Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38431846

ABSTRACT

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.


Subject(s)
Bacteriophages , Synechococcus , Synechococcus/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Carrier Proteins
2.
Microbiol Spectr ; 12(2): e0278623, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38179917

ABSTRACT

Phosphorus, a vital macronutrient, often limits primary productivity in marine environments. Marine Synechococcus strains, including WH8102, rely on high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate in oligotrophic oceans. However, WH8102 possesses three distinct PstS homologs whose substrate specificity and ecological roles are unclear. The three PstS homologs were heterologously expressed and purified to investigate their substrate specificity and binding kinetics. Our study revealed that all three PstS homologs exhibited a high degree of specificity for phosphate but differed in phosphate binding affinities. Notably, PstS1b displayed nearly 10-fold higher binding affinity (KD = 0.44 µM) compared to PstS1a (KD = 3.3 µM) and PstS2 (KD = 4.3 µM). Structural modeling suggested a single amino acid variation in the binding pocket of PstS1b (threonine instead of serine in PstS1a and PstS2) likely contributed to its higher Pi affinity. Genome context data, together with the protein biophysical data, suggest distinct ecological roles for the three PstS homologs. We propose that PstS1b may be involved in scavenging inorganic phosphorus in oligotrophic conditions and that PstS1a may be involved in transporting recycled phosphate derived from organic phosphate cleavage. The role of PstS2 is less clear, but it may be involved in phosphate uptake when environmental phosphate concentrations are transiently higher. The conservation of three distinct PstS homologs in Synechococcus clade III strains likely reflects distinct adaptations for P acquisition under varying oligotrophic conditions.IMPORTANCEPhosphorus is an essential macronutrient that plays a key role in marine primary productivity and biogeochemistry. However, intense competition for bioavailable phosphorus in the marine environment limits growth and productivity of ecologically important cyanobacteria. In oligotrophic oceans, marine Synechococcus strains, like WH8102, utilize high-affinity phosphate-binding proteins (PstS) to scavenge inorganic phosphate. However, WH8102 possesses three distinct PstS homologs, with unclear substrate specificity and ecological roles, creating a knowledge gap in understanding phosphorus acquisition mechanisms in picocyanobacteria. Through genomic, functional, biophysical, and structural analysis, our study unravels the ecological functions of these homologs. Our findings enhance our understanding of cyanobacterial nutritional uptake strategies and shed light on the crucial role of these conserved nutrient uptake systems in adaptation to specific niches, which ultimately underpins the success of marine Synechococcus across a diverse array of marine ecosystems.


Subject(s)
Synechococcus , Phosphorus/metabolism , Substrate Specificity , Ecosystem , Phosphates/metabolism , Phosphate-Binding Proteins/metabolism
3.
Environ Sci Pollut Res Int ; 30(26): 69150-69164, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37133655

ABSTRACT

Understanding the immediate impacts of oil spills is essential to recognizing their long-term consequences on the marine environment. In this study, we traced the early (within one week) signals of crude oil in seawater and plankton after a major oil spill in October 2019 in the Red Sea. At the time of sampling, the plume had moved eastward, but we detected significant signs of incorporation of oil carbon into the dissolved organic carbon pool, resulting in a 10-20% increase in the ultraviolet (UV) absorption coefficient (a254) of chromophoric dissolved organic matter (CDOM), elevated oil fluorescence emissions, and depletion of the carbon isotope composition (δ13C) of the seawater. The abundance of the picophytoplankton Synechococcus was not affected, but the proportion of low nucleic acid (LNA) bacteria was significantly higher. Moreover, specific bacterial genera (Alcanivorax, Salinisphaera, and Oleibacter) were enriched in the seawater microbiome. Metagenome-assembled genomes (MAGs) suggested that such bacteria presented pathways for growing on oil hydrocarbons. Traces of polycyclic aromatic hydrocarbons (PAHs) were also detected in zooplankton tissues, revealing the rapid entry of oil pollutants into the pelagic food web. Our study emphasizes the early signs of short-lived spills as an important aspect of the prediction of long-term impacts of marine oil spills.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Synechococcus , Water Pollutants, Chemical , Petroleum Pollution/analysis , Plankton/metabolism , Petroleum/analysis , Indian Ocean , Seawater/microbiology , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
4.
ISME J ; 17(7): 1040-1051, 2023 07.
Article in English | MEDLINE | ID: mdl-37087502

ABSTRACT

Despite being fundamental to multiple biological processes, phosphorus (P) availability in marine environments is often growth-limiting, with generally low surface concentrations. Picocyanobacteria strains encode a putative ABC-type phosphite/phosphate/phosphonate transporter, phnDCE, thought to provide access to an alternative phosphorus pool. This, however, is paradoxical given most picocyanobacterial strains lack known phosphite degradation or carbon-phosphate lyase pathway to utilise alternate phosphorus pools. To understand the function of the PhnDCE transport system and its ecological consequences, we characterised the PhnD1 binding proteins from four distinct marine Synechococcus isolates (CC9311, CC9605, MITS9220, and WH8102). We show the Synechococcus PhnD1 proteins selectively bind phosphorus compounds with a stronger affinity for phosphite than for phosphate or methyl phosphonate. However, based on our comprehensive ligand screening and growth experiments showing Synechococcus strains WH8102 and MITS9220 cannot utilise phosphite or methylphosphonate as a sole phosphorus source, we hypothesise that the picocyanobacterial PhnDCE transporter is a constitutively expressed, medium-affinity phosphate transporter, and the measured affinity of PhnD1 to phosphite or methyl phosphonate is fortuitous. Our MITS9220_PhnD1 structure explains the comparatively lower affinity of picocyanobacterial PhnD1 for phosphate, resulting from a more limited H-bond network. We propose two possible physiological roles for PhnD1. First, it could function in phospholipid recycling, working together with the predicted phospholipase, TesA, and alkaline phosphatase. Second, by having multiple transporters for P (PhnDCE and Pst), picocyanobacteria could balance the need for rapid transport during transient episodes of higher P availability in the environment, with the need for efficient P utilisation in typical phosphate-deplete conditions.


Subject(s)
Organophosphonates , Phosphites , Synechococcus , Phosphorus/metabolism , Phosphate Transport Proteins , Phosphites/metabolism , Synechococcus/metabolism , Phosphates/metabolism , Membrane Transport Proteins
5.
Environ Microbiol ; 25(7): 1300-1313, 2023 07.
Article in English | MEDLINE | ID: mdl-36861357

ABSTRACT

Cobalamin availability can influence primary productivity and ecological interactions in marine microbial communities. The characterization of cobalamin sources and sinks is a first step in investigating cobalamin dynamics and its impact on productivity. Here, we identify potential cobalamin sources and sinks on the Scotian Shelf and Slope in the Northwest Atlantic Ocean. Functional and taxonomic annotation of bulk metagenomic reads, combined with analysis of genome bins, were used to identify potential cobalamin sources and sinks. Cobalamin synthesis potential was mainly attributed to Rhodobacteraceae, Thaumarchaeota, and cyanobacteria (Synechococcus and Prochlorococcus). Cobalamin remodelling potential was mainly attributed to Alteromonadales, Pseudomonadales, Rhizobiales, Oceanospirilalles, Rhodobacteraceae, and Verrucomicrobia, while potential cobalamin consumers include Flavobacteriaceae, Actinobacteria, Porticoccaceae, Methylophiliaceae, and Thermoplasmatota. These complementary approaches identified taxa with the potential to be involved in cobalamin cycling on the Scotian Shelf and revealed genomic information required for further characterization. The Cob operon of Rhodobacterales bacterium HTCC2255, a strain with known importance in cobalamin cycling, was similar to a major cobalamin producer bin, suggesting that a related strain may represent a critical cobalamin source in this region. These results enable future inquiries that will enhance our understanding of how cobalamin shapes microbial interdependencies and productivity in this region.


Subject(s)
Alphaproteobacteria , Flavobacteriaceae , Gammaproteobacteria , Synechococcus , Vitamin B 12 , Archaea/genetics , Atlantic Ocean
6.
ISME J ; 17(5): 720-732, 2023 05.
Article in English | MEDLINE | ID: mdl-36841901

ABSTRACT

The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.


Subject(s)
Prochlorococcus , Synechococcus , Seawater/microbiology , Ecosystem , Ferric Compounds/metabolism , Oceans and Seas , Synechococcus/genetics , Synechococcus/metabolism , Metagenome , Multigene Family , Nitrogen/metabolism , Phosphorus/metabolism , Prochlorococcus/genetics , Phylogeny
7.
Bioresour Technol ; 363: 127921, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36089131

ABSTRACT

In order to improve the potential of cyanobacterial cell factories, Synechococcus sp. PCC7002 was engineered as 'one cell-two wells bio-refinery', for ethylene ('heterologous' hydrocarbon) and carotenoids ('natural' metabolites) production, and demonstrating its outdoor performance. Although the cultures showed better production outdoor, they experienced multiple collapses during scale-up. Hence, flux balance analysis was performed which predicted higher ethylene production with increase in carbon input under outdoor light conditions. Furthermore, FBA predicted that ethylene production will not increase beyond a threshold carbon input flux, owing to limitations on ribulose-1,5-bisphosphate regeneration. Hence, a bicarbonate-supplementation strategy was devised. Cultures grown outdoor at optimal bicarbonate concentration (20 g/L) resulted in improved growth (0.141/h) and ethylene productivity (1.88 mL/L.h) for > 10 days, with enhanced carotenoid titres (40.4 mg/L). In a 100 L air-lift photo-bioreactor; cultures exhibited efficient ethylene (2.464 mL/L.h) and biomass (0.3 g/L.d) productivities, and carotenoids titres (64.4 mg/L), establishing a significant step towards commercialization.


Subject(s)
Bicarbonates , Synechococcus , Bicarbonates/metabolism , Carbon/metabolism , Carotenoids/metabolism , Ethylenes/metabolism , Synechococcus/metabolism
8.
Environ Microbiol ; 24(7): 3037-3050, 2022 07.
Article in English | MEDLINE | ID: mdl-35590460

ABSTRACT

To acquire phosphorus, cyanobacteria use the typical bacterial ABC-type phosphate transporter, which is composed of a periplasmic high-affinity phosphate-binding protein PstS and a channel formed by two transmembrane proteins PstC and PstA. A putative pstS gene was identified in the genomes of cyanophages that infect the unicellular marine cyanobacteria Prochlorococcus and Synechococcus. However, it has not been determined whether the cyanophage PstS protein is functional during infection to enhance the phosphate uptake rate of host cells. Here we showed that the cyanophage P-SSM2 PstS protein was abundant in the infected Prochlorococcus NATL2A cells and the host phosphate uptake rate was enhanced after infection. This is consistent with our biochemical and structural analyses showing that the phage PstS protein is indeed a high-affinity phosphate-binding protein. We further modelled the complex structure of phage PstS with host PstCA and revealed three putative interfaces that may facilitate the formation of a chimeric ABC transporter. Our results provide insights into the molecular mechanism by which cyanophages enhance the phosphate uptake rate of cyanobacteria. Phosphate acquisition by infected bacteria can increase the phosphorus contents of released cellular debris and virus particles, which together constitute a significant proportion of the marine dissolved organic phosphorus pool.


Subject(s)
Bacteriophages , Prochlorococcus , Synechococcus , Bacteriophages/genetics , Bacteriophages/metabolism , Myoviridae , Phosphate-Binding Proteins/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Prochlorococcus/metabolism , Synechococcus/metabolism
9.
World J Microbiol Biotechnol ; 37(1): 2, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33392870

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.


Subject(s)
Culture Media/metabolism , Microbial Consortia/physiology , Polyhydroxyalkanoates/metabolism , Bacillus/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Coculture Techniques/methods , Fatty Acids/metabolism , Fermentation , Petroleum/metabolism , Polyesters , Pseudomonas/metabolism , Ralstonia/metabolism , Sewage , Synechococcus/metabolism , Water Purification
10.
Photosynth Res ; 149(1-2): 213-231, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33464442

ABSTRACT

Room temperature fluorescence in vivo and its light-induced changes are dominated by chlorophyll a fluorescence excited in photosystem II, F(II), peaking around 685 nm. Photosystem I fluorescence, F(I), peaking around 730 nm, so far has been assumed to be constant in vivo. Here, we present evidence for significant contributions of F(I) to variable fluorescence in the green unicellular alga Chlorella vulgaris, the cyanobacterium Synechococcus leopoliensis and a light-green ivy leaf. A Multi-Color-PAM fluorometer was applied for measurements of the polyphasic fluorescence rise (O-I1-I2-P) induced by strong 440 nm light in a dilute suspension of Chlorella, with detection alternating between emission above 700 nm (F > 700) and below 710 nm (F < 710). By averaging 10 curves each of the F > 700 and F < 710 recordings even small differences could be reliably evaluated. After equalizing the amplitudes of the O-I1 phase, which constitutes a specific F(II) response, the O-I1-I2 parts of the two recordings were close to identical, whereas the I2-P phase was larger in F > 700 than in F < 710 by a factor of 1.42. In analogous measurements with Synechococcus carried out in the dark state 2 using strong 625 nm actinic light, after O-I1 equalization the I2-P phase in F > 700 exceeded that in F < 710 even by a factor of 1.99. In measurements with Chlorella, the I2-P phase and with it the apparent variable fluorescence of PS I, Fv(I), were suppressed by moderate actinic background light and by the plastoquinone antagonist DBMIB. Analogous measurements with leaves are rendered problematic by unavoidable light intensity gradients and the resulting heterogenic origins of F > 700 and F < 710. However, a light-green young ivy leaf gave qualitatively similar results as those obtained with the suspensions, thus strongly suggesting the existence of Fv(I) also in leaves.


Subject(s)
Chlorella vulgaris/metabolism , Chlorophyll A/metabolism , Fluorescence , Hedera/metabolism , Photosystem I Protein Complex/metabolism , Synechococcus/metabolism , Adaptation, Ocular/physiology , Temperature
11.
Metab Eng ; 62: 275-286, 2020 11.
Article in English | MEDLINE | ID: mdl-32992032

ABSTRACT

Due to their capability of photosynthesis and autotrophic growth, cyanobacteria are currently investigated with regard to the sustainable production of a wide variety of chemicals. So far, however, no attempt has been undertaken to engineer cyanobacteria for the biotechnological production of vitamins, which is probably due to the light-sensitivity of many of these compounds. We now describe a photoautotrophic bioprocess to synthesize riboflavin, a vitamin used as a supplement in the feed and food industry. By overexpressing the riboflavin biosynthesis genes ribDGEABHT from Bacillus subtilis in the marine cyanobacterium Synechococcus sp. PCC 7002 riboflavin levels in the supernatant of the corresponding recombinant strain increased 56-fold compared to the wild-type. Introduction of a second promoter region upstream of the heterologous ribAB gene - coding for rate-limiting enzymatic functions in the riboflavin biosynthesis pathway - led to a further increase of riboflavin levels (211-fold compared to the wild-type). Degradation of the light-sensitive product riboflavin was prevented by culturing the genetically engineered Synechococcus sp. PCC 7002 strains in the presence of dichromatic light generated by red light-emitting diodes (λ = 630 and 700 nm). Synechococcus sp. PCC 7002 naturally is resistant to the toxic riboflavin analog roseoflavin. Expression of the flavin transporter pnuX from Corynebacterium glutamicum in Synechococcus sp. PCC 7002 resulted in roseoflavin-sensitive recombinant strains which in turn could be employed to select roseoflavin-resistant, riboflavin-overproducing strains as a chassis for further improvement.


Subject(s)
Corynebacterium glutamicum , Synechococcus , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Corynebacterium glutamicum/metabolism , Membrane Transport Proteins , Riboflavin , Synechococcus/genetics , Synechococcus/metabolism
12.
mBio ; 11(1)2020 02 18.
Article in English | MEDLINE | ID: mdl-32071270

ABSTRACT

Microbial photoautotroph-heterotroph interactions underlie marine food webs and shape ecosystem diversity and structure in upper ocean environments. Here, bacterial community composition, lifestyle preference, and genomic- and proteomic-level metabolic characteristics were investigated for an open ocean Synechococcus ecotype and its associated heterotrophs over 91 days of cocultivation. The associated heterotrophic bacterial assembly mostly constituted five classes, including Flavobacteria, Bacteroidetes, Phycisphaerae, Gammaproteobacteria, and Alphaproteobacteria The seven most abundant taxa/genera comprised >90% of the total heterotrophic bacterial community, and five of these displayed distinct lifestyle preferences (free-living or attached) and responses to Synechococcus growth phases. Six high-quality genomes, including Synechococcus and the five dominant heterotrophic bacteria, were reconstructed. The only primary producer of the coculture system, Synechococcus, displayed metabolic processes primarily involved in inorganic nutrient uptake, photosynthesis, and organic matter biosynthesis and release. Two of the flavobacterial populations, Muricauda and Winogradskyella, and an SM1A02 population, displayed preferences for initial degradation of complex compounds and biopolymers, as evinced by high abundances of TonB-dependent transporters (TBDTs), glycoside hydrolase, and peptidase proteins. Polysaccharide utilization loci present in the flavobacterial genomes influence their lifestyle preferences and close associations with phytoplankton. In contrast, the alphaproteobacterium Oricola sp. population mainly utilized low-molecular-weight dissolved organic carbon (DOC) through ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), and tripartite tricarboxylate transporter (TTT) transport systems. The heterotrophic bacterial populations exhibited complementary mechanisms for degrading Synechococcus-derived organic matter and driving nutrient cycling. In addition to nutrient exchange, removal of reactive oxygen species and vitamin trafficking might also contribute to the maintenance of the Synechococcus-heterotroph coculture system and the interactions shaping the system.IMPORTANCE The high complexity of in situ ecosystems renders it difficult to study marine microbial photoautotroph-heterotroph interactions. Two-member coculture systems of picocyanobacteria and single heterotrophic bacterial strains have been thoroughly investigated. However, in situ interactions comprise far more diverse heterotrophic bacterial associations with single photoautotrophic organisms. In the present study, combined metagenomic and metaproteomic data supplied the metabolic potentials and activities of uncultured dominant bacterial populations in the coculture system. The results of this study shed light on the nature of interactions between photoautotrophs and heterotrophs, improving our understanding of the complexity of in situ environments.


Subject(s)
Biochemical Phenomena/physiology , Heterotrophic Processes/physiology , Metagenome , Proteomics , Synechococcus/genetics , Synechococcus/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Physiological Phenomena , Bacterial Secretion Systems , Ecosystem , Glycogen/metabolism , Microbiota/genetics , Microbiota/physiology , Nutrients , Oceans and Seas , Oxidative Stress , Photosynthesis , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
13.
Biochem Biophys Res Commun ; 522(3): 662-668, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31787233

ABSTRACT

Cyanobacterial monoglucosyldiacylglycerol (MGlcDG) not only serves as a precursor for monogalactosyldiacylglycerol (MGDG) synthesis, but also participates in stress acclimation. Two genes (mgdA and mgdE) related to MGDG synthesis of Synechococcus sp. PCC 7942 were identified. The mgdE-suppressed mutant (AE) accumulated MGlcDG (4.2%) and showed better growth and photosynthetic activities compared with WT and other mutants (mgdA/mgdE-overexpressed and mgdA-suppressed strains), which suggested that MGlcDG was involved in phosphate stress adaptation for Synechococcus sp. PCC 7942. A notable increase in contents of 18:1 fatty acid (FA) of MGDG (127%), DGDG (68%), and SQDG (105%) in AE were found under phosphate starvation. However, the expression of △9 desaturase (desC) was not higher in AE than that in WT during phosphate-starved period. These results suggested that MGlcDG might be involved in the process of FA desaturation, which contributed to membrane fluidity and cell basic metabolism for stress acclimation in cyanobacteria. In complementary experiments of E. coli, although the expression of mgdA and desC in the mgdA and desC coexpressed strain (OEAC) reduced by 22% and 35% compared with that of the strains only overexpressing mgdA (OEA) or desC (OEC), the content of unsaturated FA in OEAC was the highest. This further implied that the accumulation of MGlcDG could prompt FA desaturation in E. coli. Therefore, we propose that an overproduction of MGlcDG is responsible for FA desaturation and participates in phosphate stress adaptation in cyanobacteria.


Subject(s)
Galactolipids/metabolism , Phosphates/metabolism , Synechococcus/physiology , Adaptation, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Galactolipids/genetics , Genes, Bacterial , Stress, Physiological , Synechococcus/genetics
14.
Bioresour Technol ; 294: 122167, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563740

ABSTRACT

One of the hurdles of renewable energy production from photosynthetic microorganisms is separating the biomass from water in cultures. Bioflocculation with filamentous fungus Aspergillus niger, an alternative low-cost method used for such separation, was studied with four cyanobacteria. Cocultures with Spirulina maxima and Synechococcus subsalsus resulted in bioflocculation efficiencies up to 94%, while with Anabaena variabilis and Anabaena siamensis bioflocculation did not occur. S. subsalsus was selected to evaluate the effect of cyanobacterial initial concentration, fungal:cyanobacterial ratio, carbon supplementation, and pH on biomass densification. Bioflocculation efficiencies up to 98% in 48 h were obtained with fungal:cyanobacterial ratio 1:5 and carbon supplementation. Despite the lower efficiency (54%), the highest concentration factor of S. subsalsus suspension (62.8 - from 0.9 to 56.5 g/L) was obtained with ratio 1:5 without supplementation. This result was attributed to the smaller pellet diameter (2.5 mm) and indicated that lower pellet growth is better for biomass densification.


Subject(s)
Aspergillus niger , Synechococcus , Biomass , Carbon , Dietary Supplements
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158522, 2019 12.
Article in English | MEDLINE | ID: mdl-31487556

ABSTRACT

Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.


Subject(s)
Glycolipids/metabolism , Membrane Lipids/metabolism , Phosphates/metabolism , Synechococcus/metabolism , Galactolipids/metabolism , Lipidomics , Phosphatidylglycerols/metabolism
16.
Environ Sci Pollut Res Int ; 26(22): 22450-22463, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31161548

ABSTRACT

Zinc oxide (ZnO) nanoparticles are commonly used in sunscreens for their UV-filtering properties. Their growing use can lead to their release into ecosystems, raising question about their toxicity. Effects of these engineered nanomaterials (ENMs) on cyanobacteria, which are important primary producers involved in many biogeochemical cycles, are unknown. In this study, we investigated by several complementary approaches the toxicological effects of two marketed ZnO-ENMs (coated and uncoated) on the model cyanobacteria Synechococcus elongatus PCC 7942. It was shown that despite the rapid adsorption of ENMs on cell surface, toxicity is mainly due to labile Zn released by ENMs. Zn dissipates cell membrane potential necessary for both photosynthesis and respiration, and induces oxidative stress leading to lipid peroxidation and DNA damages. It leads to global downregulation of photosystems, oxidative phosphorylation, and transcription/translation machineries. This also translates into significant decrease of intracellular ATP content and cell growth inhibition. However, there is no major loss of pigments and even rather an increase in exposed cells compared to controls. A proposed way to reduce the environmental impact of Zn would be the improvement of the coating stability to prevent solubility of ZnO-ENMs.


Subject(s)
Cyanobacteria/drug effects , Nanoparticles/toxicity , Synechococcus/chemistry , Zinc Oxide/chemistry , Adsorption , Cyanobacteria/chemistry , DNA Damage , Ecosystem , Oxidative Stress , Photosynthesis , Sunscreening Agents/chemistry , Zinc Oxide/toxicity
17.
Metab Eng ; 54: 255-263, 2019 07.
Article in English | MEDLINE | ID: mdl-31063791

ABSTRACT

Cyanobacteria, such as Synechococcus sp. PCC 7002 (Syn7002), are promising chassis strains for "green" biotechnological applications as they can be grown in seawater using oxygenic photosynthesis to fix carbon dioxide into biomass. Their other major nutritional requirements for efficient growth are sources of nitrogen (N) and phosphorus (P). As these organisms are more economically cultivated in outdoor open systems, there is a need to develop cost-effective approaches to prevent the growth of contaminating organisms, especially as the use of antibiotic selection markers is neither economically feasible nor ecologically desirable due to the risk of horizontal gene transfer. Here we have introduced a synthetic melamine degradation pathway into Syn7002 and evolved the resulting strain to efficiently use the nitrogen-rich xenobiotic compound melamine as the sole N source. We also show that expression of phosphite dehydrogenase in the absence of its cognate phosphite transporter permits growth of Syn7002 on phosphite and can be used as a selectable marker in Syn7002. We combined these two strategies to generate a strain that can grow on melamine and phosphite as sole N and P sources, respectively. This strain is able to resist deliberate contamination in large excess and should be a useful chassis for metabolic engineering and biotechnological applications using cyanobacteria.


Subject(s)
Nitrogen , Phosphorus , Synechococcus/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Nitrogen/pharmacology , Phosphorus/chemistry , Phosphorus/metabolism , Phosphorus/pharmacology , Synechococcus/genetics
18.
Bull Environ Contam Toxicol ; 102(2): 231-238, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30623206

ABSTRACT

Pico-cyanobacteria and micro-cyanobacteria coexist ubiquitously in many lakes. Differences in cell size and abilities to utilize nutrients may influence their distribution patterns. In this study, Synechococcus sp. and Microcystis aeruginosa were chosen as pico- and micro-cyanobacteria, respectively. Gradient phosphorus treatments (0.002, 0.01, 0.05, and 0.25 mg P L-1) were designed in mono- and co-cultures. Growth curves were recorded and fitted by the Monod equation. Moreover, the interspecific competition was analyzed by the Lotka-Volterra model. When mono-cultured in lower P conditions (≤ 0.01 mg P L-1), Synechococcus sp. obtained much higher biomass than M. aeruginosa. But, M. aeruginosa grew faster than Synechococcus sp. in higher P groups (≥ 0.05 mg P L-1) (p < 0.05). Synechococcus sp. has abilities to thrive in low-phosphorus environments, whereas M. aeruginosa favored high-phosphorus conditions. In co-cultures, Synechococcus sp. strongly inhibited M. aeruginosa at each P treatment.


Subject(s)
Microcystis/drug effects , Phosphorus/pharmacology , Synechococcus/drug effects , Biomass , Ecosystem , Lakes , Microcystis/cytology , Microcystis/growth & development , Species Specificity , Synechococcus/cytology , Synechococcus/growth & development
19.
Environ Sci Pollut Res Int ; 25(36): 36403-36411, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368710

ABSTRACT

The role of macroalgal allelopathy in aquatic systems has received increasing attention as a potential means of controlling cyanobacterial blooms. However, the allelopathic activity of Chara sp. on coexisting and bloom-forming picocyanobacteria is still largely unknown. Therefore, the laboratory experiments were conducted to investigate the allelopathic activity of extracts of Chara aspera, C. baltica, and C. canescens on the growth, the fluorescence parameters: maximum and effective quantum yield of photosystem II (PSII) photochemistry (Fv/Fm and ΦPSII, respectively) and photosynthesis parameters such as the initial slope of photosynthesis-irradiance (P-E) curves (alpha) and photosynthetic capacity (Pm) of the picocyanobacterium Synechococcus sp. Batch cultures of picocyanobacterium were exposed to three concentrations of extracts originating from three charophyte cultures and the effect was followed at three sampling times. Dried specimens of C. aspera, C. baltica, and C. canescens were extracted in the water-based matrix and the initial Synechococcus sp. inoculum, derived from unialgal culture media, was used. We found both negative and positive allelopathic effects of all tested Chara extracts on Synechococcus sp. The strongest adverse impact of picocyanobacterium growth was caused by C. baltica. This study clearly demonstrated that the allelopathic effect depends on the Chara species identity. Our results also suggested that some allelopathic Chara sp. have the potential to mitigate harmful cyanobacterial blooms in systems dominated by Synechococcus sp.


Subject(s)
Allelopathy , Chara/chemistry , Synechococcus/drug effects , Synechococcus/physiology , Chara/physiology , Chlorophyll/metabolism , Eutrophication , Fluorescence , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Extracts/pharmacology
20.
ACS Synth Biol ; 7(9): 2189-2198, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30203964

ABSTRACT

Recent progress in genetic engineering and synthetic biology have greatly expanded the production capabilities of cyanobacteria, but concerns regarding biosafety issues and the risk of contamination of cultures in outdoor culture conditions remain to be resolved. With this dual goal in mind, we applied the recently established biological containment strategy based on phosphite (H3PO3, Pt) dependency to the model cyanobacterium Synechococcus elongatus PCC 7942 ( Syn 7942). Pt assimilation capability was conferred on Syn 7942 by the introduction of Pt dehydrogenase (PtxD) and hypophosphite transporter (HtxBCDE) genes that allow the uptake of Pt, but not phosphate (H3PO4, Pi). We then identified and disrupted the two indigenous Pi transporters, pst (Synpcc7942_2441 to 2445) and pit (Synpcc7942_0184). The resultant strain failed to grow on any media containing various types of P compounds other than Pt. The strain did not yield any escape mutants for at least 28 days with a detection limit of 3.6 × 10-11 per colony forming unit, and rapidly lost viability in the absence of Pt. Moreover, growth competition of the Pt-dependent strain with wild-type cyanobacteria revealed that the Pt-dependent strain could dominate in cultures containing Pt as the sole P source. Because Pt is rarely available in aquatic environments this strategy can contribute to both biosafety and contamination management of genetically engineered cyanobacteria.


Subject(s)
Biodegradation, Environmental , Phosphorus/metabolism , Synechococcus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metabolic Engineering/methods , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Phosphites/metabolism , Plasmids/genetics , Plasmids/metabolism , Protein Sorting Signals/genetics , Synechococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL