Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458672

ABSTRACT

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Subject(s)
Chickens , NLR Family, Pyrin Domain-Containing 3 Protein , Toluidines , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chickens/metabolism , NF-kappa B/metabolism , Inflammation , Dietary Supplements , Ileum/metabolism , Fatty Acids, Unsaturated/therapeutic use
2.
Phytochemistry ; 219: 113977, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215813

ABSTRACT

During the course of screening for anti-seed germination phytochemicals, the methanol fraction of the Cedrus deodara fresh needles showed potent activity. Bioactivity-guided fractionation led to the isolation of thirty-eight phenolic compounds. Four ones were identified as previously undescribed including (7S,8S)-3-methoxy-9'-acetoxy-3',7-epoxy-8,4'-oxyneoligna-4,9-diol (7), (7S,8R)-dihydro-3'-hydroxy-8-acetoxymethyl-7-(4-hydroxy-3-methoxy-phenyl)-1'-benzofuranpropanol (10), (8S)-4,9,9'-trihydroxy-3,3'-dimethoxy-8,4'-oxyneolignan (11) and (7S,8S)-4,7,9'-trihydroxy-3,3'-dimethoxy-9-acetoxy-8,4'-oxyneolignan (16), respectively. The potential phytotoxic effects of these compounds on the seed germination and root elongation of Arabidopsis thaliana were evaluated by the filter paper assay developed in our laboratory. Bioassay results indicated that caffeic acid (36) displayed most significant inhibitory activities against the seed germination and root elongation of A. thaliana, stronger than those of the commercial herbicides acetochlor and glyphosate at the same concentration of 200 µg/mL. Ditetrahydrofuran lignan (1), dihydrochalcone (25), and eight simple phenols (28, 29, 31, 33-35, 37 and 38) completely inhibited the seed germination of A. thaliana at the concentration of 400 µg/mL, which were as active as acetochlor. Dihydroflavone (21) and the simple phenols 32-34 displayed stronger inhibitory effects on the root elongation of A. thaliana than that of glyphosate. The inhibitory effects of these active compounds on the seed germination and root elongation of Amaranthus tricolor and Lactuca sativa were evaluated as well. The phytotoxic activity of 11, 16, 22, 25, 31, 34, 37 and 38 were detected for the first time. In addition, the structure-activity relationships of the same class of these phytochemicals were discussed.


Subject(s)
Alkaloids , Arabidopsis , Cedrus/chemistry , Phenols/pharmacology , Phenols/chemistry , Toluidines/pharmacology , Alkaloids/pharmacology , Plant Extracts/chemistry , Germination
3.
Biochem Pharmacol ; 204: 115237, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055381

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving âˆ¼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors , Prodrugs , Animals , Biomarkers , Crotonates , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Hydroxybutyrates , Leflunomide/pharmacology , Leflunomide/therapeutic use , Mammals/metabolism , Mice , Nitriles , Plasmodium falciparum/metabolism , Prodrugs/pharmacology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Toluidines
4.
Exp Parasitol ; 241: 108356, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35995248

ABSTRACT

The cattle tick, Rhipicephalus microplus Canestrini (Acari: Ixodidae) is one of the most important tick species severely affecting health and causes huge losses to dairy industry. Chemical acaricides are mainly applied for tick control but development of resistance, environmental pollution and contamination of milk and meat products with residues has led to exploration alternative eco-friendly tick control strategies. The dried fruits of Piper longum L. (Indian long pepper, Thippali or Pippali) generally used as flavoring agent have also been shown to have insecticidal property. Different concentrations (0.625%-10%) of alcoholic and aqueous extracts of Piper longum L. were prepared and evaluated for acaricidal activity against amitraz resistant R. microplus adult and larval stages. Against larval stages a dose-dependent mortality response was recorded for both extracts and higher acaricidal property was exhibited by the alcoholic extract with LC50 and LC95 (95% CL) values of 0.488% (0.48-0.49) and 1.39% (1.35-1.44), respectively. Similarly, against adult engorged females, ethanolic extract showed higher acaricidal property with LC50 and LC95 (95% CL) values of 4.67% (4.61-4.74) and 12.38% (12.05-12.73), respectively. Significant (p < 0.05) reduction was recorded in reproductive index of ticks treated and but no effect on hatchability of eggs was recorded in treated groups. The present study establishes acaricidal activity of P. longum fruit extracts against both larval and adult stages of amitraz resistant population of cattle tick.


Subject(s)
Acaricides , Ixodidae , Piper , Rhipicephalus , Acaricides/chemistry , Acaricides/pharmacology , Animals , Female , Larva , Piper/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Toluidines
5.
Aquat Toxicol ; 246: 106153, 2022 May.
Article in English | MEDLINE | ID: mdl-35381412

ABSTRACT

Overuse of acetochlor pollutes soil and rivers, causing threats to the ecosystem. Studies found that acetochlor exposure could damage multiple organs and tissues in fish and mammal. Tea polyphenols (TP), a natural antioxidant that extracted from tea, has been widely used in food and feed additions. However, the mechanism by which acetochlor causes tissue damage is unclear, and its mitigating agent has yet to be developed. Therefore, we established acetochlor exposure and TP mitigation models by treating Ctenopharyngodon idellus kidney (CIK) cells with 20 µM acetochlor and/or 2.5 µg/mL TP for 24 h, and detected the programmed cell death and its related pathways. The results showed that acetochlor exposure modified antioxidant enzyme activities, induced oxidative stress, resulted in the decline of MMP and ATP levels, enhanced glycolysis and lactate accumulation, and triggered apoptosis and necroptosis in CIK cells. However, TP could inhibit CYP450s expression, activate Nrf2 pathway, enhance antioxidant capacity, further effectively alleviate acetochlor-induced CIK cell death. Overall, the present study proved that acetochlor exposure triggered mitochondrial damage and lactate accumulation-mediated apoptosis and necroptosis through CYP450s/ROS/MAPK/NF-κB pathway. Furthermore, TP could alleviate effectively cell death through relieving oxidative stress and lightening Warburg-like effect.


Subject(s)
Carps , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Carps/metabolism , Ecosystem , Kidney , Lactic Acid/metabolism , Mammals/metabolism , NF-kappa B/metabolism , Necroptosis , Oxidative Stress , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Tea/metabolism , Toluidines , Water Pollutants, Chemical/toxicity
6.
Sci Rep ; 12(1): 3049, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197552

ABSTRACT

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Astrocytes/metabolism , Crotonates/pharmacology , Hydroxybutyrates/pharmacology , Inflammation/metabolism , Nitriles/pharmacology , Toluidines/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Adenosine Triphosphate/metabolism , Animals , Animals, Newborn , Astrocytes/cytology , Astrocytes/drug effects , Cells, Cultured , Chemokines/metabolism , Energy Metabolism/drug effects , Glycolysis/drug effects , Lipocalin-2/metabolism , Mice, Inbred C57BL , Mitochondria/drug effects , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Tumor Necrosis Factor-alpha/metabolism
7.
Drug Deliv ; 28(1): 1972-1981, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34565260

ABSTRACT

Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.


Subject(s)
Emulsions/chemistry , Hydrogels/chemistry , Scabies/drug therapy , Tea Tree Oil/chemistry , Toluidines/pharmacokinetics , Animals , Chemistry, Pharmaceutical , Drug Carriers , Drug Stability , Hydrogen-Ion Concentration , Mice , Surface Properties , Surface-Active Agents/chemistry , Toluidines/administration & dosage
8.
Int J Biol Macromol ; 171: 502-513, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33422513

ABSTRACT

Rheumatoid arthritis (RA), an autoimmune inflammatory disorder is currently incurable. Methotrexate and Teriflunomide are routinely prescribed drugs but their uses are limited due to severe hepatotoxicity. Hyaluronic acid (HYA) is a targeting ligand for CD44 receptors overexpressed on inflamed macrophages. The present investigation aimed at design and fabrication of HYA coated hydroxyapatite nanoparticles (HA-NPs) loaded with Methotrexate (MTX) and Teriflunomide (TEF) (HAMT-NPs) to form HYA-HAMT-NPs for the treatment of RA. HYA-HAMT-NPs showed the nanoscale size of 274.9 ± 64 nm along with a zeta potential value of -26.80 ± 6.08 mV. FTIR spectra of HYA and HYA-HAMT-NPs proved the coating of HYA on HYA-HAMT-NPs. HYA-HAMT-NPs showed less cell viability compared to drugs on RAW 264.7 macrophage cells. A biodistribution study by gamma scintigraphy imaging further strengthened the results by revealing significantly higher (p<0.05) percentage radioactivity (76.76%) of HYA-HAMT-NPs in the synovial region. The results obtained by pharmacodynamic studies ensured the better efficacy of HYA-HAMT-NPs in preventing disease progression and promoting articular regeneration. Under hepatotoxicity evaluation, liver histopathology and liver enzyme assay revealed ~29% hepatotoxicity was reduced by HYA-HAMT-NPs when compared to conventional FOLITRAX-10 and AUBAGIO oral treatments. Overall, the results suggest that HYA-HAMT-NP is a promising delivery system to avoid drug-induced hepatotoxicity in RA.


Subject(s)
Antirheumatic Agents/administration & dosage , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Crotonates/administration & dosage , Drug Carriers/administration & dosage , Durapatite/chemistry , Hyaluronic Acid/chemistry , Methotrexate/administration & dosage , Nanoparticles/administration & dosage , Toluidines/administration & dosage , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/toxicity , Arthritis, Experimental/pathology , Crotonates/pharmacokinetics , Crotonates/therapeutic use , Crotonates/toxicity , Cytokines/blood , Drug Carriers/pharmacokinetics , Drug Carriers/toxicity , Drug Evaluation, Preclinical , Drug Liberation , Hydroxybutyrates , Liver/drug effects , Liver/enzymology , Liver/pathology , Methotrexate/pharmacokinetics , Methotrexate/therapeutic use , Methotrexate/toxicity , Mice , Nanoparticles/toxicity , Nitriles , RAW 264.7 Cells , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tissue Distribution , Toluidines/pharmacokinetics , Toluidines/therapeutic use , Toluidines/toxicity
9.
N Z Vet J ; 69(2): 121-126, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32814497

ABSTRACT

Clinical history: An outbreak of intense pruritus and weight loss in a herd of 40 alpacas (Vicugna pacos) in the south-west of France was investigated after the death of 14 adults. One alpaca was referred to a veterinary teaching hospital for diagnosis and treatment but died soon after and one of the dead alpacas was submitted for necropsy. Clinical findings: The remaining alpacas were intensely pruritic with variably severe and extensive alopecia, erythema, lichenification and crusting on the face, ventral abdomen and distal limbs. Superficial skin scrapes from five animals revealed large numbers of Sarcoptes scabiei mites, and less frequent and numerous Chorioptes bovis mites. Coproscopic examinations revealed a median of 1,350 (min 500, max 8800) strongyle epg. The alpaca admitted for treatment was anaemic and hypoalbuminaemic. Skin scrapes revealed copious S. scabiei and C. bovis mites. The two alpacas examined post-mortem had similar skin lesions to those examined on-farm and were cachexic. One had lung lesions attributed to protostrongylid infestation and its liver contained numerous Dicrocoelium spp. adults. Diagnosis: Sarcoptic and chorioptic mange with secondary superficial bacterial skin infection, associated with severe internal parasitism and underfeeding. Treatment and outcome: All 25 alpacas were treated topically with a 3% chlorhexidine shampoo followed by a 0.025% amitraz wash at the initial visit and then 1, 2, 3, 7 and 9 weeks later. A systemic treatment with S/C 500 µg/kg ivermectin was administered at the initial visit and then 2, 7 and 9 weeks later. The alpacas were treated orally with 50 mg/kg praziquantel to control dicrocoeliosis. Nutritional measures, including increased pasture area and supplemental feeding were simultaneously implemented. Pruritus was reduced 1 week after the start of treatment and had resolved after 2 weeks. After 9 weeks, skin lesions were markedly improved. Six months after the initial visit, skin lesions entirely resolved and superficial skin scrapes, taken from half of the animals, were negative for mites. Clinical relevance: This is the first report of the use of two acaricides combined with a chlorhexidine shampoo to successfully treat simultaneous sarcoptic and chorioptic mange in alpacas.


Subject(s)
Camelids, New World/parasitology , Insecticides/therapeutic use , Ivermectin/therapeutic use , Scabies/veterinary , Toluidines/therapeutic use , Administration, Topical , Animals , Anthelmintics/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Chlorhexidine/administration & dosage , Chlorhexidine/therapeutic use , Dicrocoeliasis/drug therapy , Dicrocoeliasis/veterinary , Drug Therapy, Combination , Female , Injections, Subcutaneous/veterinary , Insecticides/administration & dosage , Ivermectin/administration & dosage , Male , Praziquantel/therapeutic use , Scabies/drug therapy , Scabies/parasitology , Toluidines/administration & dosage
10.
Carbohydr Polym ; 250: 116926, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049840

ABSTRACT

This research aims to coat Teriflunomide (TEF) loaded conventional nanoliposomes (CON-TEF-LIPO) with Chondroitin sulphate (CS) to produce CS-TEF-LIPO for the effective treatment of Rheumatoid arthritis (RA). Both CON-TEF-LIPO and CS-TEF-LIPO were produced, characterized and evaluated for their active targeting potential towards CD44 receptors. Cell cytotoxicity, cell viability and intracellular uptake study on differentiated U937 and MG-63 cells demonstrated the active targeting of CS-TEF-LIPO towards CD44 receptors. Furthermore, in vivo pharmacodynamic, biochemical, radiological and histopathological studies performed in adjuvant induced arthritic (AIA) rat model showed a significant (P < 0.05) reduction in inflammation in arthritic rat paw in CS-TEF-LIPO group compared to TEF and CON-TEF-LIPO groups. Moreover, liver toxicity study revealed that CS-TEF-LIPO showed no signs of toxicity and biodistribution study revealed the accumulation of CS-TEF-LIPO in synovial region of arthritic rat. Taken together, results suggest that CS-TEF-LIPO could provide a new insight for an effective treatment of RA.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Chondroitin Sulfates/chemistry , Crotonates/pharmacology , Glioma/drug therapy , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Toluidines/pharmacology , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Crotonates/pharmacokinetics , Glioma/pathology , Humans , Hydroxybutyrates , Liposomes/chemistry , Male , Nanoparticles/chemistry , Nitriles , Rats , Rats, Wistar , Tissue Distribution , Toluidines/pharmacokinetics , Tumor Cells, Cultured
11.
Mult Scler Relat Disord ; 46: 102480, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32942118

ABSTRACT

Teriflunomide is an oral disease modifying therapy for relapsing-remitting multiple sclerosis (RRMS). Gastrointestinal (GI) side effects occurred in 15-17.9% of patients in the clinical trials and usually were mild and self-limiting. Few cases of inflammatory colitis related to teriflunomide and leflunomide, a prodrug which converts to teriflunomide and is used in the treatment of rheumatoid arthritis, have been reported but no clinical data is available except for a single case of lymphocytic colitis. We here report a 49-year-old man with RRMS who developed severe diarrhea and weight loss six months after starting teriflunomide and eventually was found to have multiple ulcers and inflammatory changes consistent with Crohn's disease. After stopping teriflunomide and chelation therapy, he was started on immunotherapy for Crohn's given the highly inflammatory degree of GI symptoms and histology findings.


Subject(s)
Colitis , Multiple Sclerosis, Relapsing-Remitting , Colitis/chemically induced , Crotonates/adverse effects , Humans , Hydroxybutyrates , Male , Middle Aged , Nitriles , Toluidines/adverse effects
12.
Protein Cell ; 11(10): 723-739, 2020 10.
Article in English | MEDLINE | ID: mdl-32754890

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Oxidoreductases/antagonists & inhibitors , Pandemics , Pneumonia, Viral/drug therapy , RNA Viruses/drug effects , Thiazoles/pharmacology , Animals , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/physiology , Binding Sites/drug effects , COVID-19 , Cell Line , Coronavirus Infections/virology , Crotonates/pharmacology , Cytokine Release Syndrome/drug therapy , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Hydroxybutyrates , Influenza A virus/drug effects , Leflunomide/pharmacology , Mice , Mice, Inbred BALB C , Nitriles , Orthomyxoviridae Infections/drug therapy , Oseltamivir/therapeutic use , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors , Pneumonia, Viral/virology , Protein Binding/drug effects , Pyrimidines/biosynthesis , RNA Viruses/physiology , SARS-CoV-2 , Structure-Activity Relationship , Thiazoles/therapeutic use , Toluidines/pharmacology , Ubiquinone/metabolism , Virus Replication/drug effects
13.
PLoS One ; 15(3): e0228933, 2020.
Article in English | MEDLINE | ID: mdl-32143212

ABSTRACT

Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning, memory, behavior, immunity, and various other physiological processes. Despite this, few studies have explored the molecular mechanisms underlying the action of amitraz on honeybees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L amitraz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381, LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activation, and protein digestion and absorption.


Subject(s)
Bees/drug effects , Gene Expression Profiling/methods , Gene Regulatory Networks/drug effects , Toluidines/pharmacology , Animals , Bees/genetics , Gene Expression Regulation , Gene Ontology , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Sequence Analysis, RNA
14.
G3 (Bethesda) ; 10(3): 945-949, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31937547

ABSTRACT

The etiology of many human complex diseases or traits involves interactions between chemicals and genes that regulate important physiological processes. It has been well documented that chemicals can contribute to disease development through affecting gene expression in vivo In this study, we developed a flexible tool CGSEA for scanning the candidate chemicals associated with complex diseases or traits. CGSEA only need genome-wide summary level data, such as transcriptome-wide association studies (TWAS) and mRNA expression profiles. CGSEA was applied to the GWAS summaries of attention deficiency/hyperactive disorder, (ADHD), autism spectrum disorder (ASD) and cervical cancer. CGSEA identified several significant chemicals, which have been demonstrated to be involved in the development or treatment of ADHD, ASD and cervical cancer. The CGSEA program and user manual are available at https://github.com/ChengSQXJTU/CGSEA.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Autism Spectrum Disorder/epidemiology , Software , Uterine Cervical Neoplasms/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/genetics , Crizotinib , Ethoxyquin , Female , Gene Expression , Genome-Wide Association Study , Humans , Indans , Indoles , Ketoconazole , Methylazoxymethanol Acetate , Sesquiterpenes , Toluidines , Uranium , Uterine Cervical Neoplasms/genetics , Vitamin E
15.
Transbound Emerg Dis ; 67 Suppl 2: 142-148, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31746117

ABSTRACT

The brown dog tick (Rhipicephalus sanguineus) is prevalent on canids in Trinidad. It is directly (by causing anaemia) and indirectly (by acting as a vector of tick-borne pathogens) responsible for morbidity and mortalities in the canine population. The most commonly used commercial acaricides available to pet owners in Trinidad are amitraz and fipronil. Often, these acaricides may be abused and misused in a desperate attempt to rid pets of ticks. The objective of this study was to compare the efficacy of amitraz and fipronil with the herbal alternative, neem (Azadirachta indica). Triplicate in vitro trials utilizing the Larval Packet Test (LPT) were conducted using three concentrations (low, recommended and high) of fipronil (0.025%, 0.05% and 0.1%), amitraz (0.01%, 0.02% and 1%), neem oil (10%, 20% and 40%) and neem leaf extract (0.25%, 0.5% and 2%) for each trial. Statistical analysis using the mixed-effect Poisson regression analysis indicated that there was a significant difference (p < .05) in the survival of ticks pre-treatment versus post-treatment with amitraz, fipronil and all controls when compared to the neem oil. Fipronil and amitraz caused ≥99% mortality for all concentrations used in this study. Mortalities for neem oil and neem leaf extract ranged from 72.7% to 82% and 38% to 95.3%, respectively, with the greatest percentage of mortalities occurring at the lower concentrations. Neem oil and neem leaf extract can be used as alternative acaricides, and however, they are less efficacious against the brown dog tick than amitraz and fipronil.


Subject(s)
Acaricides/pharmacology , Azadirachta/chemistry , Glycerides/pharmacology , Pyrazoles/pharmacology , Rhipicephalus sanguineus/drug effects , Terpenes/pharmacology , Tick Infestations/veterinary , Toluidines/pharmacology , Animals , Dogs , Female , Geography , Larva , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Tick Infestations/epidemiology , Tick Infestations/mortality , Tick Infestations/parasitology , Trinidad and Tobago/epidemiology
16.
Environ Pollut ; 256: 113420, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31813703

ABSTRACT

Pesticide exposure is regarded as a contributing factor to the high gross loss rates of managed colonies of Apis mellifera. Pesticides enter the hive through contaminated nectar and pollen carried by returning forager honey bees or placed in the hive by beekeepers when managing hive pests. We used an in vitro rearing method to characterize the effects of seven pesticides on developing brood subjected dietary exposure at worse-case environmental concentrations detected in wax and pollen. The pesticides tested included acaricides (amitraz, coumaphos, fluvalinate), insecticides (chlorpyrifos, imidacloprid), one fungicide (chlorothalonil), and one herbicide (glyphosate). The larvae were exposed chronically for six days of mimicking exposure during the entire larval feeding period, which is the worst possible scenario of larval exposure. Survival, duration of immature development, the weight of newly emerged adult, morphologies of the antenna and the hypopharyngeal gland, and gene expression were recorded. Survival of bees exposed to amitraz, coumaphos, fluvalinate, chlorpyrifos, and chlorothalonil was the most sensitive endpoint despite observed changes in many developmental and physiological parameters across the seven pesticides. Our findings suggest that pesticide exposure during larvae development may affect the survival and health of immature honey bees, thus contributing to overall colony stress or loss. Additionally, pesticide exposure altered gene expression of detoxification enzymes. However, the tested exposure scenario is unlikely to be representative of real-world conditions but emphasizes the importance of proper hive management to minimize pesticide contamination of the hive environment or simulates a future scenario of increased contamination.


Subject(s)
Bees/physiology , Environmental Pollutants/toxicity , Pesticides/toxicity , Animals , Chlorpyrifos , Coumaphos , Fungicides, Industrial/toxicity , Herbicides/toxicity , Inactivation, Metabolic , Insecticides/toxicity , Larva/drug effects , Neonicotinoids , Nitriles , Nitro Compounds , Pollen/drug effects , Pyrethrins , Toluidines
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117643, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31627056

ABSTRACT

Sulfite, which is a protective agent in various food industries, also is known as an allergen. Therefore, sulfite content in food must be monitored and controlled. In this context, a novel optical sensor is designed for simple, rapid and sensitive determination of the sulfite content in food samples. Acidified pararosaniline (PRA) hydrochloride reagent in cationic form was immobilized on the surface of the Nafion cation exchanger membrane by electrostatic interactions. In formaldehyde medium, the pale purple PRA-Nafion film was converted to rich purple due to the highly conjugated alkyl amino sulfonic acid formation in the presence of sulfite and the absorbance change at 588 nm was recorded. The proposed optical sensor gave a linear response in a wide concentration range for sulfite. The limit of detection (LOD) and the limit of quantification (LOQ) values obtained for sulfite were 0.084 and 0.280 ppm SO2 equivalent, respectively. The proposed optical sensor was validated in terms of linearity, additivity, precision and recovery parameters. The sulfite contents obtained for real food extracts were found to be comparable to the conventional iodometric titration results (with the exception of highly colored samples containing reducing agents, where iodometry was shown to exhibit a systematic error while the proposed sensor could measure the true value). The proposed optical sensor is insensitive to positive interferences from turbidity and colored components of the sample. Sulfite determination in a complex food matrix can be performed using the rapid, simple and sensitive PRA-based sensor without a need for pre-treatment.


Subject(s)
Biosensing Techniques/methods , Food Analysis/methods , Indicators and Reagents/chemistry , Rosaniline Dyes/chemistry , Sulfites/analysis , Toluidines/chemistry , Acetic Acid/analysis , Colorimetry/methods , Food , Indicators and Reagents/chemical synthesis , Indicators and Reagents/pharmacology , Plant Extracts/analysis , Prunus armeniaca/chemistry , Sulfites/isolation & purification , Wine/analysis
18.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-827018

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
19.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828747

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
20.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828583

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Humans , Mice , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Influenza A virus , Leflunomide , Pharmacology , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL