Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 530
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 92, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532439

ABSTRACT

BACKGROUND: Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS: Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRß (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRß positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRß positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS: We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRß recognition. Importantly, by targeting EGFR+ tumor/PDGFRß+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS: Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.


Subject(s)
Aptamers, Nucleotide , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Stromal Cells/metabolism , Triple Negative Breast Neoplasms/metabolism , Phototherapy , ErbB Receptors/metabolism , Organoids/metabolism , Tumor Microenvironment
2.
J Ethnopharmacol ; 325: 117859, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38316218

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Endometriosis (EMs) is characterized by inflammatory lesions, dysmenorrhea, infertility, and chronic pelvic pain. Single-target medications often fail to provide systemic therapeutic results owing to the complex mechanism underlying endometriosis. Although traditional Chinese medicines-such as Juan-Tong-Yin (JTY)-have shown promising results, their mechanisms of action remain largely unknown. AIM OF THE STUDY: To elucidate the therapeutic mechanism of JTY in EMs, focusing on endoplasmic reticulum (ER) stress-induced autophagy. MATERIALS AND METHODS: The major components of JTY were detected using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The potential mechanism of JTY in EMs treatment was predicted using network pharmacological analysis. Finally, the pathogenesis of EMs was validated in a clinical case-control study and the molecular mechanism of JTY was validated in vitro using endometrial stromal cells (ESCs). RESULTS: In total, 241 compounds were analyzed and identified from JTY using UPLC-MS. Network pharmacology revealed 288 targets between the JTY components and EMs. Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses indicated that regulating autophagy, migration, apoptosis, and inflammation were the key mechanisms of JTY in treating EMs. Meanwhile, we found that protein kinase R-like endoplasmic reticulum kinase (PERK), Beclin-1, and microtubule-associated protein light chain 3 B (LC3B) expressions were lower in endometria of patients with EMs than in those with normal eutopic endometria (p < 0.05). Additionally, during in vitro experiments, treatment with 20% JTY-containing serum significantly suppressed ESC proliferation, achieving optimal effects after 48 h. Electron microscopy revealed significantly increased autophagy flux in the JTY group compared with the control group. Moreover, JTY treatment significantly reduced the migratory and invasive abilities of ESCs and upregulated protein expression of PERK, eukaryotic initiation factor 2α (eIF2α)/phospho-eukaryotic initiation factor 2α (p-eIF2α), activating Transcription Factor-4 (ATF4), Beclin-1, and LC3BII/I, while subsequently downregulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin 18 (IL-18) expression. However, administration of GSK2656157-a highly selective PERK inhibitor-reversed these changes. CONCLUSION: JTY ameliorates EMs by activating PERK associated with unfolded protein reaction, enhancing cell ER stress and autophagy, improving the inflammatory microenvironment, and decreasing the migration and invasion of ESCs.


Subject(s)
Endometriosis , Signal Transduction , Female , Humans , Beclin-1/metabolism , Endometriosis/pathology , Case-Control Studies , Chromatography, Liquid , Tandem Mass Spectrometry , Endoplasmic Reticulum Stress , Autophagy , Apoptosis , Stromal Cells/metabolism , Stromal Cells/pathology , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/pharmacology
3.
BMC Complement Med Ther ; 23(1): 427, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012607

ABSTRACT

BACKGROUND: Endometriosis is a common and complex syndrome characterized by the presence of endometrial-like tissue outside the uterus. Chinese medicine has been recently found to show good efficacy in treating endometriosis. Our previous results revealed that Maqian fruit essential oil (MQEO) could inhibit the proliferation and induce apoptosis of ectopic endometrial stromal cells (EESCs), but the mechanisms remain unclear. In this study, we aim to explore the molecular mechanism of MQEO's specific effects in EESCs. METHODS: We conducted a quantitative proteomics analysis by iTRAQ on EESCs treated with MQEO or DMSO. Then deep analysis was performed based on differentially expressed proteins, including Gene Ontology enrichment analysis, pathway enrichment analysis and protein interaction analysis. Candidate protein targets were subsequently verified by western blotting. RESULTS: Among 6575 identified proteins, 435 proteins exhibited altered expression levels in MQEO-treated EESCs. Of these proteins, most were distributed in signal transduction as well as immune system and the most significantly altered pathway was complement and coagulation cascades. Moreover, two differentially expressed proteins (Heme oxygenase 1 and Acyl-CoA 6-desaturase) were verified and they can be potential biomarkers for endometriosis treatment. CONCLUSIONS: Our proteomic analysis revealed distinct protein expression patterns induced by MQEO treatment in EESCs, highlighting the potential of MQEO for endometriosis treatment and biomarker discovery.


Subject(s)
Endometriosis , Oils, Volatile , Female , Humans , Endometriosis/drug therapy , Endometriosis/genetics , Endometriosis/metabolism , Proteomics , Oils, Volatile/pharmacology , Stromal Cells/metabolism , Epithelial Cells
4.
Exp Eye Res ; 236: 109642, 2023 11.
Article in English | MEDLINE | ID: mdl-37714423

ABSTRACT

Keratoconus (KC) is a corneal thinning disorder and a leading cause of corneal transplantation worldwide. Exosomes are small, secreted extracellular vesicles (30-150 nm) that mediate cellular communication via their protein, lipid, and nucleic acid content. We aimed to characterize the exosomes secreted by primary corneal fibroblasts from subjects with or without KC. Using human keratoconus stromal fibroblast cells (HKC, n = 4) and healthy stromal fibroblasts (HCF, n = 4), we collected and isolated exosomes using serial ultracentrifugation. Using nanoparticle tracking analysis (NTA) with ZetaView®, we compared the size and concentration of isolated exosomes. Different exosomal markers were identified and quantified using a transmission electron microscope (TEM) (CD81) and Western blot (CD9 and CD63). Exosomal miRNA profiles were determined by qRT-PCR using Exiqon Human panel I miRNA assays of 368 pre-selected miRNAs. Proteomic profiles were determined using a label-free spectral counting method with mass spectrometry. Differential expression analysis for miRNAs and proteins was done using student's t-test with a significance cutoff of p-value ≤0.05. We successfully characterized exosomes isolated from HCFs using several complementary techniques. We found no significant differences in the size, quantity, or morphology between exosomes secreted by HCFs with or without KC. Expression of CD81 was confirmed by immuno-EM, and expression of CD63 and CD9 with western blots in all exosome samples. We detected the expression of 72-144 miRNAs (threshold cycle Ct < 36) in all exosome samples. In HKC-derived exosome samples, miR-328-3p, miR-532-5p, miR-345-5p, and miR-424-5p showed unique expression, while let-7c-5p and miR-665 have increased expression. Protein profiling identified 157 proteins in at least half of the exosome samples, with 38 known exosomal proteins. We identified 12 up- and 2 down-regulated proteins in HKC-derived exosomes. The proteins are involved in membrane-bounded vesicles, cytoskeletal, calcium binding, and nucleotide binding. These proteins are predicted to be regulated by NRF2, miR-205, and TGF-ß1, which are involved in KC pathogenesis. We successfully characterized the HKC-derived exosomes and profiled their miRNA and protein contents, suggesting their potential role in KC development. Further studies are necessary to determine if and how these exosomes with differential protein/miRNA profiles contribute to the pathogenesis of KC.


Subject(s)
Exosomes , Keratoconus , MicroRNAs , Humans , Keratoconus/genetics , Keratoconus/metabolism , Exosomes/genetics , Exosomes/metabolism , Proteomics , MicroRNAs/genetics , MicroRNAs/metabolism , Stromal Cells/metabolism
5.
Biol Reprod ; 109(3): 299-308, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37334936

ABSTRACT

Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.


Subject(s)
Decidua , Melatonin , Female , Humans , Pregnancy , Decidua/metabolism , Endometrium/metabolism , Forkhead Box Protein O1/metabolism , Glutathione/metabolism , Melatonin/pharmacology , Melatonin/metabolism , NF-E2-Related Factor 2/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Stromal Cells/metabolism
6.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37240143

ABSTRACT

Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.


Subject(s)
Antioxidants , Endometrium , Female , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Endometrium/metabolism , Embryo Implantation/physiology , Trophoblasts/metabolism , Dietary Supplements , Stromal Cells/metabolism , Decidua , Cells, Cultured
7.
Eur Rev Med Pharmacol Sci ; 27(8): 3351-3362, 2023 04.
Article in English | MEDLINE | ID: mdl-37140285

ABSTRACT

OBJECTIVE: Animal studies and clinical trials demonstrated the effectiveness of a combination of transplanted bone marrow stromal cells (BMSC) and electroacupuncture (EA) treatment in improving neurological deficits. However, the ability of the BMSC-EA treatment to enhance brain repair processes or the neuronal plasticity of BMSC in ischemic stroke model is unclear. The purpose of this study was to investigate the neuroprotective effects and neuronal plasticity of BMSC transplantation combined with EA in ischemic stroke. MATERIALS AND METHODS: A male Sprague-Dawley (SD) rat middle cerebral artery occlusion (MCAO) model was used. Intracerebral transplantation of BMSC, transfected with lentiviral vectors expressing green fluorescent protein (GFP), was performed using a stereotactic apparatus after modeling. MCAO rats were treated with BMSC injection alone or in combination with EA. After the treatment, proliferation and migration of BMSC were observed in different groups by fluorescence microscopy. Quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemistry were performed to examine changes in the levels of neuron-specific enolase (NSE) and nestin in the injured striatum. RESULTS: Epifluorescence microscopy revealed that most BMSC in the cerebrum were lysed; few transplanted BMSC survived, and some living cells migrated to areas around the lesion site. NSE was overexpressed in the striatum of MCAO rats, illustrating the neurological deficits caused by cerebral ischemia-reperfusion. The combination of BMSC transplantation and EA attenuated the expression of NSE, indicating nerve injury repair. Although the qRT-PCR results showed that BMSC-EA treatment elevated nestin RNA expression, less robust responses were observed in other tests. CONCLUSIONS: Our results show that the combination treatment significantly improved restoration of neurological deficits in the animal stroke model. However, further studies are required to see if EA could promote the rapid differentiation of BMSC into neural stem cells in the short term.


Subject(s)
Brain Ischemia , Electroacupuncture , Ischemic Stroke , Mesenchymal Stem Cells , Stroke , Rats , Male , Animals , Rats, Sprague-Dawley , Ischemic Stroke/metabolism , Nestin/metabolism , Brain Ischemia/metabolism , Stroke/metabolism , Mesenchymal Stem Cells/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/metabolism , Bone Marrow Cells , Stromal Cells/metabolism , Bone Marrow Transplantation/methods
8.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175543

ABSTRACT

Iron is necessary for various critical biological processes, but iron overload is also dangerous since labile iron is redox-active and toxic. We found that low serum iron and decidual local iron deposition existed simultaneously in recurrent pregnancy loss (RPL) patients. Mice fed with a low-iron diet (LID) also showed iron deposition in the decidua and adverse pregnancy outcomes. Decreased ferroportin (cellular iron exporter) expression that inhibited the iron export from decidual stromal cells (DSCs) might be the reason for local iron deposition in DSCs from low-serum-iron RPL patients and LID-fed mice. Iron supplementation reduced iron deposition in the decidua of spontaneous abortion models and improved pregnancy outcomes. Local iron overload caused ferroptosis of DSCs by downregulating glutathione (GSH) and glutathione peroxidase 4 levels. Both GSH and cystine (for the synthesis of GSH) supplementation reduced iron-induced lipid reactive oxygen species (ROS) and cell death in DSCs. Ferroptosis inhibitor, cysteine, and GSH supplementation all effectively attenuated DSC ferroptosis and reversed embryo loss in the spontaneous abortion model and LPS-induced abortion model, making ferroptosis mitigation a potential therapeutic target for RPL patients. Further study that improves our understanding of low-serum-iron-induced DSC ferroptosis is needed to inform further clinical evaluations of the safety and efficacy of iron supplementation in women during pregnancy.


Subject(s)
Abortion, Habitual , Ferroptosis , Iron Overload , Pregnancy , Humans , Female , Animals , Mice , Iron/metabolism , Ferroptosis/physiology , Abortion, Habitual/metabolism , Stromal Cells/metabolism , Iron Overload/metabolism
9.
Altern Ther Health Med ; 29(2): 42-49, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36239569

ABSTRACT

Context: Endometriosis refers to the appearance of ectopic endometrioid tissue outside the uterus. Low PCDH10 expression has been associated with enhancer of zeste homolog 2 (EZH2), which catalyzes histone 3 (H3K27me3). H3K27me3 is an epigenetic marker associated with endometriosis. Objective: The study intended to explore the influence of protocadherin 10 (PCDH10) on the invasion and migration of endometrial stromal cells in endometriosis as well as its mechanism. Design: The research team designed a laboratory study using endometrial tissue. Setting: The study took place in Department of Obstetrics and Gynecology at South University of Science and Technology Hospital in Shenzhen, Guangdong Province, China. Participants: Participants were 10 patients with ovarian endometriosis (ovarian chocolate cysts) who were undergoing surgical treatment at the hospital between January and December 2019. The endometrial tissue of those participants became the endometriosis group. Other participants with normal endometrial tissue became the controls (n=10). Outcome Measures: The research team collected tissues from participants and used immunofluorescence, real-time quantitative polymerase chain reaction (qPCR), and Western blot assay to determine the expression levels of PCDH10, enhancer of zeste homolog 2 (EZH2), and histone H3 (H3K27me3). The team cultured endometrial stromal cells from participants primarily to detect the effects of silencing EZH2 on PCDH10 and H3K27me3 expression. The team used a Transwell assay and scratch test to examine the influence of silencing EZH2 on invasion and migration of endometrial stromal cells and applied chromatin immunoprecipitation to determine H3K27me3 enrichment in the PCDH10 gene promoter region. Results: PCDH10 in heterotopic endometrial tissues of endometriosis patients had low expression, while EZH2 and H3K27me3 were highly expressed. Silencing EZH2 inhibited EZH2 protein expression, increased PCDH10 expression, and inhibited invasion and migration of endometrial stromal cells by increasing PCDH10 expression. Silencing EZH2 also reduced H3K27me3 enrichment in PCDH10 promoter region. Conclusions: Low PCDH10 expression may be associated with high EZH2 expression and H3K27me3 enrichment in endometriosis patients, which promotes the migration and invasion of endometrial stromal cells. This connection provides a theoretical basis for the treatment of endometriosis.


Subject(s)
Endometriosis , Enhancer of Zeste Homolog 2 Protein , Female , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Methylation , Endometriosis/genetics , Endometriosis/metabolism , Stromal Cells/metabolism , Protocadherins
10.
J Anat ; 242(2): 277-288, 2023 02.
Article in English | MEDLINE | ID: mdl-36056547

ABSTRACT

Mesenchymal stromal cells-based regenerative orthopedic therapies have been used in cats as a promising and innovative therapeutic approach to enhance the repair of bone defects. Adipose tissue-derived stromal cells (ADSCs) can be obtained from two main sites-subcutaneous and visceral-with established differences regarding structure, composition, cell content, and functionality. However, in cats, to the best of the authors' knowledge, no studies have been conducted to compare the functional activity of the ADSCs isolated from the two sites, and the impact of these differences on the induced osteogenic potential. Additionally, retinoic acid has been recently regarded as a new osteogenic inducer within cells of distinct species, with undisclosed functionality on cat-derived cell populations. Thus, the present study aimed to evaluate the functional activity of ADSCs isolated from the subcutaneous and visceral adipose sites (SCAT and VAT, respectively) of the cat, as well as the effects of two osteogenic-inducing conditions-the classic dexamethasone, ß-glycerophosphate and ascorbic acid-supplemented media (Dex + ß + AAM), and Retinoic Acid-supplemented media (RAM). The adipose tissue of subcutaneous and visceral origin was isolated, characterized, and ADSCs were isolated and grown in the presence of the two osteogenic-inducing conditions, and characterized in terms of proliferation, metabolic activity, morphology, and osteogenic activity. Our results demonstrated a distinct biological profile of the two adipose tissue sites regarding cell size, vascularization, and morphology. Further, osteogenic-induced ADSCs from both sites presented an increased expression of alkaline phosphatase activity (ALP) and cytochemical staining, as compared with control. Overall, RAM induced higher levels of ALP activity than Dex + ß + AAM, supporting an increased osteogenic activation. Additionally, VAT was the tissue with the best osteogenic potential, showing higher levels of ALP expression, particularly with RAM. In conclusion, different characteristics were found between the two adipose tissue sites-SCAT and VAT, which probably reflect the differences found in the functionality of isolated ADSCs from both tissues. Furthermore, for cat, VAT shows a greater osteogenic-inductive capacity than SCAT, particularly with RAM, which can be of therapeutic relevance for regenerative medicine applications.


Subject(s)
Adipose Tissue , Osteogenesis , Cats , Animals , Osteogenesis/physiology , Cells, Cultured , Cell Differentiation , Stromal Cells
11.
Nutrients ; 14(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36500973

ABSTRACT

Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on human prostate smooth muscle contractions and stromal cell growth, which are driving factors of voiding symptoms in BPH. Smooth muscle contractions were induced in prostate tissues from radical prostatectomy. Growth-related functions were studied in cultured stromal cells (WPMY-1). Neurogenic, α1-adrenergic and non-adrenergic contractions were strongly inhibited with 50 µM and by around 50% with 10 µM genistein. Daidzein inhibited neurogenic contractions using 10 and 100 µM. Agonist-induced contractions were inhibited by 100 µM but not 10 µM daidzein. A combination of 6 µM genistein with 5 µM daidzein still inhibited neurogenic and agonist-induced contractions. Proliferation of WPMY-1 cells was inhibited by genistein (>50%) and daidzein (<50%). Genistein induced apoptosis and cell death (by seven-fold relative to controls), while daidzein induced cell death (6.4-fold) without apoptosis. Viability was reduced by genistein (maximum: 87%) and daidzein (62%). In conclusion, soy isoflavones exert sustained effects on prostate smooth muscle contractions and stromal cell growth, which may explain the inverse relationships between soy-rich nutrition, BPH and voiding symptoms.


Subject(s)
Isoflavones , Prostatic Hyperplasia , Male , Humans , Prostate/metabolism , Genistein/pharmacology , Adrenergic Agents/metabolism , Adrenergic Agents/pharmacology , Muscle, Smooth , Muscle Contraction , Prostatic Hyperplasia/metabolism , Stromal Cells , Isoflavones/pharmacology , Isoflavones/metabolism
12.
Mol Biol Rep ; 49(12): 11913-11924, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36243792

ABSTRACT

BACKGROUND: Aloe polysaccharide (AP) is a type of an active macromolecule of Aloe vera, which contributes to its function. However, whether AP possesses anti-osteoporosis properties is unknown. METHODS: Adipose-derived stromal cells were treated with different concentrations of AP. Early and late osteogenesis were, respectively, evaluated by ALP and Alizarin Red S staining. The effect of AP on the processes of adipogenesis inhibition in ADSCs was analyzed by oil red O staining. Western blot was used to assess the expression of osteogenic and adipogenic related factors. Then, Noggin was administered to further confirm the mechanism by which AP promotes the osteogenesis of ADSCs. Finally, 40 female SD rats were classified into a bilateral laparotomy group (Sham group) and three bilateral ovariectomy groups: OVX group, OVX + AP group, and OVX + AP + Noggin group. The bilateral rat femurs were collected to perform micro-CT scanning, HE, Masson trichrome, and Oil red O staining. RESULTS: The results indicated that AP could increase ALP expression and calcium deposition. Through molecular mechanisms, AP promotes the protein expression of COL1A1, OPN, and ALP in ADSCs, but downregulates the expression of PPARγ. Also, AP directs ADSCs' fate by stimulating the BMP2/Smads signaling pathway. In vivo, the rat AP-treated had more trabecular bone than the OVX rat, indicating partial protection from cancellous bone loss after treatment with AP. CONCLUSION: Our results show that AP may promote osteogenesis of ADSCs through BMP-2/Smads signaling pathway and inhibits lipogenic differentiation. Thus, AP might be a promising alternative medicine to treat postmenopausal osteoporosis.


Subject(s)
Aloe , Osteoporosis , Female , Rats , Animals , Osteogenesis , Rats, Sprague-Dawley , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Cell Differentiation , Stromal Cells/metabolism , Polysaccharides/pharmacology , Cells, Cultured
13.
Life Sci ; 308: 120931, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36084760

ABSTRACT

AIMS: Recently, the European Association of Urology recommended hexane-extracted fruit of Serenoa repens (HESr) in their guidelines on management of non-neurogenic male lower urinary tracts symptoms (LUTS). Despite previously lacking recommendations, Permixon® is the most investigated HESr in clinical trials, where it proved effective for male LUTS. In contrast, underlying mechanisms were rarely addressed and are only marginally understood. We therefore investigated effects of Permixon® on human prostate and detrusor smooth muscle contraction and on growth-related functions in prostate stromal cells. MAIN METHODS: Permixon® capsules were dissolved using n-hexane. Contractions of human prostate and detrusor tissues were induced in organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). KEY FINDINGS: Permixon® inhibited α1-adrenergic and thromboxane-induced contractions in prostate tissues, and methacholine-and thromboxane-induced contractions in detrusor tissues. Endothelin-1-induced contractions were not inhibited. Neurogenic contractions were inhibited in both tissues in a concentration-dependent manner. In WPMY-1 cells, Permixon® caused concentration-dependent breakdown of actin polymerization, inhibited colony formation, reduced cell viability, and proliferation, without showing cytotoxic or pro-apoptotic effects. SIGNIFICANCE: Our results provide a novel basis that allows, for the first time, to fully explain the ubiquitous beneficial effects of HESr in clinical trials. HESr may inhibit at least neurogenic, α1-adrenergic and thromboxane-induced smooth muscle contraction in the prostate and detrusor, and in parallel, prostate stromal cell growth. Together, this may explain symptom improvements by Permixon® in previous clinical trials.


Subject(s)
Prostatic Hyperplasia , Serenoa , Actins/metabolism , Adrenergic Agents/pharmacology , Endothelin-1/metabolism , Hexanes/metabolism , Hexanes/pharmacology , Hexanes/therapeutic use , Humans , Male , Methacholine Chloride/metabolism , Muscle Contraction , Muscle, Smooth , Phalloidine/metabolism , Phalloidine/pharmacology , Phalloidine/therapeutic use , Plant Extracts/therapeutic use , Prostate/metabolism , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Sincalide/metabolism , Stromal Cells/metabolism , Thromboxanes/metabolism , Urinary Bladder/metabolism
14.
J Obstet Gynaecol ; 42(7): 2588-2591, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35983664

ABSTRACT

Stromal cells possess unique properties to regenerate themselves and cure various chronic illnesses. An easily available and ethical source for procurement of stromal cells is umbilical cord blood which is now being stored for future use. Vedic texts also describe the cord blood as a source of life. However, Indian traditions seem to preserve one more alternative for storage and procurement of stromal cells. Traditionally, in many parts of India, the umbilical cord stump is dried and stored for future use. It is used as a medicine for some illness and to treat infertility. Since Indian traditions are an excerpt of Vedic science, it points towards the possible emergence of dried stump as an easy and cost-effective means for stromal cell procurement and storage. The present review compiles the literature available on these traditional practices and stresses upon the need of rigorous experimental and theoretical research in the area.


Subject(s)
Stromal Cells , Umbilical Cord , Humans , India
15.
BMC Complement Med Ther ; 22(1): 139, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585532

ABSTRACT

BACKGROUND: Crinum latifolium L. (Amaryllidaceae) has been used in Southeast Asian traditional medicine to alleviate the symptoms of benign prostatic hyperplasia (BPH). The pathological mechanism of BPH is associated with the induction of prostate stromal cell proliferation through transforming growth factor-beta (TGF-ß). Standardization as well as investigation of the potential anti-BPH activity of C. latifolium extract could benefit the further development of BPH-related analyses and provide evidence to support the application of this extract for BPH treatment. This study aimed to standardize and investigate the antiproliferative activity of the ethanolic extract of C. latifolium leaves. The major alkaloids isolated from C. latifolium were also explored for their potential use as bioactive markers. METHODS: Two major alkaloids were isolated from the ethanolic extract of C. latifolium leaves by chromatographic techniques, identified by NMR and MS, and quantified by a validated UHPLC method. Their antiproliferative activity was studied in human prostate stromal cells (WPMY-1) induced by TGF-ß. The synergistic effect of combining the two major isolated alkaloids was analyzed by the zero interaction potency (ZIP) model. RESULTS: Two alkaloids, lycorine (1) and 6α-hydroxybuphanidrine (2), were isolated from the ethanolic leaf extract of C. latifolium. A UHPLC method for the quantification of (1) and (2) was developed and validated in terms of linearity, precision, and accuracy. The C. latifolium leaf extract contained 0.279 ± 0.003% (1) and 0.232 ± 0.004% (2). The crude extract was more potent than either (1) and (2) alone against TGF-ß-treated WPMY-1 cell proliferation. The drug combination study revealed that the greatest synergistic effect of (1) and (2) was achieved at a 1:1 ratio. CONCLUSIONS: The results of this study support the anti-BPH activity of C. latifolium in traditional medicine and suggest that these the two isolated alkaloids may promote the efficacy of the C. latifolium extract. Additionally, major alkaloids (1) and (2) can be used as bioactive markers for the standardization of C. latifolium extracts.


Subject(s)
Alkaloids , Crinum , Prostatic Hyperplasia , Alkaloids/pharmacology , Crinum/chemistry , Humans , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Prostate/pathology , Prostatic Hyperplasia/drug therapy , Reference Standards , Stromal Cells/pathology , Transforming Growth Factor beta
16.
Aesthet Surg J ; 42(12): NP711-NP727, 2022 12 14.
Article in English | MEDLINE | ID: mdl-35576617

ABSTRACT

BACKGROUND: For decades, facial fat grafting has been used in clinical practice for volume restoration. The main challenge of this technique is variable volume retention. The addition of supplements to augment fat grafts and increase volume retention has been reported in recent years. OBJECTIVES: The aim of this systematic review was to investigate which supplements increase volume retention in facial fat grafting as assessed by volumetric outcomes and patient satisfaction. METHODS: Embase, Medline, Ovid, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar were searched up to November 30, 2020. Only studies assessing volume after facial fat grafting with supplementation in human subjects were included. Outcomes of interest were volume or patient satisfaction. The quality of the studies was assessed with the Effective Public Health Practice Project tool. RESULTS: After duplicates were removed 3724 studies were screened by title and abstract. After reading 95 full-text articles, 27 studies were eligible and included for comparison. Supplementation comprised of platelet-rich plasma, platelet-rich fibrin, adipose tissue-derived stromal cells or bone marrow-derived stromal cells, cellular or tissue stromal vascular fraction, or nanofat. In 13 out of 22 studies the supplemented group showed improved volumetric retention and 5 out of 16 studies showed greater satisfaction. The scientific quality of the studies was rated as weak for 20 of 27 studies, moderate for 6 of 27 studies, and strong for 1 study. CONCLUSIONS: It remains unclear if additives contribute to facial fat graft retention and there is a need to standardize methodology.


Subject(s)
Adipose Tissue , Graft Survival , Humans , Adipose Tissue/transplantation , Face/surgery , Stromal Cells/transplantation , Dietary Supplements
17.
Dis Markers ; 2022: 5196682, 2022.
Article in English | MEDLINE | ID: mdl-35308137

ABSTRACT

Methods: Wound-healing assay and Transwell assay were utilized to evaluate the effect of ginsenoside Rb1 on the migration of BMSCs. RT-PCR and Western blotting were performed to evaluate the expression of stromal-derived factor 1 (SDF-1), C-X-C chemokine receptor type 4 (CXCR4), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (PKB; AKT). Results: Ginsenoside Rb1 significantly enhanced the migration of BMSCs through the activation of SDF-1, CXCR4, p-PI3K/PI3K, and p-Akt/Akt relative expression. Furthermore, this stimulus was blocked by the pretreatment with AMD3100 and LY294002. Conclusions: Ginsenoside Rb1 facilitated the migration of BMSCs through the activation of the SDF-1/CXCR4 axis and PI3K/Akt pathway.


Subject(s)
Ginsenosides/metabolism , Mesenchymal Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , Animals , Bone and Bones/metabolism , Cell Movement/drug effects , Chromones/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Morpholines/antagonists & inhibitors , Panax , Stromal Cells/metabolism
18.
Cell Rep ; 38(7): 110363, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172147

ABSTRACT

Thymic atrophy reduces naive T cell production and contributes to increased susceptibility to viral infection with age. Expression of tissue-restricted antigen (TRA) genes also declines with age and has been thought to increase autoimmune disease susceptibility. We find that diminished expression of a model TRA gene in aged thymic stromal cells correlates with impaired clonal deletion of cognate T cells recognizing an autoantigen involved in atherosclerosis. Clonal deletion in the polyclonal thymocyte population is also perturbed. Distinct age-associated defects in the generation of antigen-specific T cells include a conspicuous decline in generation of T cells recognizing an immunodominant influenza epitope. Increased catalase activity delays thymic atrophy, and here, we show that it mitigates declining production of influenza-specific T cells and their frequency in lung after infection, but does not reverse declines in TRA expression or efficient negative selection. These results reveal important considerations for strategies to restore thymic function.


Subject(s)
Aging/immunology , Antigens/immunology , Immunity , Self Tolerance/immunology , T-Lymphocytes/immunology , Animals , Antioxidants/pharmacology , Apolipoproteins B/metabolism , Atrophy , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Catalase/metabolism , Dietary Supplements , Immunity/drug effects , Immunodominant Epitopes/immunology , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Orthomyxoviridae Infections/immunology , Oxidation-Reduction , Oxidative Stress/drug effects , Self Tolerance/drug effects , Stromal Cells/drug effects , Stromal Cells/enzymology , T-Lymphocytes/drug effects , Thymus Gland/pathology
19.
Urol Int ; 106(9): 974-978, 2022.
Article in English | MEDLINE | ID: mdl-34229324

ABSTRACT

Prostatic stromal tumor of uncertain malignant potential (STUMP), characterized by an atypical, unique stromal proliferation of the prostate, is often difficult to be differentiated from other nonepithelial neoplastic lesions. We present a unique case of recurrent STUMP after transurethral resection of the prostate (TURP) with concurrent prostatic adenocarcinoma. Patients diagnosed with prostatic STUMP should be followed up closely, for it may recur and invade adjacent organs after TURP shortly. Concurrent prostatic adenocarcinoma can be found in STUMP patients, and there may be some potential mechanisms which promote the simultaneous occurrence of the 2 tumors.


Subject(s)
Adenocarcinoma , Prostatic Hyperplasia , Prostatic Neoplasms , Transurethral Resection of Prostate , Adenocarcinoma/complications , Adenocarcinoma/surgery , Diagnosis, Differential , Humans , Male , Neoplasm Recurrence, Local/pathology , Prostate/pathology , Prostatic Hyperplasia/surgery , Prostatic Neoplasms/complications , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/surgery , Stromal Cells/pathology
20.
Semin Cancer Biol ; 80: 237-255, 2022 05.
Article in English | MEDLINE | ID: mdl-32470379

ABSTRACT

The development of cancer is not just the growth and proliferation of a single transformed cell, but its surrounding environment also coevolves with it. Indeed, successful cancer progression depends on the ability of the tumor cells to develop a supportive tumor microenvironment consisting of various types of stromal cells. The interactions between the tumor and stromal cells are bidirectional and mediated through a variety of growth factors, cytokines, metabolites, and other biomolecules secreted by these cells. Tumor-stromal crosstalk creates optimal conditions for the tumor growth, metastasis, evasion of immune surveillance, and therapy resistance, and its targeting is being explored for clinical management of cancer. Natural agents from plants and marine life have been at the forefront of traditional medicine. Numerous epidemiological studies have reported the health benefits imparted on the consumption of certain fruits, vegetables, and their derived products. Indeed, a significant majority of anti-cancer drugs in clinical use are either naturally occurring compounds or their derivatives. In this review, we describe fundamental cellular and non-cellular components of the tumor microenvironment and discuss the significance of natural compounds in their targeting. Existing literature provides hope that novel prevention and therapeutic approaches will emerge from ongoing scientific efforts leading to the reduced tumor burden and improve clinical outcomes in cancer patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/prevention & control , Stromal Cells/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL