Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 775
Filter
Add more filters

Publication year range
1.
Best Pract Res Clin Rheumatol ; 37(1): 101853, 2023 03.
Article in English | MEDLINE | ID: mdl-37507281

ABSTRACT

Accessing a joint with a needle (arthrocentesis) to extract synovial fluid is a skill intrinsic to the rheumatologist's praxis. Joint aspirations are essential for diagnosing or excluding septic joints, are the gold standard for diagnosing acute crystal arthritis, and can provide valuable information about the nature of other forms of arthritis. In appropriate settings, injecting medications into joints can provide rapid, temporary, or even prolonged relief of pain and swelling and can provide a window of relief until other treatment modalities (anti-inflammatories, immunomodulators, and physical therapy) can enforce durable responses. Soft tissue aspirations (e.g., of bursae) and soft tissue injections (of bursae, tendons, trigger points, and areas of nerve compression) can provide similar relief, earning the practitioner the gratitude of the patient. Here, we provide a primary on joint and soft tissue aspiration and injection, including indications for and against procedures, preparing for procedures, and approaches to specific musculoskeletal structures.


Subject(s)
Arthritis , Arthrocentesis , Humans , Synovial Fluid/chemistry
2.
Inflammation ; 46(4): 1396-1413, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37140681

ABSTRACT

Emerging evidence suggests that fatty acids (FAs) and their lipid mediator derivatives can induce both beneficial and detrimental effects on inflammatory processes and joint degradation in osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA). The present study characterized the detailed FA signatures of synovial membranes collected during knee replacement surgery of age- and gender-matched OA and RA patients (n = 8/diagnosis). The FA composition of total lipids was determined by gas chromatography and analyzed with univariate and multivariate methods supplemented with hierarchical clustering (HC), random forest (RF)-based classification of FA signatures, and FA metabolism pathway analysis. RA synovium lipids were characterized by reduced proportions of shorter-chain saturated FAs (SFAs) and elevated percentages of longer-chain SFAs and monounsaturated FAs, alkenyl chains, and C20 n-6 polyunsaturated FAs compared to OA synovium lipids. In HC, FAs and FA-derived variables clustered into distinct groups, which preserved the discriminatory power of the individual variables in predicting the RA and OA inflammatory states. In RF classification, SFAs and 20:3n-6 were among the most important FAs distinguishing RA and OA. Pathway analysis suggested that elongation reactions of particular long-chain FAs would have increased relevance in RA. The present study was able to determine the individual FAs, FA groups, and pathways that distinguished the more inflammatory RA from OA. The findings suggest modifications of FA elongation and metabolism of 20:4n-6, glycerophospholipids, sphingolipids, and plasmalogens in the chronically inflamed RA synovium. These FA alterations could have implications in lipid mediator synthesis and potential as novel diagnostic and therapeutic tools.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Humans , Synovial Fluid/chemistry , Synovial Membrane/metabolism , Arthritis, Rheumatoid/metabolism , Osteoarthritis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Fatty Acids , Fatty Acids, Unsaturated/metabolism
3.
Rheumatology (Oxford) ; 62(8): 2887-2897, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36625523

ABSTRACT

OBJECTIVES: How the local inflammatory environment regulates epigenetic changes in the context of inflammatory arthritis remains unclear. Here we assessed the transcriptional and active enhancer profile of monocytes derived from the inflamed joints of JIA patients, a model well-suited for studying inflammatory arthritis. METHODS: RNA sequencing and H3K27me3 chromatin immunoprecipitation sequencing (ChIP-seq) were used to analyse the transcriptional and epigenetic profile, respectively, of JIA synovial fluid-derived monocytes. RESULTS: Synovial-derived monocytes display an activated phenotype, which is regulated on the epigenetic level. IFN signalling-associated genes are increased and epigenetically altered in synovial monocytes, indicating a driving role for IFN in establishing the local inflammatory phenotype. Treatment of synovial monocytes with the Janus-associated kinase (JAK) inhibitor ruxolitinib, which inhibits IFN signalling, transformed the activated enhancer landscape and reduced disease-associated gene expression, thereby inhibiting the inflammatory phenotype. CONCLUSION: This study provides novel insights into epigenetic regulation of inflammatory arthritis patient-derived monocytes and highlights the therapeutic potential of epigenetic modulation for the treatment of inflammatory rheumatic diseases.


Subject(s)
Arthritis , Monocytes , Humans , Monocytes/metabolism , Epigenesis, Genetic , Arthritis/metabolism , Synovial Fluid/metabolism , Phenotype
4.
Sci Rep ; 12(1): 19716, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385297

ABSTRACT

The aim of the study was to compare the metabolomic synovial fluid (SF) profile of dogs affected by spontaneous osteoarthritis (OA) and supplemented with undenatured type II collagen (UC-II), with that of healthy control dogs. Client-owned dogs were enrolled in the study and randomized in two different groups, based on the presence/absence of OA (OA group and OA-free group). All dogs were clinically evaluated and underwent SF sampling for 1H-Nuclear Magnetic Resonance spectroscopy (1H-NMR) analysis at time of presentation. All dogs included in OA group were supplemented with UC-II orally administered for 30 days. After this period, they were reassessed (OA-T30). The differences in the 1H-NMR metabolic SFs profiles between groups (OA-free, OA-T0 and OA-T30) were studied. The multivariate statistical analysis performed on SFs under different conditions (OA-T0 vs OA-T30 SFs; OA-T0 vs OA-free SFs and OA-T30 vs OA-free SFs) gave models with excellent goodness of fit and predictive parameters, revealed by a marked separation between groups. ß-Hydroxybutyrate was identified as a characteristic compound of osteoarthritic joints, showing the important role of fat metabolism during OA. The absence of ß-hydroxybutyrate after UC-II supplementation suggests the supplement's effectiveness in rebalancing the metabolism inside the joint. The unexpectedly high level of lactate in the OA-free group suggests that lactate could not be considered a good marker for OA. These results prove that 1H-NMR-based metabolomic analysis is a valid tool to study and monitor OA and that UC-II improves clinical symptoms and the SF metabolic profile in OA dogs.


Subject(s)
Osteoarthritis , Synovial Fluid , Animals , Dogs , 3-Hydroxybutyric Acid/metabolism , Collagen Type II/metabolism , Dietary Supplements , Magnetic Resonance Spectroscopy , Osteoarthritis/drug therapy , Osteoarthritis/veterinary , Osteoarthritis/metabolism , Proton Magnetic Resonance Spectroscopy , Synovial Fluid/metabolism
5.
Ann Rheum Dis ; 81(6): 805-814, 2022 06.
Article in English | MEDLINE | ID: mdl-35168946

ABSTRACT

OBJECTIVE: Neutrophils are typically the most abundant leucocyte in arthritic synovial fluid. We sought to understand changes that occur in neutrophils as they migrate from blood to joint. METHODS: We performed RNA sequencing of neutrophils from healthy human blood, arthritic blood and arthritic synovial fluid, comparing transcriptional signatures with those from murine K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils. RESULTS: Blood neutrophils from healthy donors and patients with active arthritis showed largely similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1600 differentially expressed genes. Gene signatures identified a prominent response to interferon gamma (IFN-γ), as well as to tumour necrosis factor, interleukin-6 and hypoxia, in both humans and mice. Mass cytometry confirmed that healthy and arthritic donor blood neutrophils are largely indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. Reproduction of key elements of this signature in cultured blood neutrophils required both IFN-γ and prolonged culture. CONCLUSIONS: Circulating neutrophils from patients with arthritis resemble those from healthy controls, but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFN-γ response and ageing as complementary drivers of the synovial fluid neutrophil phenotype.


Subject(s)
Arthritis , Neutrophils , Aging , Animals , Arthritis/metabolism , Humans , Interferon-gamma/metabolism , Mice , Neutrophils/metabolism , Phenotype , Synovial Fluid/metabolism
6.
Sovrem Tekhnologii Med ; 14(6): 42-49, 2022.
Article in English | MEDLINE | ID: mdl-37181284

ABSTRACT

The aim of the investigation was to study the level of amylolytic activity and microtomographic index of synovial fluid density as well as to substantiate their clinical and pathogenetic significance by identifying correlations with the known informative indicators reflecting characteristic features of the pathological process in various joint diseases. Materials and Methods: Samples of synovial fluid from 95 patients with various joint pathologies at the stage of the disease progression characterized by copious effusion into articular cavities have been examined. Synovial fluid samples obtained by knee arthrocentesis served as a material for the investigation. Conventional methods were used to determine the concentration of uric acid, inorganic phosphorus, total protein, and amylolytic activity level in the selected samples while X-ray density was identified by computed microtomography. Results: All samples of pathological joint fluid have shown a high level of amylolytic activity as compared to the synovial fluid from healthy joints. The relationship between the level of amylolytic activity in synovia and specific joint pathology has been identified. It has also been found that uric acid values, inorganic phosphorus concentrations, and total protein in various types of joint damage may influence X-ray density of the synovial fluid. Correlations between the studied indices have been established. Conclusion: New data on the level of synovia amylolytic activity has been obtained in one non-inflammatory and six different inflammatory diseases. Pathogenically determined correlation between the microtomographic index of synovial fluid density and concentrations of uric acid, inorganic phosphorus, total protein has been confirmed. Specific indicators of X-ray density of synovia in various joint pathologies as well as unidirectional and multidirectional data in comparison with the norm allow us to consider X-ray microtomography as a method that reveals additional details during investigation of synovial fluid density and brings new surrogate markers for the study of pathogenetic mechanisms of the development, differentiation, and treatment of various joint pathologies.


Subject(s)
Synovial Fluid , Uric Acid , Humans , Synovial Fluid/metabolism , Uric Acid/metabolism , Knee Joint/diagnostic imaging , Phosphorus/metabolism , Amylases/metabolism
7.
Rheumatol Int ; 42(6): 1105-1112, 2022 06.
Article in English | MEDLINE | ID: mdl-33709178

ABSTRACT

Calcium pyrophosphate deposition (CPPD) can be induced by a persistent hypomagnesemia. Tacrolimus is an immunosuppressive treatment especially used in organ transplant, potentially inducer of hypomagnesemia by renal loss. A 53-year-old man, liver transplant 10 months earlier, developed an acute peripheral oligoarthritis of wrist, hip and elbow with fever, associated with acute low back pain. Synovial fluid was sterile, and revealed calcium pyrophosphate crystals. Spinal imaging showed inflammatory changes. Magnesium blood level was low at 0.51 mmol/l, with high fractional excretion in favor of renal loss. Tacrolimus was changed for everolimus, proton pump inhibitor was stopped, and magnesium oral supplementation was started. After 8 months follow-up and slow prednisone tapering, he did not relapse pain. Persistent hypomagnesemia is a rare secondary cause of CPPD. In this entity, drug liability should be investigated such as tacrolimus in organ transplant patient.


Subject(s)
Calcinosis , Chondrocalcinosis , Liver Transplantation , Calcium Pyrophosphate/analysis , Chondrocalcinosis/chemically induced , Chondrocalcinosis/diagnosis , Humans , Liver Transplantation/adverse effects , Magnesium/analysis , Magnesium/pharmacology , Male , Middle Aged , Synovial Fluid/chemistry , Tacrolimus/adverse effects
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884486

ABSTRACT

Lysophosphatidylserine (lysoPS) is known to regulate immune cell functions. Phospholipase A1 member A (PLA1A) can generate this bioactive lipid through hydrolysis of sn-1 fatty acids on phosphatidylserine (PS). PLA1A has been associated with cancer metastasis, asthma, as well as acute coronary syndrome. However, the functions of PLA1A in the development of systemic autoimmune rheumatic diseases remain elusive. To investigate the possible implication of PLA1A during rheumatic diseases, we monitored PLA1A in synovial fluids from patients with rheumatoid arthritis and plasma of early-diagnosed arthritis (EA) patients and clinically stable systemic lupus erythematosus (SLE) patients. We used human primary fibroblast-like synoviocytes (FLSs) to evaluate the PLA1A-induced biological responses. Our results highlighted that the plasma concentrations of PLA1A in EA and SLE patients were elevated compared to healthy donors. High concentrations of PLA1A were also detected in synovial fluids from rheumatoid arthritis patients compared to those from osteoarthritis (OA) and gout patients. The origin of PLA1A in FLSs and the arthritic joints remained unknown, as healthy human primary FLSs does not express the PLA1A transcript. Besides, the addition of recombinant PLA1A stimulated cultured human primary FLSs to secrete IL-8. Preincubation with heparin, autotaxin (ATX) inhibitor HA130 or lysophosphatidic acid (LPA) receptor antagonist Ki16425 reduced PLA1A-induced-secretion of IL-8. Our data suggested that FLS-associated PLA1A cleaves membrane-exposed PS into lysoPS, which is subsequently converted to LPA by ATX. Since primary FLSs do not express any lysoPS receptors, the data suggested PLA1A-mediated pro-inflammatory responses through the ATX-LPA receptor signaling axis.


Subject(s)
Arthritis/pathology , Fibroblasts/pathology , Gout/pathology , Lupus Erythematosus, Systemic/pathology , Phospholipases A1/metabolism , Phosphoric Diester Hydrolases/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Synoviocytes/pathology , Arthritis/genetics , Arthritis/immunology , Arthritis/metabolism , Case-Control Studies , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Gout/genetics , Gout/immunology , Gout/metabolism , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Male , Phospholipases A1/genetics , Phosphoric Diester Hydrolases/genetics , Receptors, Lysophosphatidic Acid/genetics , Synovial Fluid/immunology , Synovial Fluid/metabolism , Synoviocytes/immunology , Synoviocytes/metabolism
9.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34619765

ABSTRACT

Dietary intervention may be a valuable strategy to optimize the intra-articular environment in young horses to prolong their performance career. To test the hypothesis that dietary supplementation of a Saccharomyces cerevisiae fermentation product would reduce markers of joint inflammation and increase markers of cartilage metabolism following a single inflammatory insult, Quarter Horse yearlings (mean ± SD; 9 ± 1.0 mo) were balanced by age, sex, body weight (BW), and farm of origin and randomly assigned to the following treatment groups: 1.25% BW/d (dry matter basis) custom-formulated concentrate only (CON; n = 9) or concentrate top-dressed with 21 g/d S. cerevisiae fermentation product (SCFP; n = 10) for 98 d. Horses had ad libitum access to Coastal bermudagrass hay. On day 84, one randomly selected radial carpal joint from each horse was injected with 0.5 ng lipopolysaccharide (LPS) solution. The remaining carpal joint was injected with sterile lactated Ringer's solution as a contralateral control. Synovial fluid obtained before supplementation (day 0) and on day 84 at preinjection hour 0 and 6, 12, 24, 168, and 336 h postinjection was analyzed for prostaglandin E2 (PGE2), carboxypropeptide of type II collagen (CPII), and collagenase cleavage neopeptide (C2C) by commercial assays. Rectal temperature, heart rate, respiration rate, carpal surface temperature, and carpal circumference were recorded prior to each sample collection and for 24 h postinjection. Data were analyzed using linear models with repeated measures. From day 0 to 84, synovial C2C declined (P ≤ 0.01) and the CPII:C2C ratio increased (P ≤ 0.01) in all horses with no effect of diet. In response to intra-articular LPS, synovial PGE2 increased by hour 6 (P ≤ 0.01) and returned to baseline by hour 336; CPII increased by hour 12, remained elevated through hour 168 (P ≤ 0.01), and returned to baseline by hour 336; and C2C increased by hour 6 (P ≤ 0.01) but did not return to baseline through hour 336 (P ≤ 0.01). Post-intra-articular injection, PGE2 levels were lower in SCFP than CON horses (P = 0.01) regardless of injection type. Synovial CPII and the CPII:C2C ratio demonstrated stability during the LPS challenge in SCFP compared with CON horses (P ≤ 0.01). Clinical parameters were not influenced by diet but increased in response to repeated arthrocentesis (P ≤ 0.01). Dietary SCFP may favorably modulate intra-articular inflammation following an acute stressor and influence cartilage turnover in young horses.


Subject(s)
Horse Diseases , Lipopolysaccharides , Animals , Dietary Supplements , Fermentation , Horse Diseases/drug therapy , Horses , Injections, Intra-Articular/veterinary , Lipopolysaccharides/metabolism , Saccharomyces cerevisiae , Synovial Fluid/metabolism
10.
Sci Rep ; 11(1): 12516, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131243

ABSTRACT

We recently reported that cyclin-dependent kinase inhibitor 1 (p21) deficiency induces osteoarthritis susceptibility. Here, we determined the mechanism underlying the effect of p21 in synovial and cartilage tissues in RA. The knee joints of p21-knockout (p21-/-) (n = 16) and wild type C57BL/6 (p21+/+) mice (n = 16) served as in vivo models of collagen antibody-induced arthritis (CAIA). Arthritis severity was evaluated by immunological and histological analyses. The response of p21 small-interfering RNA (siRNA)-treated human RA FLSs (n = 5 per group) to interleukin (IL)-1ß stimulation was determined in vitro. Arthritis scores were higher in p21-/- mice than in p21+/+ mice. More severe synovitis, earlier loss of Safranin-O staining, and cartilage destruction were observed in p21-/- mice compared to p21+/+ mice. p21-/- mice expressed higher levels of IL-1ß, TNF-α, F4/80, CD86, p-IKKα/ß, and matrix metalloproteinases (MMPs) in cartilage and synovial tissues via IL-1ß-induced NF-kB signaling. IL-1ß stimulation significantly increased IL-6, IL-8, and MMP expression, and enhanced IKKα/ß and IκBα phosphorylation in human FLSs. p21-deficient CAIA mice are susceptible to RA phenotype alterations, including joint cartilage destruction and severe synovitis. Therefore, p21 may have a regulatory role in inflammatory cytokine production including IL-1ß, IL-6, and TNF-α.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Inflammation/genetics , Interleukin-1beta/genetics , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/pathology , B7-2 Antigen/genetics , Calcium-Binding Proteins/genetics , Cartilage/metabolism , Cartilage/pathology , Gene Expression Regulation/drug effects , Genetic Predisposition to Disease , Humans , Inflammation/chemically induced , Inflammation/pathology , Interleukin-1beta/adverse effects , Interleukin-1beta/pharmacology , Interleukin-6/genetics , Knee Joint , Matrix Metalloproteinases/genetics , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Synovial Fluid/metabolism , Tumor Necrosis Factor-alpha/genetics
11.
PLoS One ; 16(6): e0252590, 2021.
Article in English | MEDLINE | ID: mdl-34086763

ABSTRACT

Conditions that resemble osteoarthritis (OA) were produced by injection of sodium monoiodoacetate (MIA) into the knee joints of mice. Bone marrow derived mast cells (BMMCs) injected into the OA knee joints enhanced spontaneous pain. Since no spontaneous pain was observed when BMMCs were injected into the knee joints of control mice that had not been treated with MIA, BMMCs should be activated within the OA knee joints and release some pain-inducible factors. Protease activated receptor-2 (PAR2) antagonist (FSLLRY-NH2) almost abolished the pain-enhancing effects of BMMCs injected into the OA knee joints, suggesting that tryptase, a mast cell protease that is capable of activating PAR2, should be released from the injected BMMCs and enhance pain through activation of PAR2. When PAR2 agonist (SLIGKV-NH2) instead of BMMCs was injected into the OA knee joints, it was also enhanced pain. Apyrase, an ATP degrading enzyme, injected into the OA knee joints before BMMCs suppressed the pain enhanced by BMMCs. We showed that purinoceptors (P2X4 and P2X7) were expressed in BMMCs and that extracellular ATP stimulated the release of tryptase from BMMCs. These observations suggest that ATP may stimulate degranulation of BMMCs and thereby enhanced pain. BMMCs injected into the OA knee joints stimulated expression of IL-1ß, IL-6, TNF-α, CCL2, and MMP9 genes in the infrapatellar fat pads, and PAR2 antagonist suppressed the stimulatory effects of BMMCs. Our study suggests that intermittent pain frequently observed in OA knee joints may be due, at least partly, to mast cells through activation of PAR2 and action of ATP, and that intraarticular injection of BMMCs into the OA knee joints may provide a useful experimental system for investigating molecular mechanisms by which pain is induced in OA knee joints.


Subject(s)
Adenosine Triphosphate/metabolism , Arthritis, Experimental/therapy , Chronic Pain/pathology , Knee Joint/pathology , Mast Cells/transplantation , Receptor, PAR-2/metabolism , Adenosine Triphosphate/analysis , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Bone Marrow Cells/cytology , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/toxicity , Chronic Pain/etiology , Disease Models, Animal , Knee Joint/metabolism , Male , Mast Cells/cytology , Mast Cells/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligopeptides/administration & dosage , Receptor, PAR-2/agonists , Receptor, PAR-2/antagonists & inhibitors , Receptors, Purinergic/metabolism , Synovial Fluid/metabolism
12.
Metabolomics ; 17(5): 41, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33866431

ABSTRACT

INTRODUCTION: Horses with asthma or osteoarthritis frequently receive ω-3 fatty acid supplements. Docosahexaenoic (DHA; 22:6) and eicosapentaenoic (EPA; 20:5) acids are essential ω-3 fatty acid precursors of anti-inflammatory mediators and components of structural glycerophospholipids (GPL) that act as reservoirs of these fatty acids. Analysis of the incorporation of dietary DHA + EPA into GPL pools in different body compartments has not been undertaken in horses. OBJECTIVES: We undertook a detailed study of dietary supplementation with DHA + EPA in horses and monitored incorporation into DHA- and EPA-containing glycerophosphocholines (GPC) 38:5, 38:6, 40:5, and 40:6 in plasma, synovial fluid (SF), and surfactant. METHODS: Horses (n = 20) were randomly assigned to the supplement or control group and evaluated on days 0, 30, 60, and 90. GPC in plasma, SF, and surfactant were measured by high-resolution mass spectrometry with less than 3 ppm mass error. Validation of DHA and EPA incorporation into these GPC was conducted utilizing MS2 of the [M + Cl]- adducts of GPC. RESULTS: Dietary supplementation resulted in augmented levels of GPC 38:5, 38:6, 40:5, and 40:6 in all compartments. Maximum incorporation into GPCs was delayed until 60 days. Significant increases in the levels of GPC 38:5, 40:5, and 40:6, containing docosapentaenoic acid (DPA; 22:5), also was noted. CONCLUSIONS: DHA and EPA supplementation results in augmented storage pools of ω-3 essential fatty acids in SF and surfactant GPC. This has the potential to improve the ability of anti-inflammatory mechanisms to resolve inflammatory pathways in these critical compartments involved in arthritis and asthma.


Subject(s)
Synovial Fluid , Animals , Asthma , Dietary Supplements , Docosahexaenoic Acids , Eicosapentaenoic Acid , Fatty Acids, Omega-3 , Horses , Lipoproteins , Phosphorylation , Phosphorylcholine , Surface-Active Agents
13.
Br J Radiol ; 94(1121): 20200493, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33861155

ABSTRACT

OBJECTIVE: This study aimed to investigate the diagnostic performance of minimally invasive arthroscopy for knee gout when comparing with joint ultrasonography and dual-energy computed tomography (DECT). METHODS: From January 2016 to December 2018, 121 inpatients with knee joint swelling and pain were prospectively enrolled, including 63 gout patients and 58 non-gout patients. All patients underwent pre-operative ultrasonography and DECT to evaluate knee joint monosodium urate (MSU) deposits, followed by minimally invasive arthroscopy. The gold-standard for gout diagnosis was defined as the detection of MSU crystals in the synovial fluid under polarizing microscopic or pathological analysis. RESULTS: The diagnostic results of ultrasonic double contour sign, hyperechogenic foci, MSU deposition (detected by DECT), MSU deposition (detected by arthroscopy) and MSU deposition in cartilage (detected by arthroscopy) were significantly associated with that of the gold-standard. Except for hyperechogenic foci, the other four indexes had high sensitivity and specificity (approximately or over 80%) and a large odds ratio (OR) (14.73 to 36.56), indicating good diagnostic performance. Detection of MSU deposition in cartilage by arthroscopy had a good diagnostic agreement with the ultrasonic double contour sign (κ = 0.711, p < 0.001). CONCLUSION: Joint ultrasonography, DECT, and minimally invasive arthroscopy had high sensitivity and specificity for the diagnosis of knee gouty arthritis. Minimally invasive arthroscopy was superior to joint ultrasonography and DECT, which can be a useful supplement for the diagnosis of gout. ADVANCES IN KNOWLEDGE: This is the first study comparing the diagnostic performance for knee gout among the joint ultrasonography, DECT, and minimally invasive arthroscopy.


Subject(s)
Arthritis, Gouty/diagnostic imaging , Arthroscopy/methods , Knee Joint/diagnostic imaging , Tomography, X-Ray Computed/methods , Ultrasonography/methods , Uric Acid/analysis , Female , Humans , Male , Middle Aged , Odds Ratio , Prospective Studies , Sensitivity and Specificity , Synovial Fluid/chemistry
14.
Front Immunol ; 12: 644725, 2021.
Article in English | MEDLINE | ID: mdl-33777041

ABSTRACT

With ELISAs one detects the ensemble of immunoreactive molecules in biological samples. For biomolecules undergoing proteolysis for activation, potentiation or inhibition, other techniques are necessary to study biology. Here we develop methodology that combines immunosorbent sample preparation and nano-scale liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) for proteoform analysis (ISTAMPA) and apply this to the aglycosyl chemokine CXCL8. CXCL8, the most powerful human chemokine with neutrophil chemotactic and -activating properties, occurs in different NH2-terminal proteoforms due to its susceptibility to site-specific proteolytic modification. Specific proteoforms display up to 30-fold enhanced activity. The immunosorbent ion trap top-down mass spectrometry-based approach for proteoform analysis allows for simultaneous detection and quantification of full-length CXCL8(1-77), elongated CXCL8(-2-77) and all naturally occurring truncated CXCL8 forms in biological samples. For the first time we demonstrate site-specific proteolytic activation of CXCL8 in synovial fluids from patients with chronic joint inflammation and address the importance of sample collection and processing.


Subject(s)
Arthritis/metabolism , Interleukin-8/metabolism , Proteomics , Synovial Fluid/metabolism , Tandem Mass Spectrometry , Arthritis/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Interleukin-8/immunology , Male , Synovial Fluid/immunology
15.
Sci Rep ; 11(1): 3850, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594167

ABSTRACT

Fibroblast-like synoviocytes (FLS) play a pathogenic role in rheumatoid arthritis (RA). STAT3 signaling is activated in FLS of RA patients (RA-FLS), which in turn causes RA-FLS hyperproliferation. RL is a traditional remedy for treating inflammatory diseases in China. It comprises Rosae Multiflorae Fructus and Lonicerae Japonicae Flos. A standardized ethanolic extract of RL (RLE) has been shown to exert anti-arthritic effects in collagen-induced arthritis (CIA) rats. Some constituents of RLE were reported to inhibit JAK2/STAT3 signaling in rat FLS. Here, we determined whether RLE inhibits FLS hyperproliferation, and explored the involvement of STAT3 signaling in this inhibition. In joints of CIA rats, RLE increased apoptotic FLS. In IL-6/sIL-6R-stimulated RA-FLS, RLE reduced cell viability and evoked cell apoptosis. In synovial tissues of CIA rats, RLE lowered the protein level of phospho-STAT3. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited activation/phosphorylation of STAT3 and JAK2, decreased the nuclear localization of STAT3, and downregulated protein levels of Bcl-2 and Mcl-1. Over-activation of STAT3 diminished RLE's anti-proliferative effects in IL-6/sIL-6R-stimulated RA-FLS. In summary, RLE inhibits hyperproliferation of FLS in rat and cell models, and suppression of STAT3 signaling contributes to the underlying mechanisms. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/therapeutic use , Plant Extracts/therapeutic use , Rosa , Synoviocytes/drug effects , Animals , Apoptosis/drug effects , Arthritis, Rheumatoid/metabolism , Drug Evaluation, Preclinical , Drugs, Chinese Herbal/pharmacology , Humans , Interleukin-6 , Lonicera , Phytotherapy , Primary Cell Culture , Rats , STAT3 Transcription Factor/metabolism , Synovial Fluid/metabolism
16.
Osteoarthritis Cartilage ; 29(5): 619-632, 2021 05.
Article in English | MEDLINE | ID: mdl-33577959

ABSTRACT

OBJECTIVE: To examine and compare the accuracy of conventional radiography (CR) and musculoskeletal ultrasonography (US) in the diagnosis of calcium pyrophosphate (CPP) crystals deposition disease (CPPD). DESIGN: A systematic search of electronic databases (PubMed, Embase, and Cochrane), conference abstracts and reference lists was undertaken. Studies which evaluated the accuracy of CR and/or US in the diagnosis of CPPD, using synovial fluid analysis (SFA), histology or classification criteria as reference tests were included. Subgroup analyses by anatomic site and by reference test were performed. RESULTS: Twenty-six studies were included. Using SFA/histology as reference test, CR and US showed an excellent (CR AUC = 0.889, 95%CI = 0.811-0.967) and an outstanding (US AUC = 0.954, 95%CI = 0.907-1.0) diagnostic accuracy (p < 0.01), respectively. Furthermore, US showed a higher sensitivity (0.85, 95%CI = 0.79-0.90 vs 0.47, 95%CI = 0.40-0.55) and only a little lower specificity (0.87, 95%CI = 0.83-0.91 vs 0.95, 95%CI = 0.92-0.97) than CR. A considerable heterogeneity between the studies was found, with adopted reference test being the main source of heterogeneity. In fact, subgroup analysis showed a significant change in the diagnostic accuracy of CR, but not of US, using Ryan and McCarty criteria or SFA/histology as reference test (CR: AUC = 0.956, 95%CI = 0.925-1.0 vs AUC = 0.889, 95%CI = 0.828-0.950, respectively, p < 0.01) (US: AUC = 0.922, 95%CI = 0.842-1.0 vs AUC = 0.957, 95%CI = 0.865-1.0, respectively, p = 0.08) CONCLUSIONS: Although US is more sensitive and a little less specific than CR for identifying CPP crystals, both these two techniques showed a great diagnostic accuracy and should be regarded as complementary to each other in the diagnostic work-up of patients with CPPD.


Subject(s)
Chondrocalcinosis/diagnosis , Joints/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Calcium Pyrophosphate/analysis , Fascia/diagnostic imaging , Humans , Ligaments, Articular/diagnostic imaging , Radiography , Sensitivity and Specificity , Synovial Fluid/chemistry , Tendons/diagnostic imaging , Ultrasonography
17.
J Ethnopharmacol ; 269: 113697, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33316364

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leaves from Ocimum kilimandscharicum Gürke (Lamiaceae) are popularly used against articular pain. AIM OF STUDY: The aim of this study was to test the anti-inflammatory and anti-hyperalgesic (analgesic) properties of the essential oil and camphor isolated from O. Kilimandscharicum leaves (EOOK) in 4 models including zymosan induced-articular inflammation model in mice. MATERIAL AND METHODS: For in vivo models, EOOK was tested in carrageenan-induced paw edema model with oral doses of 30, 100, and 300 mg/kg (oral administration = p.o.) and in zymosan-induced articular inflammation (including knee edema, leukocyte infiltration, mechanical hyperalgesia and nitric oxide), EOOK (100 mg/kg, p. o.) and camphor (30 mg/kg, p. o.) were tested. EOOK (100 mg/kg, p. o.) was tested in the rolling and also in the adhesion of leukocytes to the mesenteric microcirculation in situ model of carrageenan induced inflammation and EOOK (1, 3, 10, 30, and 60 µg/mL) was tested in vitro against neutrophils chemotaxis induced by N-formyl methionyl leucyl phenylalanine (fMLP). RESULTS: The treatment with EOOK significantly inhibited the carrageenan-induced edema, mechanical and cold hyperalgesia. Both, EOOK and camphor inhibited all articular parameters induced by zymosan. In situ intravitral microscopy analysis, EOOK significantly inhibited carrageenan-induced leukocyte rolling and adhesion. In vitro neutrophils chemotaxis, EOOK inhibited the leukocyte chemotaxis induced by fMLP. CONCLUSIONS: The present study showed that EOOK inhibited pain and inflammatory parameters contributing, at least in part, to explain the popular use of this plant as analgesic natural agent. This study also demonstrates that camphor and some known anti-inflammatory compounds present in EOOK could contribute for analgesic and anti-inflammatory articular properties.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Arthralgia/drug therapy , Camphor/pharmacology , Ocimum/chemistry , Oils, Volatile/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Arthralgia/chemically induced , Camphor/isolation & purification , Camphor/therapeutic use , Carrageenan/toxicity , Disease Models, Animal , Edema/chemically induced , Edema/drug therapy , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Joints/drug effects , Knee Injuries/chemically induced , Knee Injuries/drug therapy , Leukocyte Rolling/drug effects , Leukocytes/drug effects , Male , Mice , Neutrophils/drug effects , Nitric Oxide/metabolism , Oils, Volatile/isolation & purification , Oils, Volatile/therapeutic use , Plant Leaves/chemistry , Synovial Fluid/drug effects , Zymosan/toxicity
18.
Mol Nutr Food Res ; 65(2): e2000377, 2021 01.
Article in English | MEDLINE | ID: mdl-33184983

ABSTRACT

SCOPE: Previous work reported that dietary supplementation with resveratrol lowers synovial hyperplasia, inflammatory and oxidative damage in an antigen-induced arthritis (AIA) model. Here, it is investigated whether resveratrol can regulate the abnormal synovial proliferation by inducing autophagy and controlling the associated inflammatory response. METHODS AND RESULTS: Animals treated with resveratrol 8 weeks before AIA induction show the highest significant signal for microtubule-associated protein 1 light chain 3 by confocal microscopy. Besides, resveratrol significantly reduces p62 expression, but it does not increase the signal of beclin-1. Also, active caspase-3 expression, as well as poly(ADP-ribose) polymerase, is upregulated in the AIA group, and is significantly reduced in resveratrol-treated AIA group. Resveratrol also mitigates angiopoietin-1 and vascular endothelial growth factor signals. Finally, resveratrol significantly reduces the serum levels of IL-1ß, C reactive protein, and prostaglandin E2, as well as nuclear factor κB synovial tissue expression, which shows a significant correlation with p62 expression. CONCLUSION: Dietary supplementation with resveratrol induces the noncanonical autophagy pathway and limits the cross-talk with inflammation, which in consequence modulates the synovial hyperplasia. Preventive strategies that incorporate dietary intervention with resveratrol may offer a potential therapeutic alternative to drugs to influence the risk of rheumatoid arthritis and influence its course.


Subject(s)
Arthritis, Rheumatoid/diet therapy , Arthritis, Rheumatoid/etiology , Autophagy/drug effects , Resveratrol/pharmacology , Animals , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/prevention & control , Autophagy/physiology , C-Reactive Protein/analysis , Dietary Supplements , Dinoprostone/blood , Disease Models, Animal , Female , Rats, Inbred Lew , Synovial Fluid/drug effects , Synovial Fluid/metabolism , Synovial Membrane/blood supply , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Transcription Factor RelA/metabolism
19.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238379

ABSTRACT

The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1ß level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Iodoacetic Acid/adverse effects , Osteoarthritis/etiology , Osteoarthritis/pathology , Plant Extracts/pharmacology , Animals , Biomarkers , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Immunohistochemistry , Inflammation Mediators/metabolism , Male , Matrix Metalloproteinases/metabolism , Osteoarthritis/drug therapy , Rats , Synovial Fluid/metabolism
20.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33216909

ABSTRACT

As osteoarthritis is a major cause of lameness in horses in the United States, improving collagen health prior to onset and increasing collagen turnover within affected joints could improve health- and welfare-related outcomes. Through its positive effects on bone mineral content and density and its role in increasing collagen synthesis, silicon (Si) may slow the development and progression of osteoarthritis, thereby reducing lameness. This study evaluated the hypothesis that Si supplementation would increase cartilage turnover through increased collagen degradation and formation markers, as well as bone formation markers, resulting in reduced lameness severity when compared with controls. Ten mature Standardbred geldings were assigned to either a Si-treated (SIL) or control (CON) group and group-housed on pasture for 84 d. Horses were individually fed to ensure no cross-contamination of Si other than what was present in the environment. For the duration of the study, SIL horses received a Si-collagen supplement at the rate of 0.3 g supplement/(100 kg body weight day). Serum samples were taken weekly for osteocalcin, and plasma samples were taken on days 0, 42, and 84 for plasma minerals. On days 0, 42, and 84, subjective and objective lameness exams were performed, and radiographs and synovial fluid samples were taken from reference and osteoarthritic joints. Plasma minerals were similar in both groups and were lower on day 84 than on day 0 (P < 0.05). Si supplementation, fed at the manufacturer's recommended rate, did not improve lameness or radiographs when compared with controls, and supplemented horses did not show greater collagen degradation and/or synthesis markers in synovial fluid than controls, indicating that cartilage turnover remained unaffected. However, a minimum beneficial threshold and range for Si supplementation standardized to body weight need to be established.


Subject(s)
Cartilage, Articular , Horse Diseases , Animals , Cartilage , Dietary Supplements , Horses , Male , Silicon , Synovial Fluid
SELECTION OF CITATIONS
SEARCH DETAIL