Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 575
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Biomolecules ; 14(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38540770

ABSTRACT

Sulforaphane (SFN) is one of the hydrolysates of glucosinolates (GSLs), primarily derived from Brassica vegetables like broccoli. In clinical therapy, SFN has been proven to display antimicrobial, anticancer, antioxidant, and anti-inflammatory properties. However, the antimicrobial effects and mechanism of SFN against plant pathogens need to be further elucidated, which limits its application in agriculture. In this study, the genetic factors involved in SFN biosynthesis in 33 B. oleracea varieties were explored. The finding showed that besides the genetic background of different B. oleracea varieties, myrosinase and ESP genes play important roles in affecting SFN content. Subsequently, the molecular identification cards of these 33 B. oleracea varieties were constructed to rapidly assess their SFN biosynthetic ability. Furthermore, an optimized protocol for SFN extraction using low-cost broccoli curds was established, yielding SFN-enriched extracts (SFN-ee) containing up to 628.44 µg/g DW of SFN. The antimicrobial activity assay confirmed that SFN-ee obtained here remarkably inhibit the proliferation of nine tested microorganisms including four plant pathogens by destroying their membrane integrity. Additionally, the data demonstrated that exogenous application of SFN-ee could also induce ROS accumulation in broccoli leaves. These results indicated that SFN-ee should play a dual role in defense against plant pathogens by directly killing pathogenic cells and activating the ROS signaling pathway. These findings provide new evidence for the antimicrobial effect and mechanism of SFN against plant pathogens, and suggest that SFN-ee can be used as a natural plant antimicrobial agent for crop protection and food preservation.


Subject(s)
Anti-Infective Agents , Brassica , Isothiocyanates , Sulfoxides , Brassica/metabolism , Crop Protection , Reactive Oxygen Species/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339067

ABSTRACT

Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.


Subject(s)
Isothiocyanates , Oxidative Stress , Animals , Humans , Prospective Studies , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Inflammation/drug therapy , Sulfoxides/pharmacology , Dietary Supplements , NF-E2-Related Factor 2/metabolism
4.
Molecules ; 29(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276596

ABSTRACT

The main goal of this work was to develop analytical procedures for the isolation and determination of selected isothiocyanates. As an example, particularly sulforaphane from plants of the Brassicaceae Burnett or Cruciferae Juss family. The applied methodology was mainly based on classical extraction methods and high-performance liquid chromatography coupled with tandem mass spectrometry. Moreover, the effect of temperature on the release of isothiocyanates from plant cells was considered. The cytotoxic activity of the obtained plant extracts against a selected cancer cell line has also been included. The results allow evaluating the usefulness of obtained plant extracts and raw sprouts regarding their content of isothiocyanates-bioactive compounds with chemopreventive properties.


Subject(s)
Antineoplastic Agents , Brassica , Brassica/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Plant Extracts/chemistry , Cell Line , Sulfoxides , Glucosinolates/metabolism
5.
J Ren Nutr ; 34(1): 68-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37619675

ABSTRACT

BACKGROUND: Patients with chronic kidney disease (CKD) have reduced expression of erythroid nuclear factor-related factor 2 (NRF2) and increased nuclear factor κB (NF-κB). "Food as medicine" has been proposed as an adjuvant therapeutic alternative in modulating these factors. No studies have investigated the effects of sulforaphane (SFN) in cruciferous vegetables on the expression of these genes in patients with CKD. OBJECTIVE: The study aimed to evaluate the effects of SFN on the expression of NRF2 and NF-κB in patients on hemodialysis (HD). DESIGN AND METHODS: A randomized, double-blind, crossover study was performed on 30 patients on regular HD. Fourteen patients were randomly allocated to the intervention group (1 sachet/day of 2.5 g containing 1% SFN extract with 0.5% myrosinase) and 16 patients to the placebo group (1 sachet/day of 2.5 g containing corn starch colored with chlorophyll) for 2 months. After a washout period of 2 months, the groups were switched. NRF2 and NF-κB mRNA expression was evaluated by real-time quantitative polymerase chain reaction, and tumor necrosis factor alpha and interleukin-6 levels were quantified by enzyme-linked immunosorbent assay. Malondialdehyde was evaluated as a marker of lipid peroxidation. RESULTS: Twenty-five patients (17 women, 55 [interquartile range = 19] years and 55 [interquartile range = 74] months on HD) completed the study. There was no significant difference concerning the expression of mRNA NRF2 (P = .915) and mRNA NF-κB (P = .806) after supplementation with SFN. There was no difference in pro-inflammatory and oxidative stress biomarkers. CONCLUSION: 150 µmol of SFN for 2 months had no antioxidant and anti-inflammatory effect in patients with CKD undergoing HD.


Subject(s)
Isothiocyanates , NF-kappa B , Renal Insufficiency, Chronic , Sulfoxides , Humans , Female , NF-kappa B/genetics , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Cross-Over Studies , Oxidative Stress , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , RNA, Messenger/metabolism , RNA, Messenger/pharmacology , Dietary Supplements
6.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37860845

ABSTRACT

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Subject(s)
Brain Injuries , Carbon Monoxide Poisoning , Drugs, Chinese Herbal , Isothiocyanates , Sulfoxides , Rats , Animals , Molecular Docking Simulation , Carbon Monoxide , AMP-Activated Protein Kinases , Network Pharmacology , Brain
7.
Toxicol Appl Pharmacol ; 482: 116796, 2024 01.
Article in English | MEDLINE | ID: mdl-38145809

ABSTRACT

Sulforaphane (SFN) is a bioactive phytonutrient found in cruciferous vegetables. There is a lack of detailed information on the lactational transfer of SFN and SFN metabolites, and potential pharmacological effects on breastfeeding infants. We carried out two maternal supplementation studies in a mouse model, wherein lactating dams received either vehicle, 300 or 600 ppm SFN from postnatal day (PND) 1 to 5, or in a second experiment, vehicle or 600 ppm SFN from PND 1 to 14. The parent compound was only detectable in milk and plasma from dams receiving 600 ppm SFN for five days. The predominant metabolite SFN-N-acetylcysteine (SFN-NAC) was readily detected in milk from dams receiving 300 and 600 ppm SFN for five days or 600 ppm for 14 days. Maternal SFN-NAC plasma levels were elevated in both 600 ppm groups. Maternal hepatic and pulmonary expression of NRF2-related genes, Nqo1, Gsta2, Gstm1, and Gstp1, were significantly increased, generally following a dose-response; however, offspring induction varied. PND5 neonates in the 600-ppm group exhibited significantly elevated expression of Nqo1, Gsta2, and Gstp1 in liver, and Gstm1 and Gstp1 in lung. Findings support maternal dietary supplementation with SFN induces NRF2-related gene expression in neonates via lactational transfer of SFN-NAC. However, NQO1 enzyme activity was not significantly elevated, highlighting the need to optimize dosing strategy. Additionally, in a pilot investigation of lactating women consuming a typical diet, without any purified SFN supplementation, 7 out of 8 breast milk samples showed SFN-NAC above the limit of quantification (LOQ). Notably, the one sample below the LOQ was collected from the only participant who reported no consumption of cruciferous vegetables in the past 24 h. The parent compound was not detected in any of the human breast milk samples. Overall, these data indicate lactational transfer of SFN-NAC at dietary relevant levels. Future studies are needed to evaluate pharmacokinetics and pharmacodynamics of lactational transfer for potential preventive or therapeutic effects in breastfeeding children.


Subject(s)
Acetylcysteine , Lactation , Sulfoxides , Mice , Animals , Child , Infant, Newborn , Humans , Female , Acetylcysteine/pharmacology , Breast Feeding , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Milk, Human/metabolism , Isothiocyanates/pharmacology
8.
Phytomedicine ; 123: 155270, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096717

ABSTRACT

BACKGROUND: 2-Amino-1-methyl-6-phenylimidazo [4,5-b] pyrimidine (PhIP) is a known carcinogen generated mainly from cooking meat and environmental pollutants. It is worth exploring the potential of natural small-molecule drugs to protect against adverse effects on embryonic development. PURPOSE: In this study, we investigated the potential toxicological effects of PhIP on embryonic heart tube formation and the effect of Sulforaphane (SFN) administration on the anti-toxicological effects of PhIP on embryonic cardiogenesis. STUDY DESIGN AND METHODS: First, the chicken embryo model was used to investigate the different phenotypes of embryonic heart tubes induced by various concentrations of PhIP exposure. We also proved that SFN rescues PhIP-induced embryonic heart tube malformation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR) and flow cytometry experiments were employed to explore the mechanisms by which SFN protects cardiac cells from oxidative damage in the presence of PhIP. We used RNA-seq analysis, molecular docking, in situ hybridization, cellular thermal shift assay and solution nuclear magnetic resonance spectroscopy to explore whether SFN protects cardiogenesis through the EGFR/MAPK signaling pathway. RESULTS: The study showed that PhIP might dose-dependently interfere with the C-looping heart tube (mild) or the fusion of a pair of bilateral endocardial tubes (severe) in chick embryos, while SFN administration prevented cardiac cells from oxidative damage in the presence of high-level PhIP. Furthermore, we found that excessive reactive oxygen species (ROS) production and subsequent apoptosis were not the principal mechanisms by which low-level PhIP induced malformation of heart tubes. This is due to PhIP-disturbed Mitogen-activated protein kinase (MAPK) signaling pathway could be corrected by SFN administration. CONCLUSIONS: This study provided novel insight that PhIP exposure could increase the risk of abnormalities in early cardiogenesis and that SFN could partially rescue various concentrations of PhIP-induced abnormal heart tube formation by targeting EGFR and mediating EGFR/MAPK signaling pathways.


Subject(s)
Heart Defects, Congenital , Imidazoles , Isothiocyanates , Sulfoxides , Animals , Chick Embryo , Molecular Docking Simulation , Isothiocyanates/pharmacology , MAP Kinase Signaling System , Reactive Oxygen Species/metabolism , ErbB Receptors/metabolism , Apoptosis
9.
Mar Drugs ; 21(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37888483

ABSTRACT

Heme oxygenase-1 (HO-1), which could be highly induced under the stimulation of oxidative stress, functions in reducing the damage caused by oxidative stress, and sulforaphane (SFN) is an antioxidant. This study aims to investigate whether HO-1 is involved in the repair of oxidative damage induced by oxidized fish oil (OFO) in Litopenaeus vannamei by sulforaphane (SFN). The oxidative stress model of L. vannamei was established by feeding OFO feed (OFO accounts for 6%), and they were divided into the following four groups: control group (injected with dsRNA-EGFP and fed with common feed), dsRNA-HO-1 group (dsRNA-HO-1, common feed), dsRNA-HO-1 + SFN group (dsRNA-HO-1, supplement 50 mg kg-1 SFN feed), and SFN group (dsRNA-EGFP, supplement 50 mg kg-1 SFN feed). The results showed that the expression level of HO-1 in the dsRNA-HO-1 + SFN group was significantly increased compared with the dsRNA-HO-1 group (p < 0.05). The activities of SOD in muscle and GPX in hepatopancreas and serum of the dsRNA-HO-1 group were significantly lower than those of the control group, and MDA content in the dsRNA-HO-1 group was the highest among the four groups. However, SFN treatment increased the activities of GPX and SOD in hepatopancreas, muscle, and serum and significantly reduced the content of MDA (p < 0.05). SFN activated HO-1, upregulated the expression of antioxidant-related genes (CAT, SOD, GST, GPX, Trx, HIF-1α, Nrf2, prx 2, Hsp 70), and autophagy genes (ATG 3, ATG 5), and stabilized the expression of apoptosis genes (caspase 2, caspase 3) in the hepatopancreas (p < 0.05). In addition, knocking down HO-1 aggravated the vacuolation of hepatopancreas and increased the apoptosis of hepatopancreas, while the supplement of SFN could repair the vacuolation of hepatopancreas and reduce the apoptosis signal. In summary, HO-1 is involved in the repair of the oxidative damage induced by OFO in L. vannamei by SFN.


Subject(s)
Antioxidants , Heme Oxygenase-1 , Antioxidants/pharmacology , Antioxidants/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Fish Oils/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sulfoxides , Superoxide Dismutase/metabolism
10.
Metabolomics ; 19(11): 89, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864615

ABSTRACT

INTRODUCTION: Twisted-leaf garlic (Allium obliquum L.) is a wild Allium species, which is traditionally used as aroma plant for culinary purposes due to its unique, garlic-like flavor. It represents an interesting candidate for domestication, breeding and cultivation. OBJECTIVES: The objective of this work was to explore and comprehensively characterize polar and semi-polar phytochemicals accumulating in leaves and bulbs of A. obliquum. METHOD: Plant material obtained from a multiyear field trial was analyzed using a metabolite profiling workflow based on ultra-high performance liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC/ESI-QTOFMS) and two chromatographic methods. For annotation of metabolites, tandem mass spectrometry experiments were carried out and the resulting accurate-mass collision-induced dissociation (CID) mass spectra interpreted. Onion and garlic bulb extracts were used as reference samples. RESULTS: Important metabolite classes influencing nutritional, sensory and technological properties were detected and structurally characterized including fructooligosaccharides with a degree of polymerization of 3-5, S-alk(en)ylcysteine sulfoxides and other S-substituted cysteine conjugates, flavonoids including O- and C-glycosylated flavones as well as O-glycosylated flavonols, steroidal saponins, hydroxycinnamic acid conjugates, phenylethanoids and free sphingoid bases. In addition, quantitative data for non-structural carbohydrates, S-alk(en)ylcysteine sulfoxides and flavonoids are provided. CONCLUSION: The compiled analytical data including CID mass spectra of more than 160 annotated metabolites provide for the first time a phytochemical inventory of A. obliquum and lay the foundation for its further use as aroma plant in food industry.


Subject(s)
Garlic , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Garlic/chemistry , Garlic/metabolism , Metabolomics , Chromatography, Liquid , Flavonoids/analysis , Sulfoxides/chemistry , Sulfoxides/metabolism , Plant Leaves/metabolism , Antioxidants/metabolism , Phytochemicals , Receptor Protein-Tyrosine Kinases/metabolism
11.
Food Chem ; 426: 136603, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37329791

ABSTRACT

Broccoli sprouts have a strong ability to accumulate isothiocyanate and selenium. In this study, the isothiocyanate content increased significantly as a result of ZnSO4 stress. Particularly, based on the isothiocyanate content is not affected, the combined ZnSO4 and Na2SeO3 treatment alleviated the inhibition of ZnSO4 and induced selenium content. Gene transcription and protein expression analyses revealed the changes in isothiocyanate and selenium metabolite levels in broccoli sprouts. ZnSO4 combined with Na2SeO3 was proven to activate a series of isothiocyanate metabolite genes (UGT74B1, OX1, and ST5b) and selenium metabolite genes (BoSultr1;1, BoCOQ5-2, and BoHMT1). The relative abundance of the total 317 and 203 proteins, respectively, in 4-day-old broccoli sprouts varied, and the metabolic and biosynthetic pathways for secondary metabolites were significantly enriched in ZnSO4/control and ZnSO4 combined Na2SeO3/ZnSO4 comparisons. The findings demonstrated how ZnSO4 combined with Na2SeO3 treatment reduced stress inhibition and the accumulation of encouraged selenium and isothiocyanates during the growth of broccoli sprouts.


Subject(s)
Brassica , Selenium , Selenium/metabolism , Proteome/metabolism , Isothiocyanates/metabolism , Sulfur , Brassica/metabolism , Glucosinolates/metabolism , Sulfoxides/metabolism
12.
Food Funct ; 14(11): 5023-5031, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37194921

ABSTRACT

Onion (Allium cepa L.) and its newly derived product "black onion" are characterised by the presence of compounds with potential bioactivity, particularly organosulfur compounds (OSCs). However, little is known about the metabolism, distribution, and excretion of these compounds as they pass through the gastrointestinal tract. This study monitored healthy subjects after an acute intake of black onion and analysed the excretion of OSCs using UHPLC-HRMS. A total of 31 OSCs were detected in urine after the acute ingestion of black onion, the main components being S-methyl-L-cysteine sulfoxide (methiin) (13.6 ± 3.9 µmol), isoalliin (12.4 ± 4.7 µmol) and S-propyl-L-cysteine (deoxypropiin) (3.1 ± 0.7 µmol). Moreover, N-acetylated metabolites of the major OSCs detected in black onion, namely, N-acetyl-S-(1-propenyl)-L-cysteine sulfoxide (NAS1PCS) and N-acetyl-S-(1-propenyl)-L-cysteine (NAS1PC), were found in urine after black onion consumption. The N-acetylation reaction takes place in the kidneys and liver, and metabolism pathways are proposed to explain the excretion of OSCs in urine. The basis of the identification of OSCs as urinary metabolites after black onion consumption is described for the first time and provides the basis for further research.


Subject(s)
Cysteine , Onions , Humans , Sulfur Compounds , Sulfoxides/metabolism , Eating
13.
Anal Chem ; 95(4): 2532-2539, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36652389

ABSTRACT

The development of MS-cleavable cross-linking mass spectrometry (XL-MS) has enabled the effective capture and identification of endogenous protein-protein interactions (PPIs) and their residue contacts at the global scale without cell engineering. So far, only lysine-reactive cross-linkers have been successfully applied for proteome-wide PPI profiling. However, lysine cross-linkers alone cannot uncover the complete PPI map in cells. Previously, we have developed a maleimide-based cysteine-reactive MS-cleavable cross-linker (bismaleimide sulfoxide (BMSO)) that is effective for mapping PPIs of protein complexes to yield interaction contacts complementary to lysine-reactive reagents. While successful, the hydrolysis and limited selectivity of maleimides at physiological pH make their applications in proteome-wide XL-MS challenging. To enable global PPI mapping, we have explored an alternative cysteine-labeling chemistry and thus designed and synthesized a sulfoxide-containing MS-cleavable haloacetamide-based cross-linker, Dibromoacetamide sulfoxide (DBrASO). Our results have demonstrated that DBrASO cross-linked peptides display the same fragmentation characteristics as other sulfoxide-containing MS-cleavable cross-linkers, permitting their unambiguous identification by MSn. In combination with a newly developed two-dimensional peptide fractionation method, we have successfully performed DBrASO-based XL-MS analysis of HEK293 cell lysates and demonstrated its capability to complement lysine-reactive reagents and expand PPI coverage at the systems-level.


Subject(s)
Cysteine , Proteome , Humans , Proteome/chemistry , Lysine , HEK293 Cells , Peptides/chemistry , Mass Spectrometry/methods , Sulfoxides/chemistry , Cross-Linking Reagents/chemistry
14.
J Agric Food Chem ; 70(46): 14679-14692, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36351177

ABSTRACT

Garlic is a medicinal plant and spice that has been used for millennia for its health-promoting effects. These medicinal properties are associated with low molecular weight organosulfur compounds, produced following the crushing of garlic cloves. One of these compounds, ajoene, is proposed to act by S-thioallylating cysteine residues on target proteins whose identification in cancer cells holds great promise for understanding mechanistic aspects of ajoene's cancer cell cytotoxicity. To this end, an ajoene analogue (called biotin-ajoene, BA), containing a biotin affinity tag, was designed as an activity-based probe specific for the protein targets of ajoene in MDA-MB-231 breast cancer cells. BA was synthesized via a convergent "click" strategy and found to retain its cytotoxicity against MDA-MB-231 cells compared to ajoene. Widespread biotinylation of proteins was found to occur via disulfide bond formation in a dose-dependent manner, and the biotin-ajoene probe was found to share the same protein targets as its parent compound, ajoene. The biotinylated proteins were affinity-purified from the treated MDA-MB-231 cell lysate using streptavidin-coated magnetic beads followed by an on-bead reduction, alkylation, and digestion to liberate the peptide fragments, which were analyzed by liquid chromatography tandem mass chromatography. A total of 600 protein targets were identified, among which 91% overlapped with proteins with known protein cysteine modification (PCM) sites. The specific sites were enriched for those susceptible to S-glutathionylation (-SSG) (16%), S-sulfhydration (-SSH) (20%), S-sulfenylation (-SOH) (22%), and S-nitrosylation (-SNO) (31%). As target validation, both ajoene and a dansylated ajoene (DP) were found to S-thiolate the pure recombinant forms of glutathione S-transferase pi 1 (GSTP1) and protein disulfide isomerase (PDI), and the ajoene analogue DP was found to be a more potent inhibitor than 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). Pathway analysis elucidated that ajoene targets functional and signaling pathways that are implicated in cancer cell survival, specifically cellular processes, metabolism, and genetic information processing pathways. The results of this study provide mechanistic insights into the character of the anti-cancer activity of the natural dietary compound ajoene.


Subject(s)
Breast Neoplasms , Garlic , Humans , Female , Proteomics , Cysteine/metabolism , Biotin , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Disulfides/pharmacology , Disulfides/chemistry , Sulfoxides , Garlic/chemistry , Antioxidants
15.
Oncol Rep ; 48(5)2022 11.
Article in English | MEDLINE | ID: mdl-36177901

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Patients with CRC may need chemotherapy (CTx) in a neoadjuvant, adjuvant or palliative setting through the course of the disease. Unfortunately, its effect is limited by chemoresistance and chemotoxicity. Novel more effective and non­toxic CTx regimens are needed to further improve CRC treatment outcomes. Thus, the present study was designed to test the hypothesis that non­toxic sulforaphane (SF) is effective against CRC and has additive effects in combination with conventional 5­fluorouracil, oxaliplatin and folinic acid (FOLFOX) CTx in vitro. Highly metastatic human colon cancer cells, CX­1, and fibroblasts were treated with FOLFOX ± SF. Cell viability was assessed using an MTT assay. The level of apoptosis and the expression of apoptotic proteins were measured by TUNEL assay and quantitative PCR analysis. Aldehyde dehydrogenase isoform 1 (ALDH1) and multidrug resistance protein 2 (MRP2) levels were evaluated. The ability of cells to form spheroids was measured in three­dimensional cell culture. SF alone and in combination with FOLFOX effectively decreased the viability of the CX­1 cells, promoted apoptosis within the CX­1 cells, prevented cellular spheroid formation and decreased ALDH1 activity. However, SF promoted MRP2 expression and protein levels. In conclusion, SF together with conventional FOLFOX has additive anticancer effects against highly metastatic human CRC in vitro.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma , Colonic Neoplasms , Isothiocyanates , Sulfoxides , Aldehyde Dehydrogenase 1 Family , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma/drug therapy , Colonic Neoplasms/drug therapy , Fluorouracil/therapeutic use , Humans , Isothiocyanates/therapeutic use , Leucovorin/therapeutic use , Organoplatinum Compounds/therapeutic use , Oxaliplatin/therapeutic use , Sulfoxides/therapeutic use
16.
Nutrients ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014767

ABSTRACT

Diets rich in cruciferous vegetables have been associated with a lower risk of incidence and progression of prostate cancer. Sulforaphane, an isothiocyanate derived from 4-methylsulphinylbutyl glucosinolate (glucoraphanin) that accumulates in certain of these vegetables, notably broccoli, has been implicated in their protective effects. Likewise, the consumption of garlic and its sulphur-containing compounds such as alliin have been associated with a reduction in risk of prostate cancer. In this study, we tested whether consuming glucoraphanin derived from broccoli seeds and alliin derived from garlic resulted in the occurrence of these potential bioactive compounds in the prostate, which may contribute to our understanding of the putative protective effects of these dietary components. We recruited 42 men scheduled for a trans-perineal prostate biopsy into a randomised, double-blinded, 2 × 2-factorial dietary supplement four-week intervention study, and 39 completed the study. The two active interventions were supplements providing glucoraphanin from broccoli (BroccoMax®) and alliin from garlic (Kwai Heartcare®). Following the intervention, prostate biopsy tissue was analysed for the presence of sulforaphane and its thiol conjugates and for alliin and associated metabolites. Sulforaphane occurred in significantly higher levels in the prostate tissue (both within the transition and peripheral zone) of men consuming the glucoraphanin containing supplements (p < 0.0001) compared to men not consuming these supplements. However, while alliin and alliin-derived metabolites were detected within the prostate, there was no significant difference in the concentrations of these compounds in the prostate of men consuming supplements derived from garlic compared to men not consuming these supplements.


Subject(s)
Allium , Brassica , Prostatic Neoplasms , Antioxidants/metabolism , Brassica/metabolism , Cysteine/analogs & derivatives , Glucosinolates/metabolism , Humans , Imidoesters/metabolism , Isothiocyanates/metabolism , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/prevention & control , Sulfoxides
17.
Chemistry ; 28(61): e202201997, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35938698

ABSTRACT

Chiral sulfoxides are versatile synthons and have gained a particular interest in asymmetric synthesis of active pharmaceutical and agrochemical ingredients. Herein, a linear oxidation-reduction bienzymatic cascade to synthesize chiral sulfoxides is reported. The extraordinarily stable and active vanadium-dependent chloroperoxidase from Curvularia inaequalis (CiVCPO) was used to oxidize sulfides into racemic sulfoxides, which were then converted to chiral sulfoxides by highly enantioselective methionine sulfoxide reductase A (MsrA) and B (MsrB) by kinetic resolution, respectively. The combinatorial cascade gave a broad range of structurally diverse sulfoxides with excellent optical purity (>99 %  ee) with complementary chirality. The enzymatic cascade requires no NAD(P)H recycling, representing a facile method for chiral sulfoxide synthesis. Particularly, the envisioned enzymatic cascade not only allows CiVCPO to gain relevance in chiral sulfoxide synthesis, but also provides a powerful approach for (S)-sulfoxide synthesis; the latter case is significantly unexplored for heme-dependent peroxidases and peroxygenases.


Subject(s)
Methionine Sulfoxide Reductases , Sulfoxides , Oxidation-Reduction , Safrole
18.
Toxicol Appl Pharmacol ; 451: 116177, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35905821

ABSTRACT

Determining the mechanisms of toxicity induced by pollutants has long been a research priority in lieu of considering the mechanisms of resilience that prevent deleterious impacts. Protective mechanisms in many taxa can be therapeutically targeted to enhance resilience to synthetic toxicants. For example, the environmental sensor, Nuclear factor (erythroid-derived 2)-like 2 (Nfe2l2 or Nrf2), a transcription factor, facilitates transcription of many protective genes. Hypospadias is a common malformation of the penis. The risk of being born with hypospadias increases with pollutant exposure. We use vinclozolin-induced hypospadias in the mouse as a model to test the hypothesis that pollutant-induced birth defects can be prevented and reduced in severity by augmenting natural mechanisms of resilience. Pregnant mice were exposed to the demasculinizing toxicant, vinclozolin, in combination with increasing doses of the NRF2 activator, sulforaphane. The sulforaphane dose that most effectively increased masculinization (anogenital distance) was identified and used to test the hypothesis that sulforaphane reduces the hypospadias-inducing potency of vinclozolin. Finally, a Nrf2 knockout study was conducted to test whether NRF2 was required for the sulforaphane-induced rescue effects. Sulforaphane supplementation to vinclozolin exposed embryos increased anogenital distance in a nonlinear fashion typical of Nrf2 activators. The most effective dose of sulforaphane (45 mg/kg) reduced the occurrence and severity of vinclozolin-induced hypospadias and corrected penis morphogenesis. The sulforaphane-induced rescue effect was dependent on the presence of Nrf2. Nrf2 plays a critical role in protecting the fetus from vinclozolin and reduces the incidence and severity of hypospadias, the most common birth defect in boys in many countries. This work lays a foundation for developing prenatal supplements that will protect the fetus from pollutant-induced hypospadias. Studying the protective mechanisms that drive resilience to toxicants will facilitate innovation of protective therapies.


Subject(s)
Environmental Pollutants , Hypospadias , Animals , Dietary Supplements , Disease Models, Animal , Environmental Pollutants/adverse effects , Female , Humans , Hypospadias/chemically induced , Hypospadias/prevention & control , Incidence , Isothiocyanates/pharmacology , Male , Mice , NF-E2-Related Factor 2/genetics , Oxazoles , Pregnancy , Sulfoxides
19.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682634

ABSTRACT

Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- ß-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 µM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 µM), L-cysteine (150 µM), and 3-mercaptopyruvate (150 µM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.


Subject(s)
Hydrogen Sulfide , Sarcopenia , Cystathionine , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Cysteine/metabolism , Glucosinolates , Humans , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Oximes , Sarcopenia/drug therapy , Sulfoxides , Sulfurtransferases/metabolism
20.
J Nat Med ; 76(4): 803-810, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35691991

ABSTRACT

S-Alk(en)ylcysteine sulfoxides (CSOs), such as methiin, alliin, and isoalliin, are health-beneficial natural products biosynthesized in the genus Allium. Here, we report the induction of multiple callus tissue lines from three Allium vegetables, onion (A. cepa), Welsh onion (A. fistulosum), and Chinese chive (A. tuberosum), and their ability to accumulate CSOs. Callus tissues were initiated and maintained in the presence of picloram and 2-isopentenyladenine as auxin and cytokinin, respectively. For all plant species tested, the callus tissues almost exclusively accumulated methiin as CSO, while the intact plants contained a substantial amount of isoalliin together with methiin. These results suggest that the cellular developmental conditions and the regulatory mechanisms required for the biosynthesis of methiin are different from those of alliin and isoalliin. The methiin content in the callus tissues of onion and Welsh onion was much higher compared to that in the intact plants, and its cellular concentration could be estimated as 1.9-21.7 mM. The activity of alliinase that degrades CSOs in the callus tissues was much lower than that of the intact plants for onion and Welsh onion, but at similar levels as in the intact plants for Chinese chive. Our findings that the callus tissues of onion and Welsh onion showed high methiin content and low alliinase activity highlighted their potential as a plant-based system for methiin production.


Subject(s)
Allium , Biological Products , Onions/metabolism , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL