Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 125: 155266, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38241917

ABSTRACT

BACKGROUND: Increasing evidence highlights the involvement of metabolic disorder and calcium influx mediated by transient receptor potential channels in migraine; however, the relationship between these factors in the pathophysiology of migraine remains unknown. Gastrodin is the major component of the traditional Chinese medicine Tianma, which is extensively used in migraine therapy. PURPOSE: Our work aimed to explore the analgesic action of gastrodin and its regulatory mechanisms from a metabolic perspective. METHODS/RESULTS: After being treated with gastrodin, the mice were given nitroglycerin (NTG) to induce migraine. Gastrodin treatment significantly raised the threshold of sensitivity in response to both mechanical and thermal stimulus evidenced by von Frey and hot plate tests, respectively, and decreased total contact numbers in orofacial operant behavioral assessment. We found that the expression of transient receptor potential melastatin 2 (TRPM2) channel was increased in the trigeminal ganglion (TG) of NTG-induced mice, resulting in a sustained Ca2+ influx to trigger migraine pain. The content of succinate, a metabolic biomarker, was elevated in blood samples of migraineurs, as well as in the serum and TG tissue from NTG-induced migraine mice. Calcium imaging assay indicated that succinate insult elevated TRPM2-mediated calcium flux signal in TG neurons. Mechanistically, accumulated succinate upregulated hypoxia inducible factor-1α (HIF-1α) expression and promoted its translocation into nucleus, where HIF-1α enhanced TRPM2 expression through transcriptional induction in TG neurons, evidenced by luciferase reporter measurement. Gastrodin treatment inhibited TRPM2 expression and TRPM2-dependent Ca2+ influx by attenuating succinate accumulation and downstream HIF-1α signaling, and thereby exhibited analgesic effect. CONCLUSION: This work revealed that succinate was a critical metabolic signaling molecule and the key mediator of migraine pain through triggering TRPM2-mediated calcium overload. Gastrodin alleviated NTG-induced migraine-like pain via inhibiting succinate/HIF-1α/TRPM2 signaling pathway in TG neurons. These findings uncovered the anti-migraine effect of gastrodin and its regulatory mechanisms from a metabolic perspective and provided a novel theoretical basis for the analgesic action of gastrodin.


Subject(s)
Benzyl Alcohols , Glucosides , Migraine Disorders , TRPM Cation Channels , Mice , Animals , Nitroglycerin/adverse effects , Nitroglycerin/metabolism , Succinic Acid/adverse effects , Succinic Acid/metabolism , Calcium/metabolism , TRPM Cation Channels/adverse effects , TRPM Cation Channels/metabolism , Trigeminal Ganglion/metabolism , Pain/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Signal Transduction , Analgesics/pharmacology
2.
Phytomedicine ; 123: 155175, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951150

ABSTRACT

BACKGROUND: Sepsis-related cardiac dysfunction is believed to be a primary cause of high morbidity and mortality. Metabolic reprogramming is closely linked to NLRP3 inflammasome activation and dysregulated glycolysis in activated macrophages, leading to inflammatory responses in septic cardiomyopathy. Succinate dehydrogenase (SDH) and succinate play critical roles in the progression of metabolic reprogramming in macrophages. Inhibition of SDH may be postulated as an effective strategy to attenuate macrophage activation and sepsis-induced cardiac injury. PURPOSE: This investigation was designed to examine the role of potential compounds that target SDH in septic cardiomyopathy and the underlying mechanisms involved. METHODS/RESULTS: From a small molecule pool containing about 179 phenolic compounds, we found that chicoric acid (CA) had the strongest ability to inhibit SDH activity in macrophages. Lipopolysaccharide (LPS) exposure stimulated SDH activity, succinate accumulation and superoxide anion production, promoted mitochondrial dysfunction, and induced the expression of hypoxia-inducible factor-1α (HIF-1α) in macrophages, while CA ameliorated these changes. CA pretreatment reduced glycolysis by elevating the NAD+/NADH ratio in activated macrophages. In addition, CA promoted the dissociation of K(lysine) acetyltransferase 2A (KAT2A) from α-tubulin, and thus reducing α-tubulin acetylation, a critical event in the assembly and activation of NLRP3 inflammasome. Overexpression of KAT2A neutralized the effects of CA, indicating that CA inactivated NLRP3 inflammasome in a specific manner that depended on KAT2A inhibition. Importantly, CA protected the heart against endotoxin insult and improved sepsis-induced cardiac mitochondrial structure and function disruption. Collectively, CA downregulated HIF-1α expression via SDH inactivation and glycolysis downregulation in macrophages, leading to NLRP3 inflammasome inactivation and the improvement of sepsis-induced myocardial injury. CONCLUSION: These results highlight the therapeutic role of CA in the resolution of sepsis-induced cardiac inflammation.


Subject(s)
Caffeic Acids , Cardiomyopathies , Sepsis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Tubulin/metabolism , Metabolic Reprogramming , Macrophages/metabolism , Succinates/adverse effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Sepsis/complications , Sepsis/drug therapy , Succinic Acid/adverse effects , Lipopolysaccharides/adverse effects
3.
Biomolecules ; 9(9)2019 09 13.
Article in English | MEDLINE | ID: mdl-31540325

ABSTRACT

Succinate is a metabolic intermediate of the tricarboxylic acid (TCA) cycle in all aerobic organisms, and is also a vital microbial metabolite in the gut. Although succinate is known to regulate intestinal metabolism and immune function, its role in the protection of the intestinal epithelial barrier function and inflammation is poorly characterized. In this study, we evaluated the effects of succinate on intestinal epithelial barrier function and inflammation in pigs. Twenty-four growing pigs were distributed into three groups (n = 8) and received either a basal diet (control group) or the same diet supplemented with 0.1% succinate or 1% succinate. The diet supplemented with 1% succinate led to alterations in the intestinal morphology. We confirmed in vitro that 5 mM succinate treatment modulated intestinal epithelial permeability by increased transepithelial electrical resistance (TEER) in intestinal porcine epithelial cell (IPEC)-J2 cells. Furthermore, succinate treatment increased the abundance of tight junction proteins claudin-1, zona occluden (ZO)-1, and ZO-2 in the jejunum in vivo and in vitro. In addition, dietary succinate supplementation promoted the expression of inflammatory cytokines interleukin (IL)-25, IL-10, IL-8, and IL-18 in the jejunum. Taken together, these data identify a novel role of succinate in the modulation of intestinal epithelial barrier function, which may be a nutritional target to improve gut health in animals.


Subject(s)
Inflammation/chemically induced , Jejunum/drug effects , Succinic Acid/adverse effects , Animals , Cell Line , Disease Models, Animal , Electric Impedance , Gene Expression Regulation/drug effects , Inflammation/genetics , Inflammation/metabolism , Interleukins/genetics , Interleukins/metabolism , Jejunum/cytology , Jejunum/metabolism , Random Allocation , Succinic Acid/pharmacology , Swine , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism , Up-Regulation
4.
Adv Gerontol ; 21(2): 298-305, 2008.
Article in English | MEDLINE | ID: mdl-18942377

ABSTRACT

Menopausal transition is often accompanied by a variety of adverse pathological symptoms, currently treated with hormone replacement therapy, which is associated with a number of health risks. This report investigated the role of a food supplement--a composition of energy-exchange metabolites, with succinate as the main component--for treating menopausal syndrome. We studied the impact of a 4-week succinate-based food composition (SBC) treatment on the estral cycle, and bone mass and calcium content of aging mice. The impact of SBC on hormone levels and on the progression of several neurovegetative and psycho-emotional symptoms was further investigated in a randomized, double-blind, placebo-controlled clinical study of early menopausal women. Data were collected from questionnaires, Kupperman index scores, Spielberger-Hanin tests, and blood analysis of hormone levels taken at baseline and throughout the 5-week study. A "rejuvenating" effect of SBC on menopausal animals was observed, expressed as restoration of the estral cycle and an increase in the weight and calcium content of bone tissue. Furthermore, in the randomized, placebo-controlled clinical study in menopausal women, SBC-based monotherapy significantly lowered most subjectively evaluated characteristics of menopausal syndrome and increased blood serum levels of estradiol fourfold. This monotherapy also alleviated symptoms of some neurovegetative and psycho-emotional disorders, such as hot flushes, headache, and anxiety. Succinate-based therapy alleviated many biochemical symptoms of menopause in aging mice and early menopausal women, as well as neurovegetative and psycho-emotional disorders in women. Succinate-based therapy appeared to be free of adverse side effects.


Subject(s)
Aging , Dietary Supplements , Menopause , Succinic Acid/therapeutic use , Adult , Aging/drug effects , Aging/metabolism , Aging/psychology , Animals , Autonomic Nervous System/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Calcium/metabolism , Double-Blind Method , Estradiol/blood , Estrogen Replacement Therapy , Estrous Cycle/drug effects , Female , Follicle Stimulating Hormone/blood , Humans , Luteinizing Hormone/blood , Menopause/blood , Menopause/metabolism , Menopause/psychology , Mice , Mice, Inbred Strains , Middle Aged , Succinic Acid/administration & dosage , Succinic Acid/adverse effects , Syndrome , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL