Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.670
Filter
Add more filters

Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 571-579, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621860

ABSTRACT

In recent years, as people's living standards continue to improve, and the pace of life accelerates dramatically, the demand and quality of traditional Chinese medicine(TCM) services from patients continue to rise. As an essential supplement to the existing forms of TCM application, such as Chinese patent medicine, decoction, and formulated granules, presonalized TCM preparations is facing an increasing market demand. Currently, manual and semi-mechanized production are the primary production ways in presonalized TCM preparations. However, the production process control level is low, and digitalization and informatization need to be improved, which restricts the automated and intelligent development of presonalized TCM preparations. Presonalized TCM preparations faces a significant opportunity and challenge in integrating with intelligent manufacturing through research and development of intelligent equipment and core technology. This paper overviews the connotation and characteristics of intelligent manufacturing and summarizes the application of intelligent manufacturing technologies such as "Internet of things" "big data", and "artificial intelligence" in the TCM industry. Based on the innovative research and development model of "intelligent classification of TCM materials, intelligent decision making of prescription and process, and online control and intelligent production" of presonalized TCM preparations, the research practice and achievements from our research group in the field of intelligent manufacturing of presonalized TCM preparations are introduced. Ultimately, the paper proposes the direction for developing intelligent manufacturing of presonalized TCM preparations, which will provide a reference for the research and application of automation and intelligence of presonalized TCM preparations.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Quality Control , Technology, Pharmaceutical , Intelligence
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 285-293, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403304

ABSTRACT

The 21st century is a highly information-driven era, and traditional Chinese medicine(TCM) pharmacy is also moving towards digitization and informatization. New technologies such as artificial intelligence and big data with information technology as the core are being integrated into various aspects of drug research, manufacturing, evaluation, and application, promoting interaction between these stages and improving the quality and efficiency of TCM preparations. This, in turn, provides better healthcare services to the general population. The deep integration of emerging technologies such as artificial intelligence, big data, and cloud computing with the TCM pharmaceutical industry will innovate TCM pharmaceutical technology, accelerate the research and industrialization process of TCM pharmacy, provide cutting-edge technological support to the global scientific community, boost the efficiency of the TCM industry, and promote economic and social development. Drawing from recent developments in TCM pharmacy in China, this paper discussed the current research status and future trends in digital TCM pharmacy, aiming to provide a reference for future research in this field.


Subject(s)
Drugs, Chinese Herbal , Pharmacy , Humans , Medicine, Chinese Traditional , Artificial Intelligence , Technology, Pharmaceutical , Drug Industry
3.
Int J Pharm ; 651: 123777, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38181992

ABSTRACT

Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.


Subject(s)
Simethicone , Vegans , Child , Humans , Feasibility Studies , Pectins , Printing, Three-Dimensional , Drug Liberation , Technology, Pharmaceutical/methods
4.
J Pharm Sci ; 113(3): 523-538, 2024 03.
Article in English | MEDLINE | ID: mdl-37838275

ABSTRACT

Assessing the robustness of a drug product formulation and manufacturing process to variations in raw material (RM) properties is an essential aspect of pharmaceutical product development. Motivated by the need to demonstrate understanding of attribute-performance relationships at the time of new product registration and for subsequent process maintenance, we review practices to explore RM variations. We describe limitations that can arise when active ingredients and excipients invariably undergo changes during a drug product lifecycle. Historical approaches, such as Quality-by-Design (QbD) experiments, are useful for initial evaluations but can be inefficient and cumbersome to maintain once commercial manufacturing commences. The relatively miniscule data sets accessible in product development - used to predict response to a hypothetical risk of variation - become less relevant as real-world experience of actual variability in the commercial landscape grows. Based on our observations of development and manufacturing, we instead propose a holistic framework exploiting a hierarchy of RM variability, and challenge this with common failure modes. By explicitly incorporating higher ranking RM variations as perturbations, material-conserving experiments are shown to provide powerful and enduring robustness data. Case studies illustrate how correctly contextualizing such data in formulation and process development can avoid the traps of historical QbD approaches and become valuable for evaluating changes occurring later in the drug product lifecycle.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Excipients
5.
Adv Mater ; 36(11): e2309164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946604

ABSTRACT

Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.


Subject(s)
Artificial Intelligence , Technology, Pharmaceutical , Pharmaceutical Preparations , Printing, Three-Dimensional
6.
Pharm Res ; 41(2): 375-385, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114802

ABSTRACT

PURPOSE: This study is focused on monitoring process parameters and quality attributes of aluminum phosphate (AlPO4) using multiple in-line probes incorporated into an industrial-scale adjuvant suspension manufacturing unit. METHODS: The manufacturing of aluminum adjuvant suspension was monitored at manufacturing scale using conductivity, turbidity, infrared, and particle sizing and count probes to follow the continuous evolution of particle formation and size distribution, and the reaction kinetics during the synthesis of AlPO4. RESULTS: The data showed that AlPO4 forms large particles at the early stages of mixing, followed by a decrease in size and then stabilization towards the later stages of mixing and pH adjustment. The results provided a complementary view of process events and assisted in optimizing several parameters, e.g., flow rate of reactants AlCl3 and Na3PO4 solutions, mixing rate, pH, and conductivity of AlPO4, as well as adjuvant quality attribute such as particle size, thus streamlining and shortening the process development stage. CONCLUSION: The results of this study showed the usefulness of the in-line probes to automate continuous assessment of AlPO4 batch-to-batch consistency during in-house adjuvant production at the industrial scale.


Subject(s)
Adjuvants, Immunologic , Aluminum Compounds , Phosphates , Particle Size , Technology, Pharmaceutical/methods
7.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4536-4544, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802880

ABSTRACT

In recent years, continuous manufacturing technology has attracted considerable attention in the pharmaceutical industry. This technology is highly sought after for its significant advantages in cost reduction, increased efficiency, and improved productivity, making it a growing trend in the future of the pharmaceutical industry. Compared to traditional batch production methods, continuous manufacturing technology features real-time control and environmentally friendly intelligence, enabling pharmaceutical companies to produce drugs more efficiently. However, the adoption of continuous manufacturing technology has been slow in the field of traditional Chinese medicine(TCM) pharmaceuticals. On the one hand, there is insufficient research on continuous manufacturing equipment and technology that align with the characteristics of TCM preparations. On the other hand, the scarcity of talent with diverse expertise hampers its development. Therefore, in order to promote the modernization and upgrading of the TCM pharmaceutical industry, this article combined the current development status of the TCM industry to outline the development status and regulatory requirements of continuous manufacturing technology. At the same time, it analyzed the problems with existing TCM manufacturing models and explored the prospects and challenges of applying continuous manufacturing technology in the field of TCM pharmaceuticals. The analysis focused on continuous manufacturing control strategies, technical tools, and pharmaceutical equipment, aiming to provide targeted recommendations to drive the development of the TCM pharmaceutical industry.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Quality Control , Drug Industry , Technology, Pharmaceutical/methods , Pharmaceutical Preparations
9.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2138-2145, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282902

ABSTRACT

The powder modification technology was used to improve the powder properties and microstructure of Dioscoreae Rhizoma extract powder, thereby solving the problem of poor solubility of Dioscoreae Rhizoma formula granules. The influence of modifier dosage and grinding time on the solubility of Dioscoreae Rhizoma extract powder was investigated with the solubility as the evaluation index, and the optimal modification process was selected. The particle size, fluidity, specific surface area, and other powder properties of Dioscoreae Rhizoma extract powder before and after modification were compared. At the same time, the changes in the microstructure before and after modification was observed by scanning electron microscope, and the modification principle was explored by combining with multi-light scatterer. The results showed that after adding lactose for powder modification, the solubility of Dioscoreae Rhizoma extract powder was significantly improved. The volume of insoluble substance in the liquid of modified Dioscoreae Rhizoma extract powder obtained by the optimal modification process was reduced from 3.8 mL to 0 mL, and the particles obtained by dry granulation of the modified powder could be completely dissolved within 2 min after being exposed to water, without affecting the content of its indicator components adenosine and allantoin. After modification, the particle size of Dioscoreae Rhizoma extract powder decreased significantly, d_(0.9) decreased from(77.55±4.57) µm to(37.91±0.42) µm, the specific surface area and porosity increased, and the hydrophilicity improved. The main mechanism of improving the solubility of Dioscoreae Rhizoma formula granules was the destruction of the "coating membrane" structure on the surface of starch granules and the dispersion of water-soluble excipients. This study introduced powder modification technology to solve the solubility problem of Dioscoreae Rhizoma formula granules, which provided data support for the improvement of product quality and technical references for the improvement of solubility of other similar varieties.


Subject(s)
Technology, Pharmaceutical , Technology , Powders , Solubility , Plant Extracts , Particle Size
10.
Eur J Pharm Biopharm ; 188: 254-264, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201727

ABSTRACT

In the present study, timed-release indomethacin tablets, releasing drug after predetermined lag times, were developed for the effective treatment of early morning stiffness in rheumatoid arthritis using two-nozzle fused deposition modeling (FDM) 3D printing with a Bowden extruder. The developed core-shell tablets consisted of a drug-containing core and release-regulating shell with different designed thicknesses (i.e., 0.4 mm, 0.6 mm, 0.8 mm). The filaments to fabricate cores and shells were prepared using hot-melt extrusion (HME), and different filament compositions were formulated for core tablets and screened for rapid release and printability. Eventually, the HPMCAS-based formulation comprised a core tablet enclosed by a shell of Affinisol™ 15LV, a swellable polymer. During 3D printing, one nozzle was dedicated to printing core tablets loaded with indomethacin, and the other nozzle was dedicated to printing shells, making a whole structure produced at once without inconvenient filament change and nozzle cleanout. The mechanical properties of filaments were compared using a texture analyzer. The core-shell tablets were characterized for dissolution profiles and physical attributes (e.g., dimension, friability, hardness). SEM image indicated a smooth and complete surface of the core-shell tablets. The tablets showed 4-8 h of lag depending on the shell thicknesses and released most of the drugs in 3 h, regardless of the shell thicknesses. The core-shell tablets showed high reproducibility but exhibited low dimensional accuracy in the shell thickness. This study explored the suitability of using two-nozzle FDM 3D printing with Bowden extrusion for producing personalized chronotherapeutic core-shell tablets and discussed possible challenges that needed to be considered for a successful printing process using this technology.


Subject(s)
Drug Chronotherapy , Indomethacin , Drug Liberation , Solubility , Reproducibility of Results , Tablets/chemistry , Printing, Three-Dimensional , Technology, Pharmaceutical/methods
11.
Sci Rep ; 13(1): 6153, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37061566

ABSTRACT

The present work reports developing the first process analytical technology (PAT)-based real-time feedback control system for maintaining the Ginkgo biloba leaf dripping pills weight during manufacturing. The opening degree of the drop valve and the weight of dripping pills were chosen as the manipulated variable and as the controlled variable, respectively. A proportional-integral controller was programmed to automatically reach the desired dripping pills weight by adjusting the opening degree of the drop valve. The closed-loop feedback control system could automatically compensate for the disturbances and ensure a predefined weight of the dripping pills with excellent robustness, high accuracy, and high efficiency during manufacturing. Furthermore, the closed-loop feedback control system improved the process capability of the dripping process, and the process capability index was > 1.67. This study provides a new approach to real-time control of the weight of dripping pills and improves the process capability during Ginkgo biloba leaf dripping pills manufacturing.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Technology, Pharmaceutical , Drugs, Chinese Herbal/standards , Ginkgo biloba , Lasers
12.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1264-1272, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005810

ABSTRACT

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Data Mining/methods , Quality Control , Technology, Pharmaceutical
13.
Zhongguo Zhong Yao Za Zhi ; 48(4): 966-977, 2023 Feb.
Article in Chinese | MEDLINE | ID: mdl-36872267

ABSTRACT

The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.


Subject(s)
Network Pharmacology , Plant Extracts , Technology, Pharmaceutical , Ethanol , Molecular Docking Simulation , Seeds/chemistry , Ziziphus/chemistry , Plant Extracts/chemistry , Schisandra/chemistry , Fruit/chemistry
14.
Zhongguo Zhong Yao Za Zhi ; 48(1): 22-29, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725254

ABSTRACT

Owing to the advancement in pharmaceutical technology, traditional Chinese medicine industry has seen rapid development. Preferring conventional manufacturing mode, pharmaceutical enterprises of traditional Chinese medicine have no effective process detection tools and process control methods. As a result, the quality of the final products mainly depends on testing and the quality is inconsistent in the same batch. Process analytical technology(PAT) for traditional Chinese medicine manufacturing, as one of the key advanced manufacturing techniques, can break through the bottleneck in quality control of medicine manufacturing, thus improving the production efficiency and product quality and reducing the material and energy consumption. It is applicable to the process control and real-time release of advanced manufacturing modes such as intelligent manufacturing and continuous manufacturing. This paper summarized the general idea of PAT for traditional Chinese medicine manufacturing. Through the analysis of the characteristics and status quo of the technology, we summed up the methodology for the continuous application and improvement of PAT during the whole life-cycle of traditional Chinese medicine. The five key procedures(process understanding, process detection, process modeling, process control, and continuous improvement) were summarized, and the application was reviewed. Finally, we proposed suggestions for the technical and regulatory challenges in implementing PAT in traditional Chinese medicine industry. This paper aims to provide a reference for development and application of PAT in advanced manufacturing, intelligent manufacturing, and continuous manufacturing of traditional Chinese medicine industry.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Technology, Pharmaceutical , Drug Industry , Quality Control
15.
Article in Chinese | WPRIM | ID: wpr-981345

ABSTRACT

The powder modification technology was used to improve the powder properties and microstructure of Dioscoreae Rhizoma extract powder, thereby solving the problem of poor solubility of Dioscoreae Rhizoma formula granules. The influence of modifier dosage and grinding time on the solubility of Dioscoreae Rhizoma extract powder was investigated with the solubility as the evaluation index, and the optimal modification process was selected. The particle size, fluidity, specific surface area, and other powder properties of Dioscoreae Rhizoma extract powder before and after modification were compared. At the same time, the changes in the microstructure before and after modification was observed by scanning electron microscope, and the modification principle was explored by combining with multi-light scatterer. The results showed that after adding lactose for powder modification, the solubility of Dioscoreae Rhizoma extract powder was significantly improved. The volume of insoluble substance in the liquid of modified Dioscoreae Rhizoma extract powder obtained by the optimal modification process was reduced from 3.8 mL to 0 mL, and the particles obtained by dry granulation of the modified powder could be completely dissolved within 2 min after being exposed to water, without affecting the content of its indicator components adenosine and allantoin. After modification, the particle size of Dioscoreae Rhizoma extract powder decreased significantly, d_(0.9) decreased from(77.55±4.57) μm to(37.91±0.42) μm, the specific surface area and porosity increased, and the hydrophilicity improved. The main mechanism of improving the solubility of Dioscoreae Rhizoma formula granules was the destruction of the "coating membrane" structure on the surface of starch granules and the dispersion of water-soluble excipients. This study introduced powder modification technology to solve the solubility problem of Dioscoreae Rhizoma formula granules, which provided data support for the improvement of product quality and technical references for the improvement of solubility of other similar varieties.


Subject(s)
Powders , Solubility , Technology, Pharmaceutical , Technology , Plant Extracts , Particle Size
16.
Article in Chinese | WPRIM | ID: wpr-970497

ABSTRACT

Owing to the advancement in pharmaceutical technology, traditional Chinese medicine industry has seen rapid development. Preferring conventional manufacturing mode, pharmaceutical enterprises of traditional Chinese medicine have no effective process detection tools and process control methods. As a result, the quality of the final products mainly depends on testing and the quality is inconsistent in the same batch. Process analytical technology(PAT) for traditional Chinese medicine manufacturing, as one of the key advanced manufacturing techniques, can break through the bottleneck in quality control of medicine manufacturing, thus improving the production efficiency and product quality and reducing the material and energy consumption. It is applicable to the process control and real-time release of advanced manufacturing modes such as intelligent manufacturing and continuous manufacturing. This paper summarized the general idea of PAT for traditional Chinese medicine manufacturing. Through the analysis of the characteristics and status quo of the technology, we summed up the methodology for the continuous application and improvement of PAT during the whole life-cycle of traditional Chinese medicine. The five key procedures(process understanding, process detection, process modeling, process control, and continuous improvement) were summarized, and the application was reviewed. Finally, we proposed suggestions for the technical and regulatory challenges in implementing PAT in traditional Chinese medicine industry. This paper aims to provide a reference for development and application of PAT in advanced manufacturing, intelligent manufacturing, and continuous manufacturing of traditional Chinese medicine industry.


Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal , Technology, Pharmaceutical , Drug Industry , Quality Control
17.
Article in Chinese | WPRIM | ID: wpr-970568

ABSTRACT

The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.


Subject(s)
Ethanol , Molecular Docking Simulation , Network Pharmacology , Seeds/chemistry , Ziziphus/chemistry , Plant Extracts/chemistry , Schisandra/chemistry , Fruit/chemistry , Technology, Pharmaceutical
18.
Article in Chinese | WPRIM | ID: wpr-970597

ABSTRACT

The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.


Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal , Data Mining/methods , Quality Control , Technology, Pharmaceutical
19.
Int J Pharm ; 629: 122364, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36343905

ABSTRACT

Powder feeding is of critical importance for continuous manufacturing (CM) since next to in-process segregation it is the phenomenon primarily responsible for fluctuations in content uniformity and for content deviations in the final drug product. So far, feeding studies have focused on the characterization of specific feeders and the prediction of their performance for various materials. This work presents a more holistic approach, an early general assessment of the "feedability" of raw materials. With that regard, we established a workflow to: i) predict potential feeding issues, such as the flow stagnation in the hopper based on both the material attributes and the feeder's geometry; and ii) predict the feed rate space using various feeder/screw combinations for powders with an acceptable risk of hopper flow stagnation. Statistical models were developed for this twofold approach using a dataset comprising nine powders and four different feeders. In order to include different feeding equipment into the statistical models, novel equipment descriptors (capturing the effect of different geometries) and performance indicators (the end fill level as indicator for the risk of powder flow stagnation) were introduced. The application of the workflow was demonstrated for a simple formulation, and model validation was successfully performed for an additional powder that was not contained in the original dataset. Finally, the most relevant material attributes were identified, and reduced material characterization data sets were investigated in terms of effects on the model's prediction performance. The workflow presents a promising tool for initial process assessment in early-phase development.


Subject(s)
Chemistry, Pharmaceutical , Technology, Pharmaceutical , Powders , Workflow , Emollients
20.
J Ethnopharmacol ; 299: 115696, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36087845

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Pinellia ternata (Thunb.) Breit, called Pinelliae Rhizoma (PR) and Banxia in Chinese, is a well-known traditional Chinese medicine (TCM) with the functions of "removing dampness-phlegm" and "downbear counterflow and check vomiting". PR has potential toxic effects that can be detoxified by Fuzhi processing (repeated processing using one or multiple adjuvants) with specific adjuvants. AIM OF THE STUDY: This paper aims to provide a summary of traditional and current processing methods used to detoxify PR. MATERIALS AND METHODS: The available references of the processing methods of PR from the classic books of Materia Medica, literature, online databases and masters or doctoral theses are collected and summarized. We also discussed the possible processing mechanisms of how we can achieve a safer and effective application of PR via these processing methods. RESULTS: PR cannot be administered orally before processing. PR contains nucleoside alkaloids, cerebrosides, fatty acids, lectin, polysaccharides, and calcium oxalate crystals. To date, although the active substances of PR are still unclear, the toxic components are almost completely clarified as needle-like calcium oxalate crystals (NCOCs) and lectin proteins. Furthermore, the toxic effects of PR include causing death in animals, inflammation, conjunctival irritation, pregnancy toxicity, teratogenicity, visceral toxicity, aphonia and vomiting. From ancient times to now, Fuzhi methods have remained the predominant method for PR processing, and the main adjuvants used are ginger juice, alum, licorice and lime. In addition, detoxification mechanisms are related to removing or damaging the NCOC and lectin in PR based on processing with adjuvants. Currently, Fuzhi processing has been greatly improved, and novel processing technologies with novel adjuvants have been used for PR processing. However, there are still some flaws in PR processing, which should be urgently solved in the future, and clarifying the characteristic bioactive compounds in PR corresponding to its function or effects is the most important step for PR processing. CONCLUSION: Our present paper reviewed the previous literature regarding all aspects of the processing of PR, and this paper will be helpful for achieving a safer and effective application of PR and its processed products and will also be beneficial for the further optimization of processing technology and clinical medication safety of PR.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Materia Medica , Pinellia , Adjuvants, Pharmaceutic , Alkaloids/analysis , Animals , Calcium Oxalate , Cerebrosides/analysis , Drugs, Chinese Herbal/chemistry , Fatty Acids/analysis , Lectins/analysis , Materia Medica/analysis , Medicine, Chinese Traditional , Nucleosides/analysis , Pinellia/chemistry , Rhizome/chemistry , Technology, Pharmaceutical/methods , Vomiting
SELECTION OF CITATIONS
SEARCH DETAIL