Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Biol Macromol ; 171: 502-513, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33422513

ABSTRACT

Rheumatoid arthritis (RA), an autoimmune inflammatory disorder is currently incurable. Methotrexate and Teriflunomide are routinely prescribed drugs but their uses are limited due to severe hepatotoxicity. Hyaluronic acid (HYA) is a targeting ligand for CD44 receptors overexpressed on inflamed macrophages. The present investigation aimed at design and fabrication of HYA coated hydroxyapatite nanoparticles (HA-NPs) loaded with Methotrexate (MTX) and Teriflunomide (TEF) (HAMT-NPs) to form HYA-HAMT-NPs for the treatment of RA. HYA-HAMT-NPs showed the nanoscale size of 274.9 ± 64 nm along with a zeta potential value of -26.80 ± 6.08 mV. FTIR spectra of HYA and HYA-HAMT-NPs proved the coating of HYA on HYA-HAMT-NPs. HYA-HAMT-NPs showed less cell viability compared to drugs on RAW 264.7 macrophage cells. A biodistribution study by gamma scintigraphy imaging further strengthened the results by revealing significantly higher (p<0.05) percentage radioactivity (76.76%) of HYA-HAMT-NPs in the synovial region. The results obtained by pharmacodynamic studies ensured the better efficacy of HYA-HAMT-NPs in preventing disease progression and promoting articular regeneration. Under hepatotoxicity evaluation, liver histopathology and liver enzyme assay revealed ~29% hepatotoxicity was reduced by HYA-HAMT-NPs when compared to conventional FOLITRAX-10 and AUBAGIO oral treatments. Overall, the results suggest that HYA-HAMT-NP is a promising delivery system to avoid drug-induced hepatotoxicity in RA.


Subject(s)
Antirheumatic Agents/administration & dosage , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Crotonates/administration & dosage , Drug Carriers/administration & dosage , Durapatite/chemistry , Hyaluronic Acid/chemistry , Methotrexate/administration & dosage , Nanoparticles/administration & dosage , Toluidines/administration & dosage , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/toxicity , Arthritis, Experimental/pathology , Crotonates/pharmacokinetics , Crotonates/therapeutic use , Crotonates/toxicity , Cytokines/blood , Drug Carriers/pharmacokinetics , Drug Carriers/toxicity , Drug Evaluation, Preclinical , Drug Liberation , Hydroxybutyrates , Liver/drug effects , Liver/enzymology , Liver/pathology , Methotrexate/pharmacokinetics , Methotrexate/therapeutic use , Methotrexate/toxicity , Mice , Nanoparticles/toxicity , Nitriles , RAW 264.7 Cells , Rats , Rats, Wistar , Spectroscopy, Fourier Transform Infrared , Tissue Distribution , Toluidines/pharmacokinetics , Toluidines/therapeutic use , Toluidines/toxicity
2.
Endocrinology ; 156(3): 896-910, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25535829

ABSTRACT

Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome.


Subject(s)
Endocrine Disruptors/toxicity , Gene Expression Regulation/drug effects , Metabolic Diseases/chemically induced , Sulfonamides/toxicity , Toluidines/toxicity , Adiponectin , Adiposity/drug effects , Animals , Circadian Rhythm , Eating , Energy Metabolism/drug effects , Glucose Tolerance Test , Insulin/metabolism , Insulin Resistance , Leptin , Male , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mice , Oligonucleotide Array Sequence Analysis , RNA/genetics , RNA/metabolism , Weight Gain/drug effects
3.
Apoptosis ; 17(3): 258-68, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22012334

ABSTRACT

We have demonstrated previously that the dihydroorotate dehydrogenase (DHODH) inhibitor teriflunomide (TFN) encourages apoptosis in transformed human keratinocytes. Here we sought to determine if this cytotoxic effect could be restricted to transformed keratinocytes relative to their normal human epidermal keratinocyte (NHEK) counterparts, and ascertain a potential mechanistic basis for the selectivity. The NHEK cells proliferated much slower than the premalignant HaCaT and malignant COLO 16 keratinocytes, and exogenous uridine added to the culture medium did not affect this growth. Similarly, DHODH expression and the bioenergetic characteristics of the normal cells were markedly dissimilar from those observed in the transformed cells indicating that de novo pyrimidine synthesis was involved with keratinocyte proliferation. Moreover, a short-term exposure to TFN caused a wild-type p53 response in the NHEK cells illustrating that pyrimidine metabolic stress could regulate this tumor suppressor protein in the normal cells. TFN-induced apoptosis occurred primarily in S phase HaCaT cells. This cell death was sensitive to uridine, an antioxidant, and a caspase inhibitor, and the suppression of Bcl-X(L) and the induction of Mn superoxide dismutase preceded it. These events suggested that mitochondrial/redox stress was involved with the cytotoxic effect of TFN. Conversely, a long-term exposure to TFN caused G(0)/G(1) arrest in the NHEK cells, which supported a cytoprotective role for p53 against TFN-induced apoptosis. Together, these results propose that TFN could be useful in the prevention or therapy of non-melanoma skin cancers and possibly other hyperproliferative keratinocytic diseases.


Subject(s)
Antineoplastic Agents/pharmacology , Crotonates/toxicity , Energy Metabolism/physiology , Keratinocytes/drug effects , Oxidoreductases Acting on CH-CH Group Donors/physiology , Toluidines/toxicity , Tumor Suppressor Protein p53/physiology , Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Cell Line, Transformed , Dihydroorotate Dehydrogenase , Humans , Hydroxybutyrates , Keratinocytes/metabolism , Keratinocytes/ultrastructure , Mitochondria/drug effects , Mitochondria/metabolism , Nitriles , Pyrimidines/pharmacology
4.
Ecotoxicol Environ Saf ; 73(5): 702-9, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20378172

ABSTRACT

The aim of this work is the Toxicity Identification Evaluation (TIE) of highly toxic tank truck cleaning wastewater effluent. Conventional TIE, using EDTA and activated carbon addition, revealed organic compounds as main source of toxicity. Additional toxicant characteristics could be derived from hydraulic wastewater treatment plant simulation being high intake frequency, low biodegradability and high acute toxicity ratio between Pseudokirchneriella subcapitata and Daphnia magna. The risk probability of compounds present in the influent wastewater was simulated using USEPA Estimation Program Interface (EPI) software. Compound toxicity, solubility and removal rate in a wastewater treatment plant were incorporated into one risk number indicative for the probability of a compound to cause toxicity in the effluent. The herbicide acetochlor was deducted from these TIE procedures as major toxicant and this was confirmed by chemical measurements, concentrations in the effluent samples ranged from 3.73+/-0.52 ppm to 7.8+/-2.1 ppm acetochlor equivalents.


Subject(s)
Models, Chemical , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Animals , Chlorophyta/drug effects , Daphnia/drug effects , Herbicides/toxicity , Toluidines/toxicity , Toxicity Tests , Water Pollutants, Chemical/classification
SELECTION OF CITATIONS
SEARCH DETAIL