Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563351

ABSTRACT

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Subject(s)
Sulfhydryl Compounds , Thioctic Acid , Thioctic Acid/chemistry , Animals , Sulfhydryl Compounds/chemistry , Administration, Oral , Rats , Humans , Nanoparticles/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Drug Delivery Systems , Male , Inflammation/drug therapy , Mice , Surface Properties , Drug Carriers/chemistry , Insulin/metabolism , Rats, Sprague-Dawley , Particle Size , Macrophages/metabolism , Macrophages/drug effects , RAW 264.7 Cells
2.
Redox Biol ; 69: 102969, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064764

ABSTRACT

Chemoproteomic profiling of sulfhydryl-containing proteins has consistently been an attractive research hotspot. However, there remains a dearth of probes that are specifically designed for sulfhydryl-containing proteins, possessing sufficient reactivity, specificity, distinctive isotopic signature, as well as efficient labeling and evaluation capabilities for proteins implicated in the regulation of redox homeostasis. Here, the specific selenium-containing probes (Se-probes) in this work displayed high specificity and reactivity toward cysteine thiols on small molecules, peptides and purified proteins and showed very good competitive effect of proteins labeling in gel-ABPP. We identified more than 6000 candidate proteins. In TOP-ABPP, we investigated the peptide labeled by Se-probes, which revealed a distinct isotopic envelope pattern of selenium in both the primary and secondary mass spectra. This unique pattern can provide compelling evidence for identifying redox regulatory proteins and other target peptides. Furthermore, our examiation of post-translational modification (PTMs) of the cysteine site residues showed that oxidation PTMs was predominantly observed. We anticipate that Se-probes will enable broader and deeper proteome-wide profiling of sulfhydryl-containing proteins, provide an ideal tool for focusing on proteins that regulate redox homeostasis and advance the development of innovative selenium-based pharmaceuticals.


Subject(s)
Cysteine , Selenium , Cysteine/metabolism , Sulfhydryl Compounds/chemistry , Peptides/metabolism , Proteome/metabolism , Oxidation-Reduction , Pharmaceutical Preparations
3.
Food Res Int ; 163: 112220, 2023 01.
Article in English | MEDLINE | ID: mdl-36596149

ABSTRACT

pH-responsive in situ gelling properties of thiolated citrus high-methoxyl pectin (TCHMP) were investigated in this study. The gelation capacity results revealed that the in situ gelation behavior of TCHMP only occurred when the pH value was higher than 6.25. The gel strength increased from 26.63 g to 42.77 g as the pH value increased from 7.4 to 8.9. Rheological measurements confirmed that the apparent viscosity and viscoelasticity of TCHMP were highly dependent on pH value and dialysis time. Compared with the control group, the apparent viscosity of TCHMP dialyzed in phosphate-buffered saline (PBS) of pH 8.9 for 180 min increased 695-fold. During the dialysis process of TCHMP at different pH values (7.4-8.9), the final thiol groups content decreased and the final disulfide bonds content increased with the increase in pH value. This illustrates that the mechanism of in situ gelation is mainly the oxidation of thiol-thiol groups to form disulfide bonds. These results can put forward new insights into the pH-responsive in situ gelling properties of TCHMP and provide a theoretical basis for the application of TCHMP in neutral and alkaline gel systems.


Subject(s)
Citrus , Sulfhydryl Compounds , Hydrogen-Ion Concentration , Gels/chemistry , Sulfhydryl Compounds/chemistry , Pectins/chemistry , Disulfides/chemistry
4.
J Ethnopharmacol ; 295: 115388, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35577159

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicine and mainly adopted to treat gastric ulcer, gastritis and stomach cancer. Sanguinarine (SNG), a natural alkaloid isolated from Z. nitidum, possesses significant anti-Helicobacter pylori and gastric protection effects. However, the underlying mechanism is sparsely elucidated. AIM OF THIS STUDY: The present study aims to explore the inhibition effect, kinetics and potential mechanism of SNG against H. pylori urease (HPU) and jack bean urease (JBU). MATERIALS AND METHODS: The improved spectrophotometric berthelot method was applied to estimate the inhibitory effect of SNG against HPU and JBU. The Lineweaver-Burk plots were adopted for investigating the inhibitory pattern in enzymatic kinetics. Sulfydryl-containing compounds and competitive active-site Ni2+ binding depressors were used for mechanism research. RESULTS: SNG remarkably suppressed the activities of HPU and JBU in concentration-and time-dependent mode with IC50 of 0.48 ± 0.14 mM and 0.11 ± 0.02 mM, respectively, in comparison with urease retardant acetohydroxamic acid (0.06 ± 0.01 mM for HPU and 0.03 ± 0.00 mM for JBU, respectively). Kinetic analysis demonstrated that the inhibition of SNG against HPU and JBU were separately characterized by slow-binding, mixed-type and slow-binding, non-competitive type. Addition of sulfydryl-containing reagents (dithiothreitol, glutathione and L-cysteine) and competitive Ni2+ binding restrainers (boric acid and sodium fluoride) significantly abrogated the urease inhibitory effect of SNG, suggesting the significant role of the thiols and Ni2+ for the urease inhibition by SNG. By contrast, interaction with thiol groups possibly contributed to the repression of SNG on JBU. Furthermore, the urease suppression was proved to be partially reversible since the SNG-blocked enzyme could be partly reactivated by glutathione. CONCLUSION: SNG could observably inhibit H. pylori urease targeting the thiols and Ni2+, which indicated that SNG was a new urease suppressant with great promise. The present research also provided scientific evidence for the application of SNG and Z. nitidum treating H. pylori-associated gastrointestinal diseases.


Subject(s)
Alkaloids , Helicobacter pylori , Zanthoxylum , Alkaloids/pharmacology , Benzophenanthridines , Canavalia , Glutathione/pharmacology , Isoquinolines , Kinetics , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Urease
5.
J Agric Food Chem ; 70(17): 5427-5437, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35467336

ABSTRACT

A holistic ultraperformance liquid chromatography (UPLC)-time of flight (TOF)-mass spectrometry-based approach was used to screen for storage-induced reaction products consisting of the volatile key coffee thiols methanethiol, 2-furfurylthiol, 2-methyl-3-furanthiol, 3-mercapto-3-methylbutanol, and 3-mercapto-2-butanone and low-molecular weight phenolic constituents of coffee beverages including chlorogenic acid, caffeic acid, and their thermal degradation products hydroxyhydroquinone, catechol, and 4-ethylcatechol. Multiple marker compounds could be detected in thiol-enriched coffee brews after UPLC-TOF-MS profiling and statistical data analysis. Subsequently, marker compounds were synthesized and structurally characterized via high-resolution mass spectrometry and 1D- and 2D-NMR experiments. Quantification of these reaction products in fresh and stored coffee beverages was realized in native coffee and after stir bar sorptive extraction with liquid desorption by means of UHPLC-MS/MS. The quantitative data revealed the biggest influence of storage time on the formation of reaction products between hydroxyhydroquinone and methanethiol and 2-furfurylthiol, while other reaction products were only slightly affected by storage and thus most likely formed during the roasting process.


Subject(s)
Chlorogenic Acid , Coffee , Caffeic Acids , Chlorogenic Acid/chemistry , Coffee/chemistry , Odorants/analysis , Sulfhydryl Compounds/chemistry , Tandem Mass Spectrometry
6.
J Biomed Mater Res B Appl Biomater ; 110(4): 787-798, 2022 04.
Article in English | MEDLINE | ID: mdl-34846796

ABSTRACT

In this study, modified kappa-carrageenan/pectin hydrogel patches were fabricated for treatment of buccal fungal infections. For this purpose, kappa-carrageenan-g-acrylic acid was modified with different thiolated agents (L-cysteine and 3-mercaptopropionic acid), and the thiol content of the resulting modified kappa-carrageenan was confirmed by elemental analyzer. Then, the hydrogel patches were fabricated, and characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, ex vivo mucoadhesion test, and swelling behavior. Triamcinolone acetonide was added either directly or by encapsulating within the poly(lactic-co-glycolic acid) nanoparticles. The release amount of the drug from the directly loaded patch was 7.81 mg/g polymer, while it was 3.28 mg/g polymer for the encapsulated patch with the same content at 7 hr. The hydrogel patches had no cytotoxicity by cell culture studies. Finally, the drug loaded hydrogel patches were demonstrated antifungal activity against Aspergillus fumigatus and Aspergillus flavus. These results provide that the novel modified kappa-carrageenan and pectin based buccal delivery system has promising antifungal property, and could have advantages compared to conventional buccal delivery systems.


Subject(s)
Drug Delivery Systems , Pectins , Carrageenan/chemistry , Carrageenan/pharmacology , Hydrogels/pharmacology , Pectins/chemistry , Pectins/pharmacology , Sulfhydryl Compounds/chemistry
7.
Antioxid Redox Signal ; 36(4-6): 354-365, 2022 02.
Article in English | MEDLINE | ID: mdl-34521263

ABSTRACT

Significance: Fluorescent probes and mass spectrometry are the two most popular and complementary methods to quantify thiols in biological systems. In this review, we focus on the widely used and commercially available methods to detect and quantify thiols in living cells and the general approaches applied in mass spectrometry-based thiol quantification. We hope that this review can serve as a general guide for redox biologists who are interested in thiol species. Sulfur, one of the most important elements in living systems, contributes to every aspect of physiology and pathology. Thiols, including cysteine, homocysteine, glutathione, hydrogen sulfide, and hydropersulfides, are the main players in the redox biology system. Therefore, quantifying these thiol species in biological systems is one of the important steps to understand their roles in biology. Recent Advances: Fluorescent probes and mass spectrometry-based methods have been developed to detect and/or quantify thiols in biological systems. Mass spectrometry-based methods have been the gold standard for metabolite quantification in cells. Fluorescent probes can directly detect or quantify thiol species in living cells with spatial and temporal resolutions. Additionally, organelle-specific fluorescent probes have been widely developed. These two methods are complementary to each other. Critical Issues: Reliable quantification of thiol species using fluorescent probes remains challenging. Future Directions: When developing fluorescent probes, we suggest using both the fluorescent probes and mass spectrometry-based thiol quantification methods to cross-check the results. In addition, we call on chemical biologists to move beyond qualitative probes and focus on probes that can provide quantitative results in live cells. These quantitative measurements based on fluorescent probes should be validated with mass spectrometry-based methods. More importantly, chemical biologists should make their probes accessible to the biology end users. Regarding mass spectrometry-based methods, quantification of the derivatized thiol specifies should fit into the general metabolomics workflow. Antioxid. Redox Signal. 36, 354-365.


Subject(s)
Fluorescent Dyes , Sulfhydryl Compounds , Cysteine , Fluorescent Dyes/chemistry , Glutathione/analysis , Mass Spectrometry , Sulfhydryl Compounds/chemistry
8.
Biomolecules ; 11(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944518

ABSTRACT

The deodorant activity of black cumin (Nigella sativa L.) seed, a spice used to flavor curry and vegetable foods in Southwest Asia, against garlic (Allium sativum L.) organosulfur compounds related to human malodor was evaluated. Black cumin seed essential oil showed remarkable deodorant activity against garlic essential oil. The mode of action of this deodorant activity was presumed to be that black cumin seed essential oil covalently reacted with the organosulfur compounds in garlic. Therefore, thymoquinone, which is a major constituent in black cumin seed essential oil, and allyl mercaptan, which is one of the organosulfur compounds produced by cutting garlic, were reacted in vitro, and the products were purified and elucidated using spectroscopic data. As a result, these substances were identified as different allyl mercaptan adducts to dihydrothymoquinone. This chemical reaction was presumed to play a key role in the deodorant activity of black cumin seed essential oil.


Subject(s)
Benzoquinones/pharmacology , Deodorants/pharmacology , Garlic/chemistry , Nigella sativa/chemistry , Benzoquinones/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Hydrogen-Ion Concentration , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Seeds/chemistry , Sulfhydryl Compounds/chemistry
9.
J Mater Chem B ; 9(42): 8832-8841, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34636390

ABSTRACT

Tumor-targeting gold nanorods (AuNRs) assembled through Au-S bonds have been widely used for photothermal therapy (PTT) via intravenous injection. However, with extended in vivo circulation times, biothiols can replace some S-modified targeting ligands on the surface of the AuNRs, which lowers their targeting efficacy towards cancer cells, resulting in a non-ideal PTT effect. To address this problem, herein, we utilized Se-modified AuNRs to establish a dual functional nanoprobe (Casp-RGD-Se-AuNRs) for improving the therapeutic effect and real-time monitoring of Caspase-9 levels to indicate the degree of cell apoptosis. The experiments demonstrated that the Casp-RGD-Se-AuNRs are better at avoiding interference from biothiols than the S-modified nanoprobe (Casp-RGD-S-AuNRs) for extended blood-circulation times after intravenous injection, significantly improving the PTT efficacy via more effectively targeting cancer cells. Simultaneously, the change of Caspase-9 levels visually shows the degree of apoptosis. Moreover, an in vivo study showed that, compared with the S-modified nanoprobe, the Se-modified nanoprobe exhibits a higher delivery efficiency to the tumor region after intravenous injection (accumulation in the tumor increased by 87%) and a better anticancer efficacy under NIR light irradiation (the tumor inhibition rate increased 6-fold). This work provides a valuable strategy to overcome the off-target problem, and new ideas for avoiding interference by biomolecules during blood circulation.


Subject(s)
Antineoplastic Agents/pharmacology , Gold/pharmacology , Nanotubes/chemistry , Photosensitizing Agents/pharmacology , Photothermal Therapy , Selenium/pharmacology , Sulfhydryl Compounds/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Gold/blood , Gold/chemistry , Humans , Infrared Rays , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Selenium/blood , Selenium/chemistry , Sulfhydryl Compounds/blood , Sulfhydryl Compounds/chemistry
10.
Eur J Med Chem ; 224: 113659, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34237621

ABSTRACT

Secondary metabolites isolated from bioactive extracts of natural sources iteratively pioneer the research in drug discovery. Modern medicine is often inspired by bioactive natural products or the bio-functional motifs embedded in them. One of such consequential bio-functional motifs is the thiolane unit. Thiolane-based bioactive organic compounds have manifested a plethora of astonishing biological activities such as anti-viral, anti-cancer, anti-platelet, α-glucosidase inhibition, anti-HIV, immunosuppressive and anti-microbial activities which renders them excellent candidates in drug discovery. Hence, to scale up the accessibility of thiolane-based therapeutics its chemical syntheses is essential and in addition; a sneak peek in its biosynthesis would give a perspective for developing biomimetic syntheses. This review highlights the development of important thiolane-based therapeutics such as (i) Nuphar sesquiterpene thioalkaloids (ii) Thiosugar sulphonium salts from Salacia sp. (iii) Albomycins (iv) Thiolane-based therapeutics from Allium sp. (v) 4'-thionucleosides summarizing various synthetic strategies, biosynthesis and biological activity studies, covering literature till 2021. We anticipate that this review will inspire chemists and biochemists to take up the challenges encountered in the synthesis and development of thiolane-based therapeutics.


Subject(s)
Sulfhydryl Compounds/chemistry , Alkaloids/chemical synthesis , Alkaloids/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents , Bacteria/drug effects , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Survival/drug effects , Fungi/drug effects , Humans , Sesquiterpenes/chemistry
11.
Biomolecules ; 11(3)2021 03 18.
Article in English | MEDLINE | ID: mdl-33803875

ABSTRACT

α,ß-unsaturated carbonyls interfere with numerous plant physiological processes. One mechanism of action is their reactivity toward thiols of metabolites like cysteine and glutathione (GSH). This work aimed at better understanding these interactions. Both 12-oxophytodienoic acid (12-OPDA) and abscisic acid (ABA) conjugated with cysteine. It was found that the reactivity of α,ß-unsaturated carbonyls with GSH followed the sequence trans-2-hexenal < 12-OPDA ≈ 12-OPDA-ethylester < 2-cyclopentenone << methyl vinylketone (MVK). Interestingly, GSH, but not ascorbate (vitamin C), supplementation ameliorated the phytotoxic potential of MVK. In addition, 12-OPDA and 12-OPDA-related conjugated carbonyl compounds interacted with proteins, e.g., with members of the thioredoxin (TRX)-fold family. 12-OPDA modified two cysteinyl residues of chloroplast TRX-f1. The OPDAylated TRX-f1 lost its activity to activate the Calvin-Benson-cycle enzyme fructose-1,6-bisphosphatase (FBPase). Finally, we show that 12-OPDA interacts with cyclophilin 20-3 (Cyp20-3) non-covalently and affects its peptidyl-prolyl-cis/trans isomerase activity. The results demonstrate the high potential of 12-OPDA as a diverse interactor and cellular regulator and suggest that OPDAylation may occur in plant cells and should be investigated as novel regulatory mechanism.


Subject(s)
Antioxidants/chemistry , Fatty Acids, Unsaturated/chemistry , Plant Growth Regulators/chemistry , Sulfhydryl Compounds/chemistry , Arabidopsis/chemistry , Cysteine/chemistry , Thioredoxins/chemistry
12.
Arch Toxicol ; 95(4): 1179-1226, 2021 04.
Article in English | MEDLINE | ID: mdl-33792762

ABSTRACT

Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.


Subject(s)
Organoselenium Compounds/pharmacology , Organoselenium Compounds/toxicity , Amino Acids/chemistry , Animals , Azoles , Humans , Isoindoles , Molecular Structure , Selenium/chemistry , Selenium/physiology , Selenoproteins/chemistry , Sulfhydryl Compounds/chemistry
13.
Angew Chem Int Ed Engl ; 60(21): 11758-11762, 2021 05 17.
Article in English | MEDLINE | ID: mdl-33724623

ABSTRACT

Extensive recent efforts have been put on the design of high-performance organic near-infrared (NIR) photothermal agents (PTAs), especially over NIR-II bio-window (1000-1350 nm). So far, the development is mainly limited by the rarity of molecules with good NIR-II response. Here, we report organic nanoparticles of intermolecular charge-transfer complexes (CTCs) with easily programmable optical absorption. By employing different common donor and acceptor molecules to form CTC nanoparticles (CT NPs), absorption peaks of CT NPs can be controllably tuned from the NIR-I to NIR-II region. Notably, CT NPs formed with perylene and TCNQ have a considerably red-shifted absorption peak at 1040 nm and achieves a good photothermal conversion efficiency of 42 % under 1064 nm excitation. These nanoparticles were used for antibacterial application with effective activity towards both Gram-negative and Gram-positive bacteria. This work opens a new avenue into the development of efficient PTAs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/radiation effects , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Benzene Derivatives/radiation effects , Escherichia coli/drug effects , Infrared Rays , Microbial Sensitivity Tests , Nanoparticles/radiation effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/radiation effects , Perylene/chemistry , Perylene/pharmacology , Perylene/radiation effects , Polycyclic Compounds/chemistry , Polycyclic Compounds/pharmacology , Polycyclic Compounds/radiation effects , Solubility , Staphylococcus aureus/drug effects , Static Electricity/adverse effects , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Sulfhydryl Compounds/radiation effects , Water/chemistry
14.
Food Chem ; 351: 129215, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33639428

ABSTRACT

This study describes a turn-on upconversion fluorescence sensor for the detection of acrylamide (AA) based on glutathione (GSH) modulated turn-on fluorescence strategy. Polyethyleneimine-modified upconversion nanoparticles were first prepared by the hydrothermal method and then Rhodamine B derivative (RBD) was loaded on their surface through non-covalent bonding. The GSH coupled with RBD and strongly quenched the upconversion fluorescence via fluorescence resonance energy transfer. Upon addition of tris (2-carboxyethyl) phosphine, the thiol-ene Michael addition reaction between GSH and AA was efficiently catalyzed, resulted in the quenched fluorescence triggered on. Under the optimum conditions, a linear detection range from 0.1 to 104 µM was implemented for AA with a limit of detection of 0.68 nM and great sensitivity was observed. Importantly, the proposed sensor was evaluated for spiked potato chips samples with a satisfactory result in contrast to high-performance liquid chromatography, confirmed its applicability for the rapid detection of AA.


Subject(s)
Acrylamide/analysis , Acrylamide/chemistry , Fluorescence Resonance Energy Transfer/instrumentation , Food Analysis/methods , Solanum tuberosum/chemistry , Sulfhydryl Compounds/chemistry , Food Handling , Limit of Detection , Nanoparticles/chemistry
15.
ACS Appl Bio Mater ; 4(2): 1515-1523, 2021 02 15.
Article in English | MEDLINE | ID: mdl-35014501

ABSTRACT

Hydrogels serving as a drug carrier was realized by entrapping small-sized drug molecules within their cross-linked interstitial networks. After covering the targeted location, hydrogels interact with the physiological fluids and swell, resulting in an increased interspace between networks for the outside diffusion of drugs. However, inevitable in vivo inflammatory responses or bacterial infection on the implant materials and persistent cargo release are still challenging. Herein, we report the fabrication of dual-responsive hydrogels based on acid-sensitive poly(ethylenimine) (PEI) derivative (PEI(-COOH/-vinyl)), thiol-responsive camptothecin prodrug monomer (CPTM), and hydrophilic oligo(ethylene glycol) methyl ether acrylate (OEGMA) by a conventional radical polymerization. Curcumin was then solubilized into the hydrogels to endow them with antimicrobial and cancer resistance properties. The in vitro experiments exhibited sustained hydrogel dissolution and CPT release in a simulated physiological environment. The antimicrobial and cytotoxicity tests of drug-loaded hydrogels using methicillin-resistant Staphylococcus aureus (MRSA) strains and HeLa cancer cell lines, respectively, indicated that the hydrogels possessed efficient antimicrobial effects and could successfully inhibit the growth of cancer cells.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Carriers/therapeutic use , Hydrogels/therapeutic use , Sulfhydryl Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Drug Carriers/pharmacology , Humans , Hydrogels/pharmacology
16.
Food Chem ; 337: 128008, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32920267

ABSTRACT

This study investigated the role of furfuryl alcohol (FFA) in the formation of furfurylthiol (FFT), the most important odorant in roasted coffee, using in-bean and spiking experiments. Green beans were spiked with FFA, and after roasting FFT was quantified by stable isotope dilution analysis. The FFT level in the roasted beans increased dose-dependently with addition of FFA. Additionally, beans were spiked with isotopically labelled d2-FFA which generated isotopically labelled d2-FFT after roasting. However, no labelled furfural was observed. The results unambiguously show that FFA serves as a precursor of FFT in coffee. On the other hand, the data indicate that furfural stems not from oxidation of FFA and plays no major role as precursor for FFT formation during coffee roasting. The suggested formation pathway leads from FFA to the furfuryl cation, then protein-bound S-furfuryl-l-cysteine and by subsequent elimination to FFT.


Subject(s)
Coffea/chemistry , Furans/chemistry , Odorants/analysis , Sulfhydryl Compounds/chemistry , Coffee , Cysteine/analysis , Hot Temperature
17.
Circulation ; 143(9): 935-948, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33307764

ABSTRACT

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Subject(s)
Integrin beta Chains/chemistry , Sulfhydryl Compounds/chemistry , Animals , Chromatography, High Pressure Liquid , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Cysteine/chemistry , Disulfides/analysis , Disulfides/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Hydrogen Sulfide/pharmacology , Integrin beta Chains/metabolism , Mechanotransduction, Cellular , Mice , Shear Strength , Tandem Mass Spectrometry , Vasodilation/drug effects , rhoA GTP-Binding Protein/metabolism
18.
J Photochem Photobiol B ; 213: 112077, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33220600

ABSTRACT

Prunus armeniaca (L.) is a member of the Rosaceae, subfamily Prunoideae, shows anticancer, antitubercular, antimutagenic, antimicrobial, antioxidant, and cardioprotective activities. Here we fractionated the leaves extract of this highly medicinally important plant for antileishmanial activity. In the current study, the leaves extract was fractionated and characterized using column and thin layer chromatography by n-hexane, ethyl acetate, and methanol solvents. Twelve fractions were isolated and subjected for evaluation of their cytotoxicity and in vitro antileishmanial activity against promastigotes and amastigotes of Leishmania tropica. Among all fractions used, the fraction (F7) exhibited the strongest antileishmanial activity. The bioactive fraction was further characterized by spectroscopy (FTIR, UV-Vis), and GC-MS analysis. The in silico docking was carried out to find the active site of PTR1. All derived fractions exhibited toxicity in the safety range IC50 > 100 µg/ml. The fraction (F7) showed significantly the highest antipromastigotes activity with IC5011.48 ± 0.82 µg/ml and antiamastigotes activity with IC50 21.03 ± 0.98 µg/ml compared with control i.e. 11.60 ± 0.70 and 22.03 ± 1.02 µg/ml respectively. The UV-Vis spectroscopic analysis revealed the presence of six absorption peaks and the FTIR spectrum revealed the presence of alkane, aldehyde, carboxylic acid, thiols, alkynes, and carbonyls compounds The GC-MS chromatogram exhibited the presence of nine compounds: (a) benzeneethanol, alpha, beta dimethyl, (b)carbazic acid, 3-(1 propylbutylidene)-, ethyl ester, (c)1, 2-benzenedicarboxylic acid, diisooctyl ester, (d)benzeneethanamine a-methyl, (e)2aminononadecane, (f)2-heptanamine-5-methyl, (g)cyclobutanol, (h)cyclopropyl carbine, and (i)nitric acid, nonyl ester. Among all compounds, the 1, 2-benzenedicarboxylic acid, diisooctyl ester bound well to the PTR1 receptor. Fraction (F7) showed acceptable results with no cytotoxicity. However, in vivo studies are required in the future.


Subject(s)
Antiprotozoal Agents/chemistry , Leishmania tropica/drug effects , Plant Extracts/chemistry , Plant Leaves/chemistry , Prunus armeniaca/chemistry , Aldehydes/chemistry , Alkanes/chemistry , Alkynes/chemistry , Animals , Antiprotozoal Agents/pharmacology , Benzene Derivatives/chemistry , Carboxylic Acids/chemistry , Cyclobutanes/chemistry , Drug Evaluation, Preclinical , Gas Chromatography-Mass Spectrometry , Humans , Hydrazines/chemistry , Male , Mice, Inbred BALB C , Molecular Docking Simulation , Plant Extracts/pharmacology , Sulfhydryl Compounds/chemistry
19.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 105-111, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33040794

ABSTRACT

Surface functionalization of nanoparticles (NPs) for therapeutic siRNA delivery into cancer cells has gained interest. The present study was designed for surface functionalization of gold nanoparticles (AuNPs) for efficient siRNA delivery and knockdown in cancer cells. In order to achieve this objective, AuNPs were coated with HER2-siRNA in the presence of 11-mercaptoundecanoic acid (11-MUA), calcium chloride (CaCl2) and polyethyleneimine (PEI) in alternate charge bearing successive layers. MCF-7 cells were cultured and transfected with fabricated assembly of AuNPs. Cytotoxicity analysis revealed that the half inhibitory concentration (IC50) for the formulation was 45.35 nM  . Total RNA was isolated from transfected cells, reverse transcribed into complementary DNA (cDNA) and real-time polymerase chain reaction (RT-PCR) was performed. The RT-PCR based delta-delta Ct analysis in treated cells revealed a significant 18.94 times decrease (p<0.001) in the expression of HER2 gene standardized with ACTB housekeeping gene as compared to untreated cells, which makes this formulation a potent approach for siRNA delivery and  gene knockout.


Subject(s)
Calcium/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , RNA, Small Interfering/genetics , Receptor, ErbB-2/genetics , Cell Line, Tumor , Fatty Acids/chemistry , Gene Transfer Techniques , Humans , MCF-7 Cells , Polyethyleneimine/chemistry , Sulfhydryl Compounds/chemistry
20.
Molecules ; 25(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933154

ABSTRACT

Kuromoji (Lindera umbellata) is a tree that grows throughout Japan. The components of kuromoji essential oil have antitumor and aromatherapy effects. However, the composition of the hydrosol, obtained as a by-product of the essential oil process, is unknown. Furthermore, it is unknown whether kuromoji essential oil has a deodorizing effect. Therefore, the purpose of the current study was to compare the chemical composition of kuromoji essential oil and hydrosol, as well as evaluate the deodorizing effect of the former. The chemical composition of samples was evaluated using gas chromatography-mass spectrometry (GC-MS). Additionally, the deodorizing effect of Kuromoji essential oil was investigated with the detector tube method using ammonia, hydrogen sulfide, methyl mercaptan, and isovaleric acid. Linalool was the most abundant component in both the essential oil and hydrosol; however, its proportion was higher in the hydrosol (57.5%) than in the essential oil (42.8%). The hydrosol contained fewer chemical components, but higher proportions of trans-geraniol and ethanol. Moreover, the essential oil eliminated 50% of ammonia and 97.6% or more of isovaleric acid. Interestingly, linalool was soluble in the hydrosol and did not irritate the skin. This suggests that the hydrosol may be an effective foot care product.


Subject(s)
Acyclic Monoterpenes/isolation & purification , Deodorants/isolation & purification , Lindera/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Ammonia/chemistry , Deodorants/pharmacology , Ethanol/chemistry , Gas Chromatography-Mass Spectrometry , Hemiterpenes/chemistry , Hydrogen Sulfide/chemistry , Japan , Oils, Volatile/pharmacology , Pentanoic Acids/chemistry , Plant Oils/pharmacology , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL