Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
Add more filters

Complementary Medicines
Publication year range
1.
J Sci Food Agric ; 104(10): 5955-5963, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38415860

ABSTRACT

BACKGROUND: Food allergy has become a global public health problem. This study aimed to explore the possible anti-allergic effect of vitamin C (VC). A rat basophilic leukemia (RBL)-2H3 cell degranulation model was used to assess the effect of VC on degranulation in vitro, and an ovalbumin (OVA)-induced BALB/c mouse allergy model was used to assess the anti-allergy effect of VC in vivo. RESULTS: In vitro, VC significantly attenuated the release of ß-hexosaminidase, tryptase and histamine, and also reduced cytokine production (interleukins 4 and 6, tumor necrosis factor α) significantly (P < 0.05), with the inhibitory effect demonstrating a positive correlation with VC dose. In vivo, compared with the OVA group, the levels of serum immunoglobulins E and G1 of the VC low-dose (VCL) group (50 mg kg-1) and high-dose (VCH) group (200 mg·kg-1) were significantly reduced (P < 0.05). Furthermore, the plasma histamine level was also significantly decreased (P < 0.05). Moreover, TH2 cell polarization in mice of the VCL and VCH groups was significantly inhibited (P < 0.05), promoting the TH1/TH2 cell polarization balance. Additionally, VC treatment enhanced the expression of CD80 (P < 0.05) in spleen and small intestine tissues, while significantly inhibiting the expression of CD86 (P < 0.05); notably, high-dose VC treatment was more effective. CONCLUSION: VC exerted an anti-allergic effect through inhibiting degranulation and regulating TH1/TH2 cell polarization balance. © 2024 Society of Chemical Industry.


Subject(s)
Anti-Allergic Agents , Ascorbic Acid , Cell Degranulation , Food Hypersensitivity , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Animals , Th2 Cells/immunology , Th2 Cells/drug effects , Anti-Allergic Agents/pharmacology , Mice , Ascorbic Acid/pharmacology , Cell Degranulation/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Rats , Food Hypersensitivity/drug therapy , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Humans , Female , Male , Ovalbumin/immunology , Ovalbumin/adverse effects , Cytokines/metabolism , Cytokines/immunology , beta-N-Acetylhexosaminidases/metabolism
2.
J Ethnopharmacol ; 282: 114574, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34461187

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY: Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS: To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS: Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS: These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Medicine, East Asian Traditional , Mucus/metabolism , Ovalbumin , Plant Extracts/therapeutic use , Animals , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/metabolism , Female , Flow Cytometry , Immunoglobulin E/immunology , Inflammation Mediators/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Pandemics , Th2 Cells/drug effects , Th2 Cells/immunology , Tryptamines/pharmacology
3.
Can Respir J ; 2021: 6406295, 2021.
Article in English | MEDLINE | ID: mdl-34630778

ABSTRACT

Aim: To investigate the therapeutic effect of LiuJunZi decoction (LJZD) in an experimental model of asthma and uncover its potential mechanism. Materials and Methods: The ovalbumin (OVA) was applied to induce asthma in Balb/C mice, and LJZD was orally administrated to asthmatic mice. The lung function and histological lesion were evaluated by airway hyperresponsiveness assay, lung edema assay, and hematoxylin and eosin staining. The amounts of CD4+CD25+Foxp3+ TReg cells were analyzed through combining fluorescent antibody staining with flow cytometry assay. The levels of inflammatory factors and immunoglobulins were detected by enzyme-linked immuno sorbent assay (ELISA). The expression of miR-21 and miR-146a was investigated by real-time PCR. The protein expression of activating protein-1 (AP-1), nuclear factor kappa-B (NF-κB), and NF-κB inhibitor alpha (IκBα) was determined by western blotting. Results: LJZD improves OVA-induced asthma in Balb/C mice, which is manifested by decreasing lung edema, Penh levels, lung histological lesion, and inflammatory cell infiltration. LJZD increased the number of CD4+CD25+Foxp3+ TReg cells in blood mononuclear cells from asthmatic mice. Furthermore, LJZD reduced the levels of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 4, IL-6, IgG1, and IgE, but increased interferon gamma (IFN-γ) expression, in serum of asthmatic mice, and also decreased the expression of IL-17a, IL-23, IL-25, and thymic stromal lymphopoietin (Tslp) in lung tissues. In addition, miR-21 and miR-146a expression and phospho (p)-NF-κB, p-IκBα, and AP-1 protein expression were inhibited by LJZD in lung tissues from asthmatic mice. Conclusion: LJZD improved OVA-induced asthma in Balb/C mice by inhibiting allergic inflammation and Th2 immunoreaction, which might be associated with the inactivation of the NF-κB signaling pathway.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Drugs, Chinese Herbal/administration & dosage , Ovalbumin/adverse effects , T-Lymphocytes, Regulatory/drug effects , Th2 Cells/drug effects , Animals , Anti-Asthmatic Agents/pharmacology , Asthma/chemically induced , Asthma/immunology , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Mice , Mice, Inbred BALB C , MicroRNAs , Ovalbumin/administration & dosage , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology
4.
BMC Complement Med Ther ; 21(1): 192, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225706

ABSTRACT

BACKGROUND: Lippia javanica (lemon bush) is commonly used in the treatment of respiratory ailments, including asthma in southern African countries but there is no scientific evidence to support this claim. This study investigated the anti-inflammatory, antioxidant and anti-asthmatic effects of L. javanica using a rat model of asthma. METHODS: A 5% w/v L. javanica tea infusion was prepared and characterised by liquid chromatography-mass spectrometer (LC-MS). Animals were intraperitoneally sensitized with ovalbumin (OVA) and subsequently challenged intranasal with OVA on day 15 except the control group. Animals were grouped (n = 5/group) for treatment: unsensitised control, sensitised control, sensitised + prednisolone and sensitised + L. javanica at 50 mg/kg/day and 100 mg/kg/day - equivalent to 1 and 2 cups of tea per day, respectively. After 2 weeks of treatment, bronchoalveolar lavage fluid (BALF) was collected for total and differential white blood cell (WBC) count. Nitric oxide (NO), lipid peroxidation and antioxidants were also assessed in BALF. Ovalbumin specific IgE antibody and inflammatory cytokines: IL-4, IL-5, IL-13 and TNF-alpha were measured in serum. Lung and muscle tissues were histological examined. RESULTS: L. javanica was rich in phenolic compounds. OVA sensitisation resulted in development of allergic asthma in rats. L. javanica treatment resulted in a reduction in total WBC count as well as eosinophils, lymphocytes and neutrophils in BALF. L. javanica inhibited Th2-mediated immune response, which was evident by a decrease in serum IgE and inflammatory cytokines: IL-4, IL-5, IL-13 and TNF-α. L. javanica treatment also reduced malondialdehyde (MDA) and NO, and increased superoxide dismutase, glutathione and total antioxidant capacity. Histology showed significant attenuation of lung infiltration of inflammatory cells, alveolar thickening, and bronchiole smooth muscle thickening. CONCLUSION: L. javanica suppressed allergic airway inflammation by reducing Th2-mediated immune response and oxidative stress in OVA-sensitized rats which may be attributed to the presence of phenolic compound in the plant. This finding validates the traditional use of L. javanica in the treatment of respiratory disorders.


Subject(s)
Asthma/drug therapy , Lippia , Teas, Herbal , Animals , Antioxidants/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Cytokines/blood , Disease Models, Animal , Eosinophils/metabolism , Glutathione/metabolism , Immunoglobulin E/blood , Leukocyte Count , Lung/pathology , Lymphocytes/metabolism , Malondialdehyde/metabolism , Neutrophils/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Superoxide Dismutase/metabolism , Th2 Cells/drug effects
5.
Aging (Albany NY) ; 13(14): 18423-18441, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315133

ABSTRACT

We investigated the mechanisms underlying the therapeutic effects of Yiqi Jiemin decoction (YJD), a traditional Chinese medicine (TCM), in the ovalbumin (OVA)-induced allergic rhinitis (AR) model in guinea pigs. YJD significantly decreased infiltration of mast cells and eosinophils into the nasal mucosa of AR model guinea pigs. YJD also increased expression of TGF-ß in the nasal mucosa, restored the balance of Th1/Th2 immune cell responses, and decreased serum levels of various pro-inflammatory mediators, including histamine (HA), neuropeptide Y (NPY), acetylcholine (ACH), norepinephrine and immunoglobulin E (IgE). Metabolic analyses using liquid chromatography coupled with high-resolution mass spectrometry revealed that YJD improved cellular metabolism in AR model guinea pigs and increased serum levels of glycocholic acid while decreasing levels 1-palmitoyl lysophosphatidic acid. RNA-sequencing analysis identified BPIFB2 as a potential diagnostic biomarker and therapeutic target for AR. Functional enrichment analyses showed that YJD significantly inhibited cytokine secretion pathways in AR model guinea pigs. These findings demonstrate that YJD protects against OVA-induced AR in guinea pigs by suppressing inflammation in the nasal mucosa, restoring Th1/Th2 balance, and improving cellular metabolism.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Rhinitis, Allergic/prevention & control , Th1 Cells/drug effects , Th1-Th2 Balance/drug effects , Th2 Cells/drug effects , Animals , Biomarkers , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cytokines/metabolism , Disease Models, Animal , Eosinophils/metabolism , Guinea Pigs , Histamine/metabolism , Immunoglobulin E/blood , Mast Cells/metabolism , Mice , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Ovalbumin , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/genetics , Rhinitis, Allergic/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
6.
Eur J Pharmacol ; 904: 174193, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34015316

ABSTRACT

Coronavirus (SARS-CoV-2) is spreading rapidly in the world and is still taking a heavy toll. Studies show that cytokine storms and imbalances in T-helper (Th)1/Th2 play a significant role in most acute cases of the disease. A number of medications have been suggested to treat or control the disease but have been discontinued due to their side effects. Melatonin, as an intrinsic molecule, possesses pharmacological anti-inflammatory and antioxidant properties that decreases in concentration with age; as a result, older people are more prone to various diseases. In this study, patients who were hospitalized with a diagnosis of coronavirus disease 2019 (COVID-19) were given a melatonin adjuvant (9 mg daily, orally) for fourteen days. In order to measure markers of Th1 and Th2 inflammatory cytokines (such as interleukin (IL)-2, IL-4, and interferon (IFN)-γ) as well as the expression of Th1 and Th2 regulatory genes (signal transducer and activator of transcription (STAT)4, STAT6, GATA binding protein 3 (GATA3), and T-box expressed in T cell (T-bet)), blood samples were taken from patients at the beginning and end of the treatment. Adjuvant therapy with melatonin controlled and reduced inflammatory cytokines in patients with COVID-19. Melatonin also controlled and modulated the dysregulated genes that regulate the humoral and cellular immune systems mediated by Th1 and Th2. In this study, it was shown for the first time that melatonin can be used as a medicinal adjuvant with anti-inflammatory mechanism to reduce and control inflammatory cytokines by regulating the expression of Th1 and Th2 regulatory genes in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokines/blood , Melatonin , Signal Transduction , Th1 Cells , Th2 Cells , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/immunology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunologic Factors/administration & dosage , Immunologic Factors/immunology , Iran/epidemiology , Male , Melatonin/administration & dosage , Melatonin/immunology , Middle Aged , SARS-CoV-2 , Signal Transduction/drug effects , Signal Transduction/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Treatment Outcome
7.
J Inorg Biochem ; 219: 111454, 2021 06.
Article in English | MEDLINE | ID: mdl-33878530

ABSTRACT

In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Viral Vaccines/immunology , Aluminum/chemistry , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Calcium Phosphates/chemistry , Chitosan/chemistry , Gold/chemistry , Humans , Nanoparticles/administration & dosage , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Viral Vaccines/chemistry
8.
Phytomedicine ; 82: 153407, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33571899

ABSTRACT

BACKGROUND: Atopic dermatitis is a chronic inflammatory skin disease in humans. Although Olea europaea leaf extract (OLE) and Spirodela polyrhiza extract (SPE) have been used to protect against skin damage, the effects of their combined administration on atopic dermatitis have yet to studied. PURPOSE: In this study, we evaluated the potential therapeutic effects of an OLE and SPE combination on the progression of atopic dermatitis and the possible mechanisms underlying these effects in 1-chloro-2,4-dinitrobenzene (DNCB)-treated NC/Nga mice. METHODS: Atopic dermatitis was induced by topical application of 0.2% w/v DNCB prepared in an olive oil:acetone solution (1:3), and thereafter OLE, SPE and OLE + SPE were administered orally for 5 weeks. We determined atopic dermatitis symptoms, serum IgE levels, and levels of cytokine- and gene expression in the dorsal skin and splenocytes, and performed histological and immune cell subtype analyses. The expression of skin barrier-related proteins (filaggrin, sirtuin 1, and claudin 1) was also evaluated. RESULTS: The OLE + SPE combination significantly ameliorated atopic dermatitis symptoms, including dermatitis scores, and reduced epidermal thickness and infiltration of different inflammatory cells in mice with DNCB-induced atopic dermatitis. It also significantly reduced the number of CD4+, CD8+, and CD4+/CD69+ T cells; immunoglobulin E-producing B cells (CD23+/B220+) in the axillary lymph nodes; CD3+ T-cell eosinophils (chemokine-chemokine receptor 3+/CD11b+) in the skin; and CD3+ T cells, immunoglobulin E-producing B cells (CD23+/B220+), and eosinophils in peripheral blood mononuclear cells. Additionally, the experimental combination lowered levels of serum immunoglobulin E and histamine, as well as Th2-mediated cytokines, and interleukin-4, -5, and -13, whereas it increased the levels of Th1-mediated cytokine interferon-γ in splenocytes. Furthermore, the preparation significantly restored expression of the skin barrier-related proteins filaggrin, sirtuin 1, and claudin 1, and also reduced the expression of the inflammatory cytokine interleukin-6 and chemokine-chemokine receptor 3, as well as the pruritus-related cytokine interleukin-31 and interleukin-31 receptor, in atopic dermatitis skin lesions. CONCLUSION: Taken together, our findings indicate that administration of a combination of OLE and SPE can alleviate atopic dermatitis symptoms by regulating immune balance and skin barrier function and may be an effective therapeutic option for the treatment of atopic dermatitis.


Subject(s)
Dermatitis, Atopic/drug therapy , Dinitrobenzenes/toxicity , Olea/chemistry , Plant Extracts/therapeutic use , Skin/drug effects , Animals , Cytokines/metabolism , Dinitrobenzenes/chemistry , Disease Models, Animal , Filaggrin Proteins , Immunoglobulin E/blood , Intermediate Filament Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Male , Mice , Plant Extracts/pharmacology , Skin/metabolism , Th2 Cells/drug effects
9.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011470

ABSTRACT

Allergic rhinitis (AR) is a highly prevalent allergic disease induced by immunoglobulin (Ig) E-mediated hypersensitivity reaction at the nasal epithelium against inhaled allergens. Previous studies have demonstrated that Pentaherbs formula (PHF), a modified herbal formula comprising five herbal medicines (Flos Lonicerae, Herba Menthae, Cortex Phellodendri, Cortex Moutan and Rhizoma Atractylodis), could suppress various immune effector cells to exert anti-inflammatory and anti-allergic effects in allergic asthma and atopic dermatitis. The present study aimed to further determine the anti-inflammatory activities of PHF in an ovalbumin (OVA)-induced AR BALB/c mouse model. Nasal symptoms such as sneezing and nose rubbing were recorded and the serum total IgE and OVA-specific IgG1, as well as interleukin (IL)-4, IL-5, IL-10, IL-13, chemokines CXCL9 CXCL10, and tumor necrosis factor (TNF)-α concentrations in nasal lavage fluid (NALF) were measured during different treatments. Effects of PHF on the expression of inflammatory mediators in the sinonasal mucosa were quantified using real-time QPCR. PHF was found to suppress allergic symptoms, infiltration of inflammatory cells, and hyperplasia of goblet cells in the nasal epithelium of the OVA-induced AR mice. PHF could reduce OVA-specific IgG1 level in serum, and TNF-α and IL-10 in nasal lavage fluid (NALF), significantly up-regulate the splenic regulatory T (Treg) cell level, increase the Type 1 helper T cell (Th1)/Type 2 helper T cell (Th2) ratio, and reduce the Th17 cells (all p < 0.05). PHF could also alleviate in situ inflammation in sinonasal mucosa of OVA-induced AR mice. In conclusion, oral treatment of PHF showed immuno-modulatory activities in the OVA-induced AR mice by regulating the splenic T cell population to suppress the nasal allergy symptoms and modulating inflammatory mediators, implicating that PHF could be a therapeutic strategy for allergic rhinitis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Immunologic Factors/pharmacology , Lymphocyte Activation/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Allergens/immunology , Animals , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , Disease Models, Animal , Herbal Medicine , Immunologic Factors/chemistry , Immunomodulation/drug effects , Mice , Nasal Lavage Fluid/immunology , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Ovalbumin/administration & dosage , Plant Extracts/chemistry , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/etiology , Rhinitis, Allergic/pathology , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism
10.
Phytomedicine ; 80: 153392, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113503

ABSTRACT

BACKGROUND: Acacetin 7-O-ß-D-glucoside (tilianin) is a major constituent of Agastache rugosa, a traditional medicine that has long been used for the treatment of gastrointestinal disorders. Tilianin has a wide variety of pharmacological properties such as cardioprotective, neuroprotective, and anti-atherogenic activities. We recently discovered that tilianin has the ability to suppress MUC5AC expression in vitro. In addition, we have established an in vivo model of allergic asthma using house dust mite (HDM) that can be applied to tilianin. PURPOSE: We investigated the effects of tilianin on airway inflammation in a HDM-induced asthma mouse model and associated mechanisms. METHODS: Tilianin was treated in splenocytes cultured in Th0 condition and HDM-stimulated bone marrow-derived dendritic cells (BMDCs), and their mRNA expression and cytokines production were determined by quantitative real-time PCR and ELISA. To evaluate the effects of tilianin in an allergic asthma model, mice were sensitized and challenged with HDM. Tilianin was administered prior to challenge by oral gavage and airway hyper-reactivity (AHR) to methacholine, inflammatory cell infiltration, cytokine levels, and airway remodeling were assessed. RESULTS: Tilianin inhibited the production of Th2-related cytokines in splenocytes, which play pivotal roles in allergic airway inflammation. When treated in HDM-stimulated BMDCs, tilianin decreased Th2-skewing cytokine IL-33 and transcription factor IRF4. On the contrary, tilianin increased Th1-skewing regulators, IL-12 and IRF1. In an HDM-induced asthmatic mouse model, tilianin attenuated AHR and airway inflammation. Tilianin suppressed the expression of Th2-related cytokines, IL-13 and IL-33 in lung tissues. As seen in HDM-stimulated BMDCs, tilianin also downregulated the expression of the transcription factor IRF4 but not IRF1. CONCLUSION: Taken together, these results suggest that tilianin attenuates HDM-induced allergic airway inflammation by inhibiting Th2-mediated inflammation through the selective inhibition of the IRF4-IL-33 axis in dendritic cells.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Flavonoids/pharmacology , Glycosides/pharmacology , Interferon Regulatory Factors/metabolism , Th2 Cells/drug effects , Airway Remodeling , Animals , Asthma/immunology , Asthma/metabolism , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Down-Regulation/drug effects , Female , Hypersensitivity/drug therapy , Hypersensitivity/etiology , Interferon Regulatory Factors/immunology , Interleukin-33/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Mice, Inbred BALB C , Pyroglyphidae/pathogenicity , Th2 Cells/immunology , Th2 Cells/metabolism
11.
J Ethnopharmacol ; 269: 113752, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33359858

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Angelica reflexa B.Y.Lee (AR) have been used to treat cough, phlegm, neuralgia, and arthralgia in Northeast Asia. AIM OF THE STUDY: The anti-asthmatic effect of AR root extract (ARE) was determined using a murine airway allergic inflammation model and the primary T cell polarization assay. MATERIALS AND METHODS: To evaluate the anti-asthmatic effect of ARE, inflammatory cell infiltration was determined histologically and inflammatory mediators were measured in bronchoalveolar lavage fluid (BALF). Furthermore, the effects of AREs on Th2 cell differentiation and activation were determined by western blotting and flow cytometry. RESULTS: Asthmatic phenotypes were alleviated by ARE treatment, which reduced mucus production, inflammatory cell infiltration (especially eosinophilia), and type 2 cytokine levels in BALF. ARE administration to mice reduced the number of activated Th2 (CD4+CD25+) cells and level of GATA3 in the lungs. Furthermore, ARE treatment inhibited the differentiation of Th2 cells in primary cell culture systems via interferon regulatory factor 4 (IRF4) signaling. CONCLUSIONS: Our findings indicate that the anti-asthmatic effect of AREs is mediated by the reduction in Th2 cell activation by regulating IRF4.


Subject(s)
Angelica/chemistry , Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Hypersensitivity/drug therapy , Plant Extracts/pharmacology , Pneumonia/drug therapy , Th2 Cells/drug effects , Animals , Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/therapeutic use , Asthma/chemically induced , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Female , GATA3 Transcription Factor/drug effects , GATA3 Transcription Factor/metabolism , Hypersensitivity/immunology , Interferon Regulatory Factors/drug effects , Interferon Regulatory Factors/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Ovalbumin/toxicity , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Roots/chemistry , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Eosinophilia/chemically induced , Pulmonary Eosinophilia/drug therapy , RAW 264.7 Cells , Th2 Cells/immunology
12.
J Ethnopharmacol ; 269: 113719, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33358856

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hanchuan Zupa Granule (HCZP), a traditional Chinese ethnodrug, has the functions of supressing a cough, resolving phlegm, warming the lungs, and relieving asthma. In clinical practice employing traditional Chinese medicine (TCM), HCZP is commonly used to treat acute colds, cough and abnormal mucous asthma caused by a cold, or "Nai-Zi-Lai" in the Uygur language. Studies have confirmed the use of HCZP to treat cough variant asthma (CVA) and other respiratory diseases. However, the pharmacological mechanisms of HCZP remain unrevealed. AIM OF THE STUDY: To investigate the anti-tussive and anti-asthmatic effects and the possible pharmacological mechanisms of HCZP in the treatment of CVA. MATERIALS AND METHODS: A guinea pig CVA animal model was established by intraperitoneal injection of ovalbumin (OVA) combined with intraperitoneal injection of aluminium hydroxide adjuvant and atomized OVA. Meanwhile, guinea pigs with CVA received oral HCZP (at dosages of 0.571, 0.285 and 0.143 g/kg bodyweight). The number of coughs induced by aerosol capsaicin was recorded, and the airway hyperresponsiveness (AHR) of CVA guinea pigs was detected with the FinePointe series RC system. H&E staining of lung tissues was performed to observe pathological changes. ELISA was used to detect inflammatory cytokines. qRT-PCR and western blotting analyses were used to detect the expression of Th1-specific transcription factor (T-bet), Th2-specific transcription factor (GATA3), and Toll-like receptor 4 (TLR4) signal transduction elements. These methods were performed to assess the protective effects and the potential mechanisms of HCZP on CVA. RESULTS: Great changes were found in the CVA guinea pig model after HCZP treatment. The number of coughs induced by capsaicin in guinea pigs decreased, the body weights of guinea pigs increased, and inflammation of the eosinophilic airway and AHR were reduced simultaneously. These results indicate that HCZP has a significant protective effect on CVA. A pharmacological study of HCZP showed that the levels of interleukin-4 (IL-4) and IL-5 and tumour necrosis factor-α (TNF-α) in serum decreased. The amount of interferon-γ (IFN-γ) increased, mRNA and protein expression of TLR4 and GATA3 weakened, and mRNA and protein expression of T-bet increased. CONCLUSIONS: HCZP ameliorated the symptoms of guinea pigs with CVA induced by OVA by regulating the Th1/Th2 imbalance and TLR4 receptors.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Antitussive Agents/pharmacology , Asthma/drug therapy , Cough/drug therapy , Drugs, Chinese Herbal/pharmacology , Animals , Anti-Asthmatic Agents/therapeutic use , Antitussive Agents/therapeutic use , Asthma/chemically induced , Body Weight/drug effects , Capsaicin/toxicity , Cough/chemically induced , Cytokines/blood , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavonoids/chemistry , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Glycyrrhizic Acid/chemistry , Guinea Pigs , Lung/drug effects , Lung/metabolism , Lung/pathology , Medicine, Chinese Traditional , Ovalbumin/toxicity , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/drug therapy , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Th1 Cells/drug effects , Th2 Cells/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Triterpenes/chemistry
13.
Int Arch Allergy Immunol ; 181(11): 822-830, 2020.
Article in English | MEDLINE | ID: mdl-32784298

ABSTRACT

BACKGROUND: Tetrahydrocurcumin (THC) is the major active metabolite of curcumin, which is a dietary factor derived from Curcuma species. Our previous study demonstrated a significant beneficial effect of THC in mice with allergic asthma. Glucocorticosteroids (GCs) are commonly used drugs in asthma. Whether THC supplementation could promote the beneficial effects of GC therapy on asthma has not yet been reported. The current study aimed to investigate the combined efficacy of GC and THC treatment in a mouse model of allergic asthma. METHODS: BALB/c mice were randomly divided into 5 groups: the control group, ovalbumin (OVA)-induced group, and OVA-induced mice treated with dietary THC only, intraperitoneal injection of dexamethasone (DEX) only, or THC combined with DEX. The nasal symptoms, histopathological alterations of lung tissues, lung cytokine production, and Th cell subsets were assessed. RESULTS: THC or DEX had beneficial effects on nasal symptoms and pathological lung changes, and the therapeutic effects between THC and DEX treatment were comparable. Importantly, compared to the monotherapy groups (THC or DEX only), the combination of THC and DEX showed a significantly reduced nasal rubbing frequency, lower mucus hyperproduction, lower Th2 and Th17 cell numbers as well as lower related cytokine levels (IL-4, IL-5, and IL-17A). CONCLUSIONS: Supplementation with THC can enhance the therapeutic effects of DEX to alleviate airway symptoms, lung inflammation, and the Th2 response. Our findings suggest that dietary administration of THC could act as an add-on therapy for asthma treated with GCs.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Curcumin/analogs & derivatives , Dexamethasone/therapeutic use , Th2 Cells/immunology , Allergens/immunology , Animals , Curcuma , Curcumin/therapeutic use , Dietary Supplements , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Th2 Cells/drug effects
14.
J Ethnopharmacol ; 263: 113152, 2020 Dec 05.
Article in English | MEDLINE | ID: mdl-32755652

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sojadodamgangki-tang (SDG) is a traditional East-Asian herbal medicine mainly composed of Pinellia ternate (Thunb.) Makino, Perilla frutescens (L.) Britt and 10 kinds of medicinal herbs. It has been used to treat asthma and mucus secretion including lung and bronchi. AIM OF THE STUDY: The aim of this study was to investigate the anti-inflammatory effects of Sojadodamgangki-tang (SDG) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS: We used an ovalbumin (OVA)-induced murine allergic airway inflammation model. Five groups of 8-week-old female BALB/C mice were divided into the following groups: saline control group, the vehicle (allergic) group that received OVA only, groups that received OVA and SDG (200 mg/kg or 400 mg/kg), and a positive control group that received OVA and Dexamethasone (5 mg/kg). In vitro experiments include T helper 2 (TH2) polarization system, murine macrophage cell culture, and human bronchial epithelial cell line (BEAS-2B) culture. RESULTS: SDG administration reduced allergic airway inflammatory cell infiltration, especially of eosinophils, mucus production, Th2 cell activation, OVA-specific immunoglobulin E (IgE), and total IgE production. Moreover, the activation of alveolar macrophages, which leads to immune tolerance in the steady state, was promoted by SDG treatment. Interestingly, SDG treatment also reduced the production of alarmin cytokines by the human bronchial epithelial cell line BEAS-2B stimulated with urban particulate matter. CONCLUSION: Our findings indicate that SDG has potential as a therapeutic drug to inhibit Th2 cell activation and promote alveolar macrophage activation.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Drugs, Chinese Herbal/therapeutic use , Macrophages, Alveolar/drug effects , Th2 Cells/drug effects , Animals , Anti-Asthmatic Agents/isolation & purification , Anti-Asthmatic Agents/pharmacology , Asthma/chemically induced , Asthma/metabolism , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Female , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/toxicity , Perilla , Pinellia , Th2 Cells/metabolism
15.
Oxid Med Cell Longev ; 2020: 3620192, 2020.
Article in English | MEDLINE | ID: mdl-32617136

ABSTRACT

Asthma is characterized by the elevated level of Th2 immune responses, oxidative stress, and airway inflammation. Bilsaan, an exudate from the stem of Sambucus nigra, has been traditionally used in the treatment of various ailments in Saudi Arabia. Here, we investigated the therapeutic potential of Bilsaan against ovalbumin- (OVA-) induced allergic asthma in a mouse model. In order to induce allergic asthma, mice were intraperitoneally injected with alum-emulsified-OVA (20 µg/mouse) on days 0, 14, and 21 that is followed by an intranasal OVA exposure from days 22 to 30. During this time, mice were orally administered with Bilsaan at the doses of 5, 10, and 25 mg/kg. The numbers of total and differential inflammatory cells and the levels of Th2 cytokines (IL-4, IL-5, and IL-13) and IgE were determined in bronchoalveolar lavage fluid (BALF). Moreover, the therapeutic effect of Bilsaan was also assessed to analyze the oxidative stress and inflammatory changes in the lung tissues. The results demonstrated that Bilsaan treatment significantly reduced the total and differential inflammatory cell count in the BALF. The BALF from the mice treated with Bilsaan showed significantly lower levels of IL-4, IL-5, IL-13, and IgE. Interestingly, a similar pattern was observed in IL-4, IL-5, and IL-13 secreted by OVA-sensitized splenocytes from the mice of various groups. Bilsaan treatment alleviated the status of oxidative stress by modulating malondialdehyde (MDA), superoxide dismutase (SOD), and catalase levels in the lung. Moreover, Bilsaan treatment reduced the infiltration of inflammatory cells, thickening of alveolar wall, and congestion in the lung tissues. The findings of the present study demonstrated an antiasthmatic effect of Bilsaan through the modulation of Th2 immune responses, inflammation, and the oxidative stress.


Subject(s)
Asthma/drug therapy , Hypersensitivity/drug therapy , Plant Exudates/therapeutic use , Plant Stems/chemistry , Sambucus nigra/chemistry , Animals , Asthma/complications , Asthma/immunology , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Female , Hypersensitivity/complications , Hypersensitivity/immunology , Immunoglobulin E/metabolism , Inflammation/pathology , Lung/pathology , Mice , Ovalbumin , Oxidative Stress/drug effects , Plant Exudates/pharmacology , Spleen/pathology , Th2 Cells/drug effects , Th2 Cells/immunology
16.
Front Immunol ; 11: 1092, 2020.
Article in English | MEDLINE | ID: mdl-32582180

ABSTRACT

There is a strong correlation between dysregulation of the gastrointestinal microbiota and development of allergic diseases. The most prevalent therapies for relieving asthma symptoms are associated with serious side effects, and therefore novel approaches are needed. Our objective was to elucidate whether oral administration of Lactobacillus rhamnosus GG (LGG) as a probiotic or turmeric powder (TP) as a prebiotic or both as a synbiotic mitigate allergic inflammation including lung function, airway inflammatory cell infiltration, Th2 cytokines/chemokine in a murine model of house dust mite (HDM)-induced asthma. BALB/c mice were intranasally sensitized and challenged with HDM received TP (20 mg/Kg mouse), or/and LGG (105 or 107 cfu/ml), or both orally. Interestingly, the synbiotic intervention (HDM-TP-LGG E7) specifically suppress the developement of airway hyperresponsiveness in response to methacholine. Besides, our synbiotic, TP, and LGG strongly down-regulated eosinophilia, IL-5, CCL17, IL-13. In terms of T cell response, CD4+ Th2 cells and CD4+ Th17 population were reduced in the splenocytes of the treatment groups compared to control. The synbiotic group not only elevated CD25+Foxp3+Treg frequency compared to asthmatic group, but also increased T reg cells compared to the probiotic group. The synbiotic also indicated the superior effect in suppressing Th2 cells compared to probiotic. Although, TP and LGG alone displayed suppressive effects, this study showed that the combination therapy consisting of TP and LGG (synbiotic) is more effective in some of the parameters than either of the treatments alone. This novel synbiotic, might be considered as a potential food-based drug for translational medicine and can possibly be used along with corticosteroid treatment.


Subject(s)
Asthma/therapy , Lacticaseibacillus rhamnosus/immunology , Plant Extracts/therapeutic use , Synbiotics , Administration, Oral , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Asthma/etiology , Asthma/immunology , Curcuma , Cytokines/metabolism , Disease Models, Animal , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/therapeutic use , Lung/drug effects , Lung/immunology , Male , Mice , Mice, Inbred BALB C , Models, Immunological , Phytotherapy , Plant Extracts/administration & dosage , Prebiotics/administration & dosage , Probiotics/administration & dosage , Probiotics/therapeutic use , Pyroglyphidae/immunology , Pyroglyphidae/pathogenicity , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/immunology , Synbiotics/administration & dosage , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
17.
Clin Exp Allergy ; 50(8): 942-953, 2020 08.
Article in English | MEDLINE | ID: mdl-32559330

ABSTRACT

BACKGROUND: Vitamin A deficiency (VAD) has been hypothesized to play a role in the pathophysiology of atopic dermatitis (AD). OBJECTIVE: We sought to verify whether VAD can exacerbate AD development, and explore the possible pathophysiologic mechanism. METHODS: We detected serum vitamin A (VA) concentration in different phenotypes of AD infants (intrinsic AD, iAD and extrinsic AD, eAD), and established ovalbumin (OVA) percutaneous sensitized AD model and passive cutaneous anaphylaxis (PCA) model on VAD and vitamin A supplementation (VAS) model in wild-type mice (C57BL/6) and established AD model on both normal VA (VAN) and VAD feeding mast cell deficiency mice (ckitw-sh/w-sh ). RESULTS: The average serum VA concentration of eAD was significantly lower than that of iAD, as well as healthy controls. In OVA-induced C57BL/6 mouse AD model, compared with VAN group, VAD mice manifested significantly more mast cells accumulation in the skin lesions, more severe Th2-mediated inflammation, including higher serum IgG1 and IgE levels, more IL-4, IL-13 mRNA expression in OVA-sensitized skin, and lower Th1 immune response, including lower serum IgG2a and IFN-γ mRNA expression in the skin. But there was no significant difference in the expression of IL-17 mRNA between OVA-treated skin of VAN and VAD mice. However, in OVA-induced ckitw-sh/w-sh mouse AD model, we did not find any significant differences in the above measurements between VAD and VAN group. In PCA model, VAD mice showed remarkable more blue dye leakage than that in VAN mice. Compared with VAD group, the above-mentioned inflammatory measurements in VAS group and VAN group were similar in OVA-induced AD model mice. CONCLUSIONS AND CLINICAL RELEVANCE: VAD can exacerbate extrinsic AD by augmenting Th2-mediated inflammation and mast cell activation. Therapeutic VAS can rescue VAD-aggravated eAD. It may provide a new strategy for future prevention or treatment of atopic dermatitis.


Subject(s)
Dermatitis, Atopic/immunology , Mast Cells/immunology , Skin/immunology , Th2 Cells/immunology , Vitamin E Deficiency/immunology , Animals , Case-Control Studies , Cytokines/genetics , Cytokines/metabolism , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Disease Models, Animal , Female , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Infant , Male , Mast Cells/drug effects , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Passive Cutaneous Anaphylaxis , Proto-Oncogene Proteins c-kit/genetics , Skin/drug effects , Skin/metabolism , Skin/pathology , Th2 Cells/drug effects , Th2 Cells/metabolism , Vitamin A/pharmacology , Vitamin E Deficiency/diagnosis , Vitamin E Deficiency/drug therapy , Vitamin E Deficiency/metabolism
18.
J Tradit Chin Med ; 40(3): 401-406, 2020 06.
Article in English | MEDLINE | ID: mdl-32506853

ABSTRACT

OBJECTIVE: To investigate the pharmacological mechanism of Wang-Bi tablets (WBTs), a Chinese patented medicine, in rheumatoid arthritis (RA) using mice with collagen-induced arthritis (CIA). METHODS: A mouse model of CIA was induced using bovine type Ⅱ collagen. WBT treatment was administered and efficacy was evaluated. The levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-4 (IL-4) were examined using an enzyme-linked immunosorbent assay, and the proportions of Th1 and Th2 were detected using flow cytometry. T-bet and GATA-binding protein 3 (GATA3) expression were demonstrated using Western blot analysis. RESULTS: Paw swelling and the arthritis index decreased significantly following WBT treatment. Histopathological analysis revealed markedly alleviated damage to synovium tissue in the WBT and methotrexate treatment groups. WBT regulated the production of IFN-γ, IL-2, and IL-4 and modulated Th1 and Th2 cell populations, which might have been induced by the attenuation of Th1 and Th2 cell differentiation through a decrease in the expression of T-bet and an increase in the expression of GATA3 in the synovial tissue in CIA mice. CONCLUSION: These results indicate that WBT may produce a therapeutic effect on CIA through maintaining the balance of Th1/Th2 cells, which could result in a decrease in the autoinflammatory disorder observed in RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/administration & dosage , Th1 Cells/immunology , Th2 Cells/immunology , Animals , Arthritis, Rheumatoid/immunology , Disease Models, Animal , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Male , Mice , Mice, Inbred DBA , Th1 Cells/drug effects , Th2 Cells/drug effects
19.
J Immunotoxicol ; 17(1): 122-134, 2020 12.
Article in English | MEDLINE | ID: mdl-32449871

ABSTRACT

Occupational immune diseases are a serious public health burden and are often a result of exposure to low molecular weight (LMW) chemicals. The complete immunological mechanisms driving these responses are not fully understood which has made the classification of chemical allergens difficult. Antimicrobials are a large group of immunologically-diverse LMW agents. In these studies, mice were dermally exposed to representative antimicrobial chemicals (sensitizers: didecyldimethylammonium chloride (DDAC), ortho-phthalaldehyde (OPA), irritants: benzal-konium chloride (BAC), and adjuvant: triclosan (TCS)) and the mRNA expression of cytokines and cellular mediators was evaluated using real-time qPCR in various tissues over a 7-days period. All antimicrobials caused increases in the mRNA expression of the danger signals Tslp (skin), and S100a8 (skin, blood, lung). Expression of the TH2 cytokine Il4 peaked at different timepoints for the chemicals based on exposure duration. Unique expression profiles were identified for OPA (Il10 in lymph node, Il4 and Il13 in lung) and TCS (Tlr4 in skin). Additionally, all chemicals except OPA induced decreased expression of the cellular adhesion molecule Ecad. Overall, the results from these studies suggest that unique gene expression profiles are implicated following dermal exposure to various antimicrobial agents, warranting the need for additional studies. In order to advance the development of preventative and therapeutic strategies to combat immunological disease, underlying mechanisms of antimicrobial-induced immunomodulation must be fully understood. This understanding will aid in the development of more effective methods to screen for chemical toxicity, and may potentially lead to more effective treatment strategies for those suffering from immune diseases.


Subject(s)
Anti-Infective Agents/adverse effects , Asthma, Occupational/immunology , Dermatitis, Allergic Contact/immunology , Dermatitis, Occupational/immunology , Administration, Cutaneous , Allergens/administration & dosage , Allergens/adverse effects , Animals , Anti-Infective Agents/administration & dosage , Asthma, Occupational/blood , Asthma, Occupational/chemically induced , Asthma, Occupational/pathology , Calgranulin A/genetics , Cytokines/genetics , Dermatitis, Allergic Contact/blood , Dermatitis, Allergic Contact/pathology , Dermatitis, Occupational/blood , Dermatitis, Occupational/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Irritants/adverse effects , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Occupational Exposure/adverse effects , Skin/drug effects , Skin/immunology , Skin/pathology , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/metabolism , Thymic Stromal Lymphopoietin
20.
Ecotoxicol Environ Saf ; 199: 110740, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32446102

ABSTRACT

Dibutyl phthalate (DBP) is one of the most ubiquitous phthalate esters found in everyday products, and is receiving increased attention as an immunologic adjuvant. However, information regarding DBP-aggravated allergic asthma is still limited. This study used a mouse model sensitized with ovalbumin (OVA) to determine any adverse effects of DBP on allergic asthma. Our results reveal that allergic asthmatic mice exposed to DBP for an extended period had a significant increase in inflammatory cell infiltration; a significant increase in levels of serum immunoglobulin and T helper 2 cell (Th2) and T helper 17 cell (Th17) cytokines in lung tissue; and significant changes in lung histology and AHR, all of which are typical asthmatic symptoms. The levels of oxidative stress and levels of the neuropeptide, calcitonin gene related peptide (CGRP), were also elevated after DBP exposure. Interestingly, blocking oxidative stress by administering melatonin (MT) not only reduced oxidative stress and CGRP levels, but also ameliorated the asthmatic symptoms. Collectively, these results show that DBP exacerbates asthma-like pathologies by increasing the expression of CGRP mediated by oxidative stress.


Subject(s)
Asthma/chemically induced , Calcitonin Gene-Related Peptide/metabolism , Dibutyl Phthalate/toxicity , Environmental Pollutants/toxicity , Oxidative Stress/drug effects , Animals , Asthma/immunology , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Lung/drug effects , Lung/immunology , Melatonin/pharmacology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL