Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Gene ; 895: 148015, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37984537

ABSTRACT

Many genes involved in triterpenoid saponins in plants control isoprenoid flux and constitute the precursor pool, which is channeled into various downstream pathways leading to the synthesis of triterpenoid saponins in C. asiatica. Full-length 1-Deoxy-D-Xylulose-5-Phosphate-Synthase (CaDXS) gene was isolated for the study from the previously annotated Centella asiatica leaves transcriptomic data. The CaDXS gene sequence was submitted to the NCBI databases with GenBank accession number MZ997832. The full-length CaDXS gene contained a 2244 base pair open reading frame that encoded a 747 amino acid polypeptide. The predicted molecular weight (MW) and theoretical pI of DXS are 76.28 kDa and 6.86, respectively. Multiple amino acid sequence alignment of amino acids and phylogenetic studies suggest that CaDXS shares high similarities with DXS from other plants DXS belonging to different families. A phylogenetic tree was constructed using Molecular Evolutionary Genetic Analysis (MEGA) version 10.1.6. Structural analysis provided fundamental information about the three-dimensional features and physicochemical parameters of the CaDXS protein. Quantitative expression analysis showed that CaDXS transcripts were maximally expressed in leaf, followed by petiole, roots, and node tissues. CaDXS was cloned into the expression vector pET28a, expressed heterologously in DH5α bacteria, confirmed by sequencing, and subsequently characterized by protein expression and functional complementation. The study focused on understanding the protein structure, biological significance, regulatory mechanism, functional analysis, and gene characterization of the centellosides biosynthetic pathway gene DXS for the first time in the plant. It would provide new information about the metabolic pathway and its relative contribution to isoprenoid biosynthesis.


Subject(s)
Centella , Saponins , Triterpenes , Humans , Phylogeny , Centella/genetics , Centella/metabolism , Transferases/genetics , Terpenes/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant
2.
New Phytol ; 239(3): 1098-1111, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37247337

ABSTRACT

Lettuce produces natural rubber (NR) with an average Mw of > 1 million Da in laticifers, similar to NR from rubber trees. As lettuce is an annual, self-pollinating, and easily transformable plant, it is an excellent model for molecular genetic studies of NR biosynthesis. CRISPR/Cas9 mutagenesis was optimized using lettuce hairy roots, and NR-deficient lettuce was generated via bi-allelic mutations in cis-prenyltransferase (CPT). This is the first null mutant of NR deficiency in plants. In the CPT mutant, orthologous CPT counterparts from guayule (Parthenium argentatum) and goldenrod (Solidago canadensis) were expressed under a laticifer-specific promoter to examine how the average Mw of NR is affected. No developmental defects were observed in the NR-deficient mutants. The lettuce mutants expressing guayule and goldenrod CPT produced 1.8 and 14.5 times longer NR, respectively, than the plants of their origin. This suggests that, although goldenrod cannot synthesize a sufficiently lengthy NR, goldenrod CPT has the catalytic competence to produce high-quality NR in the cellular context of lettuce laticifers. Thus, CPT alone does not determine the length of NR. Other factors, such as substrate concentration, additional proteins, and/or the nature of protein complexes including CPT-binding proteins, influence CPT activity in determining NR length.


Subject(s)
Rubber , Solidago , Rubber/chemistry , Rubber/metabolism , Lactuca/genetics , Transferases/genetics , Transferases/metabolism
3.
Plant Biotechnol J ; 20(10): 1996-2005, 2022 10.
Article in English | MEDLINE | ID: mdl-35767385

ABSTRACT

Potato (Solanum tuberosum L.) originated in the Andes and evolved its vegetative propagation strategy through short day-dependent tuber development. Herein, we present a high-quality, chromosome-scale reference genome sequence of a tetraploid potato cultivar. The total length of this genome assembly was 2.67 Gb, with scaffold N50 and contig N50 sizes of 46.24 and 2.19 Mb, respectively. In total, 1.69 Gb repetitive sequences were obtained through de novo annotation, and long terminal repeats were the main transposable elements. A total of 126 070 protein-coding genes were annotated, of which 125 077 (99.21%) were located on chromosomes. The 48 chromosomes were classified into four haplotypes. We annotated 31 506 homologous genes, including 5913 (18.77%) genes with four homologues, 11 103 (35.24%) with three homologues, 12 177 (38.65%) with two homologues and 2313 (7.34%) with one homologue. MLH3, MSH6/7 and RFC3, which are the genes involved in the mismatch repair pathway, were found to be significantly expanded in the tetraploid potato genome relative to the diploid potato genome. Genome-wide association analysis revealed that cytochrome P450, flavonoid synthesis, chalcone enzyme, glycosyl hydrolase and glycosyl transferase genes were significantly correlated with the flesh colours of potato tuber in 150 tetraploid potatoes. This study provides valuable insights into the highly heterozygous autotetraploid potato genome and may facilitate the development of tools for potato cultivar breeding and further studies on autotetraploid crops.


Subject(s)
Chalcones , Solanum tuberosum , DNA Transposable Elements , DNA-Binding Proteins/genetics , Genome-Wide Association Study , Hydrolases/genetics , Plant Breeding , Solanum tuberosum/genetics , Tetraploidy , Transferases/genetics
4.
Mol Microbiol ; 113(1): 270-284, 2020 01.
Article in English | MEDLINE | ID: mdl-31677193

ABSTRACT

The YggS/Ybl036c/PLPBP family includes conserved pyridoxal 5'-phosphate (PLP)-binding proteins that play a critical role in the homeostasis of vitamin B6 and amino acids. Disruption of members of this family causes pleiotropic effects in many organisms by unknown mechanisms. In Escherichia coli, conditional lethality of the yggS and glyA (encoding serine hydroxymethyltransferase) has been described, but the mechanism of lethality was not determined. Strains lacking yggS and serA (3-phosphoglycerate dehydrogenase) were conditionally lethality in the M9-glucose medium supplemented with Gly. Analyses of vitamin B6 pools found the high-levels of pyridoxine 5'-phosphate (PNP) in the two yggS mutants. Growth defects of the double mutants could be eliminated by overexpressing PNP/PMP oxidase (PdxH) to decrease the PNP levels. Further, a serA pdxH strain, which accumulates PNP in the presence of yggS, exhibited similar phenotype to serA yggS mutant. Together these data suggested the inhibition of the glycine cleavage (GCV) system caused the synthetic lethality. Biochemical assays confirmed that PNP disrupts the GCV system by competing with PLP in GcvP protein. Our data are consistent with a model in which PNP-dependent inhibition of the GCV system causes the conditional lethality observed in the glyA yggS or serA yggS mutants.


Subject(s)
Amino Acid Oxidoreductases/genetics , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Multienzyme Complexes/genetics , Pyridoxal Phosphate/analogs & derivatives , Transferases/genetics , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Pyridoxal Phosphate/metabolism , Synthetic Lethal Mutations
5.
J Antibiot (Tokyo) ; 72(12): 956-969, 2019 12.
Article in English | MEDLINE | ID: mdl-31558775

ABSTRACT

Novel muraminomicin derivatives with antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) were synthesized by esterification of the hydroxy group on the diazepanone ring of muraminomicin Z1. Compound 1b (DS14450354) possessed a diheptoxybenzyl-ß-Alanyl-ß-Alanyl group and exhibited minimum inhibitory concentrations (MICs) against MRSA comparable to those against methicillin-susceptible S. aureus (MSSA). The MICs that inhibited 50 and 90% of the strains were 1 and 2 µg/mL, respectively. Compound 1a (DS60182922) possessed an aminoethylbenzoyldodecylglycyl moiety and showed bactericidal activity against MSSA Smith. The bactericidal activity of 1a against MRSA 10925 was comparatively lower, whilst 1b exhibited dose-dependent bactericidal activity against MRSA 10925. The mutation frequency of 1b was lower than that of 1a. An amino acid substitution (F226I) was observed in MraY mutants isolated from culture plates containing 1a or 1b. Subcutaneous 1a and 1b administration showed good therapeutic efficacy in murine systemic infection models with MSSA Smith and MRSA 10925, comparable to that of vancomycin, suggesting that the novel muraminomicin derivatives may be effective therapeutic agents against MRSA that warrant further investigation. A scheme for the formulation of the key ester intermediate, requiring no HPLC preparation, was also established.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Mice, Inbred Strains , Microbial Sensitivity Tests , Mutation Rate , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Transferases/genetics , Transferases (Other Substituted Phosphate Groups)
6.
Zhongguo Zhong Yao Za Zhi ; 44(5): 935-941, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-30989852

ABSTRACT

1-deoxy-D-xylulose-5-phosphate synthase2(DXS2) is the first key enzyme of the MEP pathway,which plays an important role in terpene biosynthesis of plants. According to the data of Swertia mussotii transcriptome, DXS2 gene(Gen Bank number MH535905) was cloned and named as Sm DXS2. The bioinformatics results showed that Sm DXS2 has no intron,with a 2 145 bp open reading frame encoding a polypeptide of 714 amino acids. They are belonging to 20 kinds of amino acids,and the most abundant amino acids include Ala,Gly and Trp. The predicted protein molecular weight was 76. 91 k Da and its theoretical isoelectric point(p I) was6. 5,which belonging to a hydrophilic protein. α-Helix and loop were the major motifs of predicted secondary structure of DXS2. The three function domains are TPP_superfamily,Transket_pyr_ superfamily and Transketolase_C superfamily,respectively. The Sm DXS2 protein shared high identity with other DXS2 proteins of plants. Phylogenetic analysis showed that Sm DXS2 protein is grouped with the gentian DXS2 protein. The recombinant protein of Sm DXS2 gene in Escherichia coli was approximately 92. 00 k Da(containing sumo-His tag protein 13 k Da),which was consistent with the anticipated size.This work will provide a foundation for further functional research of Sm DXS2 protein and increasing the product of iridoid compound by genetic engineering in S. mussotii.


Subject(s)
Plant Proteins/genetics , Swertia/genetics , Transferases/genetics , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , Genes, Plant , Iridoids , Phylogeny , Swertia/enzymology , Transcriptome
7.
Sci Rep ; 9(1): 1465, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728388

ABSTRACT

The understanding of black tea quality and percent relative water content (%RWC) traits in tea (Camellia sinensis) by a quantitative trait loci (QTL) approach can be useful in elucidation and identification of candidate genes underlying the QTL which has remained to be difficult. The objective of the study was to identify putative QTL controlling black tea quality and percent relative water traits in two tea populations and their F1 progeny. A total of 1,421 DArTseq markers derived from the linkage map identified 53 DArTseq markers to be linked to black tea quality and %RWC. All 53 DArTseq markers with unique best hits were identified in the tea genome. A total of 5,592 unigenes were assigned gene ontology (GO) terms, 56% comprised biological processes, cellular component (29%) and molecular functions (15%), respectively. A total of 84 unigenes in 15 LGs were assigned to 25 different Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways based on categories of secondary metabolite biosynthesis. The three major enzymes identified were transferases (38.9%), hydrolases (29%) and oxidoreductases (18.3%). The putative candidate proteins identified were involved in flavonoid biosynthesis, alkaloid biosynthesis, ATPase family proteins related to abiotic/biotic stress response. The functional annotation of putative QTL identified in this current study will shed more light on the proteins associated with caffeine and catechins biosynthesis and % RWC. This study may help breeders in selection of parents with desirable DArTseq markers for development of new tea cultivars with desirable traits.


Subject(s)
Adaptation, Physiological , Camellia sinensis/physiology , Quantitative Trait Loci , Sequence Analysis, DNA/methods , Droughts , Genetic Linkage , Hydrolases/genetics , Molecular Sequence Annotation , Oxidoreductases/genetics , Plant Proteins/genetics , Transferases/genetics
8.
Int J Mol Sci ; 19(12)2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30544591

ABSTRACT

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


Subject(s)
Camellia sinensis/enzymology , Camellia sinensis/metabolism , Plant Proteins/metabolism , Transferases/metabolism , Abscisic Acid/pharmacology , Camellia sinensis/drug effects , Camellia sinensis/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Transferases/genetics
9.
Mol Med Rep ; 18(5): 4739-4746, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30221726

ABSTRACT

Coenzyme A (CoA) is an essential cofactor of cellular metabolism that is involved in ~4% of cellular reactions. Its de novo production relies on five subsequent enzymatic steps, starting with the phosphorylation of vitamin B5. Pantothenate kinase 2 (PANK2) and coenzyme A synthase (COASY) catalyze the first and last steps of this pathway. Mutations in these genes lead to severe and progressive movement disorders, with neurodegeneration and iron accumulation in the basal ganglia, known as PANK2­ and COASY protein­associated neurodegeneration, respectively. Given the ubiquitous role of CoA in cellular metabolism, it is still not clear why patients carrying PANK2 and COASY mutations develop almost exclusively neurological symptoms. Important clues are the energetic profile of neural cells as well as the high levels of PANK2 expression in the brain; however, other features may contribute to this selective tissue vulnerability. Notably, when pank2 or coasy expression was suppressed in zebrafish evident perturbation of neuronal development was observed, as well as severe defects in vasculature formation. Supplementation of CoA to fish water prevented the appearance of the phenotype, thereby confirming the specific connection with the availability of the metabolic cofactor. The present study investigated the associations between PANK2 defects and angiogenesis in a mammalian setting, and revealed that PANK2 expression was required for normal angiogenetic properties of human umbilical vein endothelial cells.


Subject(s)
Morphogenesis/genetics , Neovascularization, Physiologic/genetics , Pantothenate Kinase-Associated Neurodegeneration/genetics , Transferases/genetics , Zebrafish Proteins/genetics , Animals , Brain/growth & development , Brain/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Iron/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Pantothenate Kinase-Associated Neurodegeneration/pathology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Zebrafish/genetics , Zebrafish/growth & development
10.
Plant Biotechnol J ; 16(6): 1186-1200, 2018 06.
Article in English | MEDLINE | ID: mdl-29193665

ABSTRACT

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A ß-carotene. In this study, ß-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 µg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-ß-carotene, the most nutritionally efficacious carotenoid. ß-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in ß-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between ß-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between ß-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.


Subject(s)
Biofortification , Carbohydrate Metabolism , Carotenoids/metabolism , Manihot/chemistry , Plant Roots/chemistry , Abscisic Acid/metabolism , Food Storage , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Manihot/genetics , Manihot/metabolism , Plants, Genetically Modified , Solanum tuberosum/chemistry , Starch/biosynthesis , Transferases/genetics
11.
Gene ; 643: 61-67, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29196256

ABSTRACT

Salvia miltiorrhiza (S. miltiorrhiza) and Salvia castanea Diels f. tomentosa (S. castanea) are both used for treatment of cardiovascular diseases. They have the same bioactive compound tanshinones, but whose contents are hugely different. This study illustrated diverse responses of tanshinone biosynthesis to yeast extract (YE) and Ag+ in hairy roots of the two species. YE enhanced both the growth and tanshinone biosynthesis of two hairy roots, and contributed more to tanshinone accumulation in S. castanea than that in S. miltiorrhiza. Genes encoding 1-deoxy-d-xylulose 5-phosphate synthase (DXS2), geranylgeranyl diphosphatesynthase (GGPPS1), copalyl diphosphate synthase (CPS1), and two cytochromes P450 (CYP76AH1 and CYP76AH3) were also more responsive to YE in S. castanea than those in S. miltiorrhiza. Accumulations of dihydrotanshinone I and tanshinone I, and most biosynthetic genes in S. miltiorrhiza were more responsive to Ag+ than those in S. castanea. Accumulations of dihydrotanshinone I and cryptotanshinone were more responsive to YE, while tanshinone IIA accumulation was more responsive to Ag+ in S. miltiorrhiza. However, accumulations of other four tanshinones and related genes in S. castanea were more responsive to YE than Ag+. This study provides foundations for studying diverse specialized metabolism between the related species.


Subject(s)
Abietanes/biosynthesis , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Farnesyltranstransferase/genetics , Farnesyltranstransferase/metabolism , Gene Expression Regulation, Plant/genetics , Medicine, Chinese Traditional , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Salvia/genetics , Silver/metabolism , Transferases/genetics , Transferases/metabolism
12.
Plant Physiol Biochem ; 121: 74-79, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29096175

ABSTRACT

For many centuries, Lonicera japonica has been used as an effective herb for the treatment of inflammation and swelling because of the presence of bioactive components such as chlorogenic acid (CGA). To clarify the relationship between L. japonica hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) gene expression and CGA content, an HQT eukaryotic expression system was constructed using Gateway cloning. L. japonica callus transformed with HQT was obtained using Agrobacterium tumefaciens-mediated transformation. We found a positive correlation between CGA content, determined by High-Performance Liquid Chromatography (HPLC), and the expression of HQT, analyzed by semi-quantitative RT-PCR. This study demonstrates that the HQT gene positively regulates CGA synthesis and lays the foundation for further study into enhancing efficacious components of medicinal plants.


Subject(s)
Chlorogenic Acid/metabolism , Lonicera/metabolism , Plant Proteins , Transferases , Lonicera/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transferases/genetics , Transferases/metabolism
13.
ACS Infect Dis ; 3(7): 467-478, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28636325

ABSTRACT

1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site. These features have guided the design of sterically demanding alkylacetylphosphonates (alkylAPs) toward the development of selective DXP synthase inhibitors. alkylAPs studied here display selective, low µM inhibitory activity against DXP synthase. They are weak inhibitors of bacterial growth in standard nutrient rich conditions. However, bacteria are significantly sensitized to most alkylAPs in defined minimal growth medium, with minimal inhibitory concentrations (MICs) ranging from low µM to low mM and influenced by alkyl-chain length. The longest analog (C8) displays the weakest antimicrobial activity and is a substrate for efflux via AcrAB-TolC. The dependence of inhibitor potency on growth environment emphasizes the need for antimicrobial screening conditions that are relevant to the in vivo microbial microenvironment during infection. DXP synthase expression and thiamin supplementation studies offer support for DXP synthase as an intracellular target for some alkylAPs and reveal both the challenges and intriguing aspects of these approaches to study target engagement.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Organophosphonates/pharmacology , Transferases/antagonists & inhibitors , Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Enzyme Inhibitors/chemical synthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glyceraldehyde 3-Phosphate/metabolism , Microbial Sensitivity Tests , Organophosphonates/chemical synthesis , Plasmids/chemistry , Plasmids/metabolism , Pyridoxal Phosphate/metabolism , Pyruvic Acid/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thiamine Pyrophosphate/metabolism , Transferases/genetics , Transferases/metabolism
14.
Sci Rep ; 7: 45333, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28350010

ABSTRACT

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Subject(s)
DNA, Bacterial/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/enzymology , Transferases/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Cloning, Molecular , DNA, Bacterial/genetics , DNA, Complementary/metabolism , Fruit/chemistry , Fruit/metabolism , Solanum lycopersicum/growth & development , Mutagenesis , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/growth & development , RNA Interference , Seedlings/growth & development , Transferases/antagonists & inhibitors , Transferases/genetics
15.
Sci Rep ; 7: 40851, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128232

ABSTRACT

Triptolide and celastrol, two principal bioactive compounds in Tripterygium wilfordii, are produced from geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate ((E,E)-FPP) through terpenoid biosynthesis pathway. However, little is known about T. wilfordii terpene synthases which could competitively utilize GGPP and (E,E)-FPP as substrates, producing C15 and C20 tertiary alcohols. Here we firstly cloned the genes encoding nerolidol synthase (NES) and geranyllinalool synthases (GES1, GES2), which are responsible for the biosynthesis of (E)-nerolidol and (E,E)-geranyllinalool. In vitro characterization of recombinant TwNES and TwGES1 revealed both were functional enzymes that could catalyze the conversion of (E,E)-FPP and GGPP to (E)-nerolidol and (E,E)-geranyllinalool, which were consistent with the results of yeast fermentation. Biochemical characterization revealed TwNES and TwGES1 had strong dependency for Mg2+, Km and Kcat/Km values of TwNES for (E,E)-FPP were 12.700 µM and 0.029 s-1/µM, and TwGES1 for GGPP were 2.039 µM and 0.019 s-1/µM. Real-time PCR analysis showed the expression levels of NES and GES1 increased by several fold in the suspension cells treated with alamethicin, indicating TwNES and TwGES1 are likely to utilize GGPP and (E,E)-FPP to generate tertiary alcohols as precursor of plant volatiles, which play important roles in the ecological interactions between T. wilfordii and other organisms.


Subject(s)
Diterpenes/metabolism , Plant Proteins/genetics , Sesquiterpenes/metabolism , Transferases/genetics , Tripterygium/enzymology , Acyclic Monoterpenes , Coenzymes/metabolism , Magnesium/metabolism , Plant Proteins/metabolism , Plants, Medicinal/enzymology , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Substrate Specificity , Transferases/metabolism , Tripterygium/genetics , Tripterygium/metabolism
16.
Plant Sci ; 243: 71-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26795152

ABSTRACT

1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.


Subject(s)
Gene Expression Regulation, Plant , Phytophthora infestans/physiology , Plant Diseases/genetics , Plant Proteins/genetics , Transferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Eicosapentaenoic Acid/metabolism , Glucans/metabolism , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Sequence Analysis, DNA , Transferases/metabolism
17.
J Ethnopharmacol ; 180: 104-13, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26805467

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali radix ("Huang Qi" in Chinese, HQ) is a well-known traditional Chinese herbal medicine that possesses various biological functions. Astragaloside IV (AS-IV), calycosin (CS), and formononetin (FMNT) are the three main bioactive compounds of HQ that are responsible for its pharmacological activities and therapeutic efficacy. AIM OF THE STUDY: This study aims to investigate the effects of HQ, AS-IV, CS, and FMNT on major human drug-metabolizing enzymes (DMEs), including CYP3A4, CYP2B6, CYP2E1, UGT1A, UGT1A6, SULT1A1, and SULT1A3, as well as efflux transporters (ETs), including P-gp, MRP2, BCRP, MRP1, and MRP3, by using HepG2 cell line. Results would provide beneficial information for the proper clinical application of HQ. MATERIALS AND METHODS: HepG2 cells were treated with HQ, AS-IV, CS, and FMNT for 96h. Cell viability was examined by MTT assay. The protein and mRNA levels of DMEs and ETs were measured using Western blot and real-time PCR, respectively. RESULTS: Compared with the control group, HQ considerably increased the expression levels of CYP3A4, CYP2B6, CYP2E1, UGT1A, P-gp, MRP2, BCRP, and MRP3 in a dose-dependent manner. Inversely, HQ significantly decreased the protein levels of UGT1A6, SULT1A1, and MRP1. Exposure to AS-IV induced the protein levels of UGT1A, P-gp, MRP1, and MRP3, but produced inhibitory effects on CYP3A4, CYP2B6, and BCRP. The expression levels of CYP3A4, UGT1A, SULT1A1, P-gp, MRP2, and MRP3 were remarkably increased in the CS-treated cells, whereas the protein levels of SULT1A3 and BCRP were decreased. FMNT treatment induced the protein levels towards CYP3A4, CYP2B6, UGT1A, P-gp, MRP1, MRP2, and MRP3, but inhibited the expression of CYP2E1, SULT1A1, and SULT1A3. CONCLUSIONS: HQ and its main bioactive compounds, including AS-IV, CS, and FMNT significantly regulated the expression of the major DMEs and ETs. HQ produced stronger regulations (induction or inhibition) on DMEs and ETs than AS-IV, CS, or FMNT alone. The results indicate that potential drug-drug interactions might exist when the tested drugs, specifically HQ, are co-administered with other substrate drugs that are metabolized or transported via the studied DMEs or ETs. This study provides beneficial information for appropriate use of HQ for clinical therapy.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Isoflavones/pharmacology , Saponins/pharmacology , Triterpenes/pharmacology , Astragalus propinquus , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Hep G2 Cells , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , RNA, Messenger/metabolism , Transferases/genetics , Transferases/metabolism
18.
J Exp Bot ; 66(1): 213-24, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25316062

ABSTRACT

Rab proteins, key players in vesicular transport in all eukaryotic cells, are post-translationally modified by lipid moieties. Two geranylgeranyl groups are attached to the Rab protein by the heterodimeric enzyme Rab geranylgeranyl transferase (RGT) αß. Partial impairment in this enzyme activity in Arabidopsis, by disruption of the AtRGTB1 gene, is known to influence plant stature and disturb gravitropic and light responses. Here it is shown that mutations in each of the RGTB genes cause a tip growth defect, visible as root hair and pollen tube deformations. Moreover, FM 1-43 styryl dye endocytosis and recycling are affected in the mutant root hairs. Finally, it is demonstrated that the double mutant, with both AtRGTB genes disrupted, is non-viable due to absolute male sterility. Doubly mutated pollen is shrunken, has an abnormal exine structure, and shows strong disorganization of internal membranes, particularly of the endoplasmic reticulum system.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/genetics , Flowers/genetics , Mutation , Transferases/genetics , Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Base Sequence , Fertility/genetics , Flowers/anatomy & histology , Flowers/growth & development , Molecular Sequence Data , Pollen/metabolism , Pollen Tube/growth & development , Reproduction , Transferases/chemistry
19.
J Plant Physiol ; 171(17): 1564-70, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25151124

ABSTRACT

Spike lavender (Lavandula latifolia) is an economically important aromatic plant producing essential oils, whose components (mostly monoterpenes) are mainly synthesized through the plastidial methylerythritol 4-phosphate (MEP) pathway. 1-Deoxy-D-xylulose-5-phosphate (DXP) synthase (DXS), that catalyzes the first step of the MEP pathway, plays a crucial role in monoterpene precursors biosynthesis in spike lavender. To date, however, it is not known whether the DXP reductoisomerase (DXR), that catalyzes the conversion of DXP into MEP, is also a rate-limiting enzyme for the biosynthesis of monoterpenes in spike lavender. To investigate it, we generated transgenic spike lavender plants constitutively expressing the Arabidopsis thaliana DXR gene. Although two out of the seven transgenic T0 plants analyzed accumulated more essential oils than the controls, this is hardly imputable to the DXR transgene effect since a clear correlation between transcript accumulation and monoterpene production could not be established. Furthermore, these increased essential oil phenotypes were not maintained in their respective T1 progenies. Similar results were obtained when total chlorophyll and carotenoid content in both T0 transgenic plants and their progenies were analyzed. Our results then demonstrate that DXR enzyme does not play a crucial role in the synthesis of plastidial monoterpene precursors, suggesting that the control flux of the MEP pathway in spike lavender is primarily exerted by the DXS enzyme.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Lavandula/enzymology , Oils, Volatile/metabolism , Plant Oils/metabolism , Transferases/metabolism , Aldose-Ketose Isomerases/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Erythritol/analogs & derivatives , Erythritol/metabolism , Flowers/chemistry , Flowers/enzymology , Flowers/genetics , Gene Expression , Lavandula/chemistry , Lavandula/genetics , Monoterpenes/metabolism , Phenotype , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Sugar Phosphates/metabolism , Transferases/genetics
20.
Biol Trace Elem Res ; 160(2): 222-31, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24958020

ABSTRACT

Selenoprotein T (SelT) is associated with the regulation of calcium homeostasis and neuroendocrine secretion. SelT can also change cell adhesion and is involved in redox regulation and cell fixation. However, the structure and function of chicken SelT and its response to selenium (Se) remains unclear. In the present study, 150 1-day-old chickens were randomly divided into a low Se group (L group, fed a Se-deficient diet containing 0.020 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.2 mg/kg Se). The immune organs (spleen, thymus, and bursa of Fabricius) were collected at 15, 25, 35, 45, and 55 days of age. We performed a sequence analysis and predicted the structure and function of SelT. We also investigated the effects of Se deficiency on the expression of SelT, selenophosphate synthetase-1 (SPS1), and selenocysteine synthase (SecS) using RT-PCR and the oxidative stress in the chicken immune organs. The data showed that the coding sequence (CDS) and deduced amino acid sequence of SelT were highly similar to those of 17 other animals. Se deficiency induced lower (P < 0.05) levels of SelT, SPS1, and SecS, reduced the catalase (CAT) activity, and increased the levels of hydrogen peroxide (H2O2) and hydroxyl radical (-OH) in immune organs. In conclusion, the CDS and deduced amino acid sequence of chicken SelT are highly homologous to those of various mammals. The redox function and response to the Se deficiency of chicken SelT may be conserved. A Se-deficient diet led to a decrease in SelT, SecS, and SPS1 and induced oxidative stress in the chicken immune organs. To our knowledge, this is the first report of predictions of chicken SelT structure and function. The present study demonstrated the relationship between the selenoprotein synthases (SPS1, SecS) and SelT expression in the chicken immune organs and further confirmed oxidative stress caused by Se deficiency. Thus, the information presented in this study is helpful to understand chicken SelT structure and function. Meanwhile, the present research also confirmed the negative effects of Se deficiency on chicken immune organs.


Subject(s)
Avian Proteins/metabolism , Bursa of Fabricius/drug effects , Selenium/pharmacology , Selenoproteins/metabolism , Spleen/drug effects , Amino Acid Sequence , Animals , Animals, Newborn , Avian Proteins/chemistry , Avian Proteins/genetics , Bursa of Fabricius/metabolism , Catalase/metabolism , Chickens , Dietary Supplements , Gene Expression/drug effects , Hydrogen Peroxide/metabolism , Hydroxyl Radical/metabolism , Models, Molecular , Molecular Sequence Data , Phosphotransferases/genetics , Phosphotransferases/metabolism , Phylogeny , Protein Conformation , Random Allocation , Reverse Transcriptase Polymerase Chain Reaction , Selenium/administration & dosage , Selenium/deficiency , Selenoproteins/classification , Selenoproteins/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Spleen/metabolism , Transferases/genetics , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL