calpain, and m-calpain expression was evaluated using quantitative Northern analysis. Early posthatch starvation did not (P>0.05) affect calpain mRNA levels on each day examined. Similarly, there were no (P>0.05) changes in mu-calpain or m-calpain mRNA levels between 0 and 7 days posthatch in fed birds. However, p94 calpain mRNA levels were significantly (P<0.05) lower at 7 days posthatch compared to 0 or 2 days posthatch. Therefore, in the early posthatch chicken, it appears that the calpain system may not be affected by the presence of oral nutrition, and that there is an age-related downregulation of p94 calpain mRNA expression.


Subject(s)
Calpain/genetics , RNA, Messenger/analysis , Starvation/genetics , Age Factors , Animals , Animals, Newborn , Blotting, Northern , Chickens , Down-Regulation , Food Deprivation , Male , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism
16.
Hum Mol Genet ; 11(8): 945-59, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11971876

ABSTRACT

HAP-1 is a huntingtin-associated protein that is enriched in the brain. To gain insight into the normal physiological role of HAP-1, mice were generated with homozygous disruption at the Hap1 locus. Loss of HAP-1 expression did not alter the gross brain expression levels of its interacting partners, huntingtin and p150glued. Newborn Hap1(-/-) animals are observed at the expected Mendelian frequency suggesting a non-essential role of HAP-1 during embryogenesis. Postnatally, Hap1(-/-) pups show decreased feeding behavior that ultimately leads to malnutrition, dehydration and premature death. Seventy percent of Hap1(-/-) pups fail to survive past the second postnatal day (P2) and 100% of Hap1(-/-) pups fail to survive past P9. From P2 until death, Hap1(-/-) pups show markedly decreased amounts of ingested milk. Hap1(-/-) pups that survive to P8 show signs of starvation including greatly decreased serum leptin levels, decreased brain weight and atrophy of the brain cortical mantel. HAP-1 is particularly enriched in the hypothalamus, which is well documented to regulate feeding behavior. Our results demonstrate that HAP-1 plays an essential role in regulating postnatal feeding.


Subject(s)
Eating/physiology , Nerve Tissue Proteins/physiology , Animal Nutritional Physiological Phenomena , Animals , Animals, Suckling , Body Constitution , Dynactin Complex , Eating/genetics , Homozygote , Huntingtin Protein , Hypothalamus/embryology , Hypothalamus/metabolism , Leptin/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mutagenesis, Site-Directed , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Nuclear Proteins/metabolism , Starvation/genetics , Starvation/metabolism
17.
Biochim Biophys Acta ; 1444(2): 153-65, 1999 Feb 16.
Article in English | MEDLINE | ID: mdl-10023046

ABSTRACT

A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.


Subject(s)
DNA, Complementary/biosynthesis , Liver/enzymology , Perciformes/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA, Complementary/isolation & purification , Eating/genetics , Gene Expression Regulation , Molecular Sequence Data , Phosphofructokinase-2 , Phosphoric Monoester Hydrolases/analysis , Phosphotransferases (Alcohol Group Acceptor)/analysis , RNA, Messenger/biosynthesis , RNA, Messenger/isolation & purification , Sequence Alignment , Starvation/enzymology , Starvation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL