Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Environ Monit Assess ; 196(5): 472, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662176

ABSTRACT

Endemic medicinal plants deserve immediate research priorities as they typically show a limited distribution range, represent few and fragmented populations in the wild and are currently facing anthropogenic threats like overharvesting and habitat degradation. One of the important aspects of ensuring their successful conservation and sustainable utilization lies in comprehending the fundamental seed biology, particularly the dormancy status and seed germination requirements of these plants. Here, we studied the seed eco-physiology and regeneration potential of Swertia thomsonii-an endemic medicinal plant of western Himalaya. We investigated the effect of different pre-sowing treatments, sowing media and sowing depth on seed germination parameters of S. thomsonii. Seeds of S. thomsonii exhibit morphophysiological dormancy (MPD), i.e. when the embryo of the seed is morphologically and/or physiologically immature. Wet stratification at 4 °C for 20 days, pre-sowing treatment with 50 ppm GA3 and pre-sowing treatment with 50 ppm KNO3 were found ideal for overcoming dormancy and enhancing the seed germination of S. thomsonii. Furthermore, seed germination and seedling survival were significantly influenced by pre-sowing treatments, sowing media and sowing depth. The percentage of seed germination and seedling survival got enhanced up to 84-86% and 73-75% respectively when seeds were pre-treated with GA3 or KNO3 and then sown in cocopeat + perlite (1:1) at a depth of 1 cm. The information obtained in the present study outlines an efficient protocol for large-scale cultivation of S. thomsonii thereby limiting the pressure of overexploitation from its natural habitats and may also help in the restoration and conservation of this valuable plant species.


Subject(s)
Conservation of Natural Resources , Germination , Plants, Medicinal , Seeds , Swertia , Plants, Medicinal/growth & development , Seeds/growth & development , Conservation of Natural Resources/methods , Swertia/physiology , India , Seedlings/growth & development , Ecosystem , Plant Dormancy
2.
Mol Biol Rep ; 45(2): 77-98, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29349608

ABSTRACT

Swertia chirayita is a high-value medicinal herb exhibiting antidiabetic, hepatoprotective, anticancer, antiediematogenic and antipyretic properties. Scarcity of its plant material has necessitated in vitro production of therapeutic metabolites; however, their yields were low compared to field grown plants. Possible reasons for this could be differences in physiological and biochemical processes between plants grown in photoautotrophic versus photoheterotrophic modes of nutrition. Comparative transcriptomes of S. chirayita were generated to decipher the crucial molecular components associated with the secondary metabolites biosynthesis. Illumina HiSeq sequencing yielded 57,460 and 43,702 transcripts for green house grown (SCFG) and tissue cultured (SCTC) plants, respectively. Biological role analysis (GO and COG assignments) revealed major differences in SCFG and SCTC transcriptomes. KEGG orthology mapped 351 and 341 transcripts onto secondary metabolites biosynthesis pathways for SCFG and SCTC transcriptomes, respectively. Nineteen out of 30 genes from primary metabolism showed higher in silico expression (FPKM) in SCFG versus SCTC, possibly indicating their involvement in regulating the central carbon pool. In silico data were validated by RT-qPCR using a set of 16 genes, wherein 10 genes showed similar expression pattern across both the methods. Comparative transcriptomes identified differentially expressed transcription factors and ABC-type transporters putatively associated with secondary metabolism in S. chirayita. Additionally, functional classification was performed using NCBI Biosystems database. This study identified the molecular components implicated in differential modes of nutrition (photoautotrophic vs. photoheterotrophic) in relation to secondary metabolites production in S. chirayita.


Subject(s)
Gene Expression Profiling/methods , Swertia/genetics , Swertia/metabolism , Autotrophic Processes/physiology , High-Throughput Nucleotide Sequencing/methods , Phototrophic Processes/physiology , Plant Extracts , Plants, Medicinal/genetics , Secondary Metabolism/physiology , Swertia/physiology , Transcriptome/genetics
3.
J Photochem Photobiol B ; 174: 162-172, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28779689

ABSTRACT

The present study demonstrates the influence of LED irradiance of various wavelengths on shoot regeneration, biomass accumulation, photosynthetic pigment contents, and antioxidant potentials of Swertia chirata - a critically endangered medicinal plant. Mixed treatment of blue (BL) and red LEDs (RL) in equal proportion (1:1) significantly improved the shoot regeneration response. A machine vision system was developed to assess the shoot regeneration potential under different lighting treatments. Regenerated shoots exposed under BL:RL (1:1) exhibited higher biomass accumulation and canopy development compared to other lighting treatments. Improved canopy growth was evident from the increase in the area, major axis, minor axis, convex area, equivalent diameter and perimeter of regenerated shoot clusters. A higher correlation of dry weight (DW) was noted with the image feature, weighted density (WD) than the fresh weight (FW) in all the LED treated cultures. The significant correlation between DW and WD implies that the image feature WD can be adopted as a non-invasive approach for measuring biomass accumulation as well as detecting hyperhydricity. The developed machine vision approach provides a new direction in the evaluation of shoot organogenesis that displayed features including both shoot multiplication and canopy development. Chlorophyll and carotenoid contents of the regenerated shoots were found to be higher under BL:RL (1:1) than the other treatments. Supplementation of RL led to a reduction in the pigment contents. Spectral quality of lights also significantly influenced the accumulation of total phenolics, flavonoids and flavonols. Cultures exposed under BL exhibited the maximum accumulation of polyphenols. A similar effect of spectral quality was observed with the antioxidant capacity and reducing power potential of leaf extract. The findings demonstrate the ability of LEDs in inducing shoot regeneration as well as accumulation of phenolic antioxidants and suggest that the proportion of blue and red LEDs is an important factor in achieving the optimum response.


Subject(s)
Antioxidants/metabolism , Light , Phenols/metabolism , Plant Shoots/physiology , Plant Shoots/radiation effects , Regeneration/radiation effects , Swertia/radiation effects , Flavonols/metabolism , Molecular Imaging , Photosynthesis/radiation effects , Swertia/metabolism , Swertia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL