Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
G3 (Bethesda) ; 12(6)2022 05 30.
Article in English | MEDLINE | ID: mdl-35416986

ABSTRACT

The Brassicaceae family comprises more than 3,700 species with a diversity of phenotypic characteristics, including seed oil content and composition. Recently, the global interest in Thlaspi arvense L. (pennycress) has grown as the seed oil composition makes it a suitable source for biodiesel and aviation fuel production. However, many wild traits of this species need to be domesticated to make pennycress ideal for cultivation. Molecular breeding and engineering efforts require the availability of an accurate genome sequence of the species. Here, we describe pennycress genome annotation improvements, using a combination of long- and short-read transcriptome data obtained from RNA derived from embryos of 22 accessions, in addition to public genome and gene expression information. Our analysis identified 27,213 protein-coding genes, as well as on average 6,188 biallelic SNPs. In addition, we used the identified SNPs to evaluate the population structure of our accessions. The data from this analysis support that the accession Ames 32872, originally from Armenia, is highly divergent from the other accessions, while the accessions originating from Canada and the United States cluster together. When we evaluated the likely signatures of natural selection from alternative SNPs, we found 7 candidate genes under likely recent positive selection. These genes are enriched with functions related to amino acid metabolism and lipid biosynthesis and highlight possible future targets for crop improvement efforts in pennycress.


Subject(s)
Thlaspi , Biofuels , Plant Oils/metabolism , Seeds/genetics , Thlaspi/genetics , Thlaspi/metabolism , Transcriptome
2.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32740897

ABSTRACT

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Biofuels , Biosynthetic Pathways , Brassicaceae/metabolism , Thlaspi/enzymology , Thlaspi/metabolism , Triglycerides/biosynthesis , 1-Acylglycerophosphocholine O-Acyltransferase/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Acyltransferases/metabolism , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Biosynthetic Pathways/genetics , Diacylglycerol O-Acyltransferase/metabolism , Erucic Acids/metabolism , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Oils/metabolism , Plants, Genetically Modified , Seeds/genetics , Sequence Analysis , Thlaspi/genetics , Transcriptome
3.
Plant Biotechnol J ; 17(4): 776-788, 2019 04.
Article in English | MEDLINE | ID: mdl-30230695

ABSTRACT

Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyl-triacylglycerol-containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress' rapid domestication to meet the growing sustainable food and fuel demands.


Subject(s)
Arabidopsis/genetics , Diacylglycerol O-Acyltransferase/metabolism , Euonymus/enzymology , Genome, Plant/genetics , Plant Oils/metabolism , Thlaspi/genetics , Crops, Agricultural , Diacylglycerol O-Acyltransferase/genetics , Erucic Acids/metabolism , Euonymus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Thlaspi/metabolism
4.
J Plant Physiol ; 208: 7-16, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27889523

ABSTRACT

We studied erucic acid accumulation in the biodiesel feedstock Pennycress (Thlaspi arvense L.) as a first step towards the development of a sustainable strategy for biofuel production in the EU territory. To that end, two inbred Pennycress lines of European origin, "NASC" and "French," were cultivated in a controlled chamber and in experimental field plots, and their growth, seed production and seed oil characteristics analyzed. Differences in some agronomical traits like vernalization (winter-French versus spring-NASC), flowering time (delayed in the French line) and seed production (higher in the French line) were detected. Both lines showed a high amount (35-39%) of erucic acid (22:1Δ13) in their seed oil. Biochemical characterization of the Pennycress seed oil indicated that TAG was the major reservoir of 22:1Δ13. Incorporation of 22:1Δ13 to TAG occurred very early during seed maturation, concomitant with a decrease of desaturase activity. This change in the acyl fluxes towards elongation was controlled by different genes at different levels. TaFAE1 gene, encoding the fatty acid elongase, seemed to be controlled at the transcriptional level with high expression at the early stages of seed development. On the contrary, the TaFAD2 gene that encodes the Δ12 fatty acid desaturase or TaDGAT1 that catalyzes TAG biosynthesis were controlled post-transcriptionally. TaWRI1, the master regulator of seed-oil biosynthesis, showed also high expression at the early stages of seed development. Our data identified genes and processes that might improve the biotechnological manipulation of Pennycress seeds for high-quality biodiesel production.


Subject(s)
Acetyltransferases/genetics , Erucic Acids/metabolism , Fatty Acid Desaturases/genetics , Gene Expression Regulation, Plant , Plant Oils/metabolism , Thlaspi/genetics , Acetyltransferases/metabolism , Amino Acid Sequence , Biofuels , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases , Phenotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Alignment , Sequence Analysis, DNA , Thlaspi/growth & development , Thlaspi/metabolism , Triglycerides/metabolism
5.
Plant Sci ; 227: 122-32, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25219314

ABSTRACT

Oilseed crops are sources of oils and seed meal having a multitude of uses. While the domestication of soybean and rapeseed took extended periods of time, new genome-based techniques have ushered in an era where crop domestication can occur rapidly. One attractive target for rapid domestication is the winter annual plant Field Pennycress (Thlaspi arvense L.; pennycress; Brassicaceae). Pennycress grows widespread throughout temperate regions of the world and could serve as a winter oilseed-producing cover crop. If grown throughout the USA Midwest Corn Belt, for example, pennycress could produce as much as 840L/ha oils and 1470kg/ha press-cake annually on 16 million hectares of farmland currently left fallow during the fall through spring months. However, wild pennycress strains have inconsistent germination and stand establishment, un-optimized maturity for a given growth zone, suboptimal oils and meal quality for biofuels and food production, and significant harvest loss due to pod shatter. In this review, we describe the virtues and current shortcomings of pennycress and discuss how knowledge from studying Arabidopsis thaliana and other Brassicas, in combination with the advent of affordable next generation sequencing, can bring about the rapid domestication and improvement of pennycress and other crops.


Subject(s)
Crops, Agricultural/genetics , Genetic Engineering , Phenotype , Plant Oils/metabolism , Seeds/metabolism , Thlaspi/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , High-Throughput Nucleotide Sequencing , Thlaspi/growth & development , Thlaspi/metabolism
6.
New Phytol ; 181(3): 637-50, 2009.
Article in English | MEDLINE | ID: mdl-19054339

ABSTRACT

The ability of metal hyperaccumulating plants to tolerate and accumulate heavy metals results from adaptations of metal homeostasis. NRAMP metal transporters were found to be highly expressed in some hyperaccumulating plant species. Here, we identified TcNRAMP3 and TcNRAMP4, the closest homologues to AtNRAMP3 and AtNRAMP4 in Thlaspi caerulescens and characterized them by expression analysis, confocal imaging and heterologous expression in yeast and Arabidopsis thaliana. TcNRAMP3 and TcNRAMP4 are expressed at higher levels than their A. thaliana homologues. When expressed in yeast TcNRAMP3 and TcNRAMP4 transport the same metals as their respective A. thaliana orthologues: iron (Fe), manganese (Mn) and cadmium (Cd) but not zinc (Zn) for NRAMP3; Fe, Mn, Cd and Zn for NRAMP4. They also localize at the vacuolar membrane in A. thaliana protoplasts. Inactivation of AtNRAMP3 and AtNRAMP4 in A. thaliana results in strong Cd and Zn hypersensitivity, which is fully rescued by TcNRAMP3 or TcNRAMP4 expression. However, metal tolerance conferred by TcNRAMP expression in nramp3nramp4 mutant does not exceed that of wild-type A. thaliana. Our data indicate that the difference between TcNRAMP3 and TcNRAMP4 and their A. thaliana orthologues does not lie in a different protein function, but probably resides in a different expression level or expression pattern.


Subject(s)
Metals/metabolism , Plant Proteins/metabolism , Thlaspi/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Biological Transport/drug effects , Cadmium/toxicity , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/metabolism , Gene Expression Regulation, Plant/drug effects , Genetic Complementation Test , Genome, Plant/genetics , Green Fluorescent Proteins/metabolism , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Molecular Sequence Data , Mutation/genetics , Plant Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Thlaspi/drug effects , Thlaspi/genetics , Vacuoles/drug effects , Vacuoles/metabolism , Zinc/toxicity
7.
J Evol Biol ; 21(1): 294-309, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17995948

ABSTRACT

Evolution of local adaptation depends critically on the level of gene flow, which, in plants, can be due to either pollen or seed dispersal. Using analytical predictions and individual-centred simulations, we investigate the specific influence of seed and pollen dispersal on local adaptation in plant populations growing in patchy heterogeneous landscapes. We study the evolution of a polygenic trait subject to stabilizing selection within populations, but divergent selection between populations. Deviations from linkage equilibrium and Hardy-Weinberg equilibrium make different contributions to genotypic variance depending on the dispersal mode. Local genotypic variance, differentiation between populations and genetic load vary with the rate of gene flow but are similar for seed and pollen dispersal, unless the landscape is very heterogeneous. In this case, genetic load is higher in the case of pollen dispersal, which appears to be due to differences in the distribution of genotypic values before selection.


Subject(s)
Biological Evolution , Gene Flow , Genetic Load , Models, Genetic , Thlaspi/genetics , Genetic Drift , Genetic Variation , Pollen/genetics , Quantitative Trait, Heritable , Seeds/genetics , Selection, Genetic
8.
Appl Environ Microbiol ; 71(12): 8627-33, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332856

ABSTRACT

The overexpression of serine acetyltransferase from the Ni-hyperaccumulating plant Thlaspi goesingense causes enhanced nickel and cobalt resistance in Escherichia coli. Furthermore, overexpression of T. goesingense serine acetyltransferase results in enhanced sensitivity to cadmium and has no significant effect on resistance to zinc. Enhanced nickel resistance is directly related to the constitutive overactivation of sulfur assimilation and glutathione biosynthesis, driven by the overproduction of O-acetyl-L-serine, the product of serine acetyltransferase and a positive regulator of the cysteine regulon. Nickel in the serine acetyltransferase-overexpressing strains is not detoxified by coordination or precipitation with sulfur, suggesting that glutathione is involved in reducing the oxidative damage imposed by nickel.


Subject(s)
Cobalt/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Nickel/pharmacology , Serine O-Acetyltransferase/genetics , Thlaspi/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Drug Resistance, Bacterial , Escherichia coli/enzymology , Escherichia coli/metabolism , Gene Expression Regulation, Enzymologic , Genetic Engineering , Glutathione/metabolism , Kinetics , Nickel/metabolism , Sulfur/metabolism , Thlaspi/drug effects , Thlaspi/enzymology , Thlaspi/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL