Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Eur J Med Res ; 29(1): 183, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500195

ABSTRACT

BACKGROUND: Renal fibrosis (RF) produced adverse effect on kidney function. Recently, intestinal dysbiosis is a key regulator that promotes the formation of renal fibrosis. This study will focus on exploring the protective mechanism of Kangxianling Formula (KXL) on renal fibrosis from the perspective of intestinal flora. METHODS: Unilateral Ureteral Obstruction (UUO) was used to construct rats' model with RF, and receive KXL formula intervention for 1 week. The renal function indicators were measured. Hematoxylin-eosin (HE), Masson and Sirus red staining were employed to detect the pathological changes of renal tissue in each group. The expression of α-SMA, Col-III, TGF-ß, FN, ZO-1, and Occuludin was detected by immunofluorescence and immunohistochemistry. Rat feces samples were collected and analyzed for species' diversity using high-throughput sequencing 16S rRNA. RESULTS: Rats in UUO groups displayed poor renal function as well as severe RF. The pro-fibrotic protein expression in renal tissues including α-SMA, Col-III, TGF-ß and FN was increased in UUO rats, while ZO-1 and Occuludin -1 expression was downregulated in colon tissues. The above changes were attenuated by KXL treatment. 16S rRNA sequencing results revealed that compared with the sham group, the increased abundance of pathogenic bacteria including Acinetobacter, Enterobacter and Proteobacteria and the decreased abundance of beneficial bacteria including Actinobacteriota, Bifidobacteriales, Prevotellaceae, and Lactobacillus were found in UUO group. After the administration of KXL, the growth of potential pathogenic bacteria was reduced and the abundance of beneficial bacteria was enhanced. CONCLUSION: KXL displays a therapeutical potential in protecting renal function and inhibiting RF, and its mechanism of action may be associated with regulating intestinal microbiota.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Kidney Diseases , Ureteral Obstruction , Rats , Animals , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Rats, Sprague-Dawley , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney/pathology , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Fibrosis , Transforming Growth Factor beta1
2.
Hematology ; 29(1): 2326389, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38466633

ABSTRACT

Objectives: Aplastic anemia (AA) is one of the immune-mediated bone marrow failure disorders caused by multiple factors, including the inability of CD4 + CD25 + regulatory T cells (Tregs) to negatively regulate cytotoxic T lymphocytes (CTLs). Dioscin is a natural steroid saponin that has a similar structure to steroid hormones. The purpose of this study is to look into the effect of Dioscin on the functions of CD4 + CD25+ Tregs in the AA mouse model and explore its underlying mechanism.Methods: To begin with, bone marrow failure was induced through total body irradiation and allogeneic lymphocyte infusion using male Balb/c mice. After 14 consecutive days of Dioscin orally administrated, the AA mouse model was tested for complete blood counts, HE Staining of the femur, Foxp3, IL-10 and TGF-ß. Then CD4 + CD25+ Tregs were isolated from splenic lymphocytes of the AA mouse model, Tregs and the biomarkers and cytokines of Tregs were measured after 24 h of Dioscin intervention treatment in vitro.Results: Dioscin promotes the expression of Foxp3, IL-10, IL-35 and TGF-ß, indicating its Tregs-promoting properties. Mechanistically, the administration of Dioscin resulted in the alteration of CD152, CD357, Perforin and CD73 on the surface of Tregs, and restored the expression of Foxp3.Conclusion: Dioscin markedly attenuated bone marrow failure, and promoted Tregs differentiation, suggesting the maintenance of theimmune balance effect of Dioscin. Dioscin attenuates pancytopenia and bone marrow failure via its Tregs promotion properties.


Subject(s)
Anemia, Aplastic , Diosgenin , Diosgenin/analogs & derivatives , Animals , Mice , Male , Humans , T-Lymphocytes, Regulatory , Interleukin-10/metabolism , Interleukin-10/pharmacology , Diosgenin/pharmacology , Diosgenin/therapeutic use , Diosgenin/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Forkhead Transcription Factors
3.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334900

ABSTRACT

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Subject(s)
Liver Cirrhosis , Signal Transduction , Mice , Animals , 5-Methoxypsoralen/adverse effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Hepatic Stellate Cells , Transforming Growth Factor beta/pharmacology , Liver
4.
Curr Eye Res ; 49(2): 150-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37921272

ABSTRACT

PURPOSE: To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor ß1 (TGF-ß1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS: HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-ß1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS: TGF-ß1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-ß1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-ß1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS: Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-ß1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-ß1 and IL-6 protein level after 24 h.


Subject(s)
Interleukin-6 , Transforming Growth Factor beta , Humans , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Interleukin-6/genetics , Interleukin-6/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Rose Bengal/pharmacology , Transforming Growth Factor beta1/pharmacology , Protein-Lysine 6-Oxidase/metabolism , Collagen/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Fibroblasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Nat Med ; 78(1): 100-113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37817006

ABSTRACT

Cancer stem cells (CSCs) are the primary source of tumor recurrence and chemoresistance, which complicates tumor treatment and has a significant impact on poor patient prognosis. Therefore, the discovery of inhibitors that specifically target CSCs is warranted. Previous research has established that the TGF-ß/Smad signaling pathway is critical for the maintenance of CSCs phenotype, thus facilitating CSCs transformation. In this regard, Celastrus orbiculatus ethyl acetate extract (COE) was shown to exert anticancer properties; however, its therapeutic impact on gastric cancer stem cells (GCSCs) remains unknown. We here demonstrate that COE displayed a strong inhibitory effect on GCSCs growth and CSCs markers. Moreover, COE was shown to efficiently inhibit the development of tumor spheres and accelerate GCSCs apoptosis. Mechanistically, we established that COE could suppress the stemness phenotype of GCSCs by inhibiting the activity of the TGF-ß/Smad signaling pathway. To summarize, our data indicate that COE suppresses the malignant biological phenotype of GCSCs via the TGF-ß/Smad signaling pathway. These findings shed new light on the anticancer properties of COE and suggest new strategies for the development of efficient GCSCs therapeutics.


Subject(s)
Celastrus , Stomach Neoplasms , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Cell Line, Tumor , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Signal Transduction , Transforming Growth Factor beta/pharmacology
6.
Phytother Res ; 38(2): 1000-1012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38126609

ABSTRACT

Osteoarthritis (OA) is a common chronic degenerative disease which is characterized by the disruption of articular cartilage. Syringic acid (SA) is a phenolic compound with anti-inflammatory, antioxidant, and other effects including promoting osteogenesis. However, the effect of SA on OA has not yet been reported. Therefore, the purpose of our study was to investigate the effect and mechanism of SA on OA in a mouse model of medial meniscal destabilization. The expressions of genes were evaluated by qPCR or western blot or immunofluorescence. RNA-seq analysis was performed to examine gene transcription alterations in chondrocytes treated with SA. The effect of SA on OA was evaluated using destabilization of the medial meniscus model of mice. We found that SA had no obvious toxic effect on chondrocytes, while promoting the expressions of chondrogenesis-related marker genes. The results of RNA-seq analysis showed that extracellular matrix-receptor interaction and transforming growth factor-ß (TGF-ß) signaling pathways were enriched among the up-regulated genes by SA. Mechanistically, we demonstrated that SA transcriptionally activated Smad3. In addition, we found that SA inhibited the overproduction of lipopolysaccharide-induced inflammation-related cytokines including tumor necrosis factor-α and interleukin-1ß, as well as matrix metalloproteinase 3 and matrix metalloproteinase 13. The cell apoptosis and nuclear factor-kappa B (NF-κB) signaling were also inhibited by SA treatment. Most importantly, SA attenuated cartilage degradation in a mouse OA model. Taken together, our study demonstrated that SA could alleviate cartilage degradation in OA by activating the TGF-ß/Smad and inhibiting NF-κB signaling pathway.


Subject(s)
Cartilage, Articular , Gallic Acid/analogs & derivatives , Osteoarthritis , Mice , Animals , NF-kappa B/metabolism , Transforming Growth Factor beta/pharmacology , Signal Transduction , Chondrocytes , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Extracellular Matrix/metabolism , Interleukin-1beta/metabolism , Cells, Cultured
7.
BMC Oral Health ; 23(1): 1014, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38110929

ABSTRACT

BACKGROUND: Recurrent aphthous stomatitis has a complex and inflammatory origin. Among the great variety of medications it is increasingly common to use herbal medicines due to the adverse side effects of chemical medications. Considering the anti-inflammatory properties of cinnamaldehyde and the lack of studies related to the effectiveness of its nano form; This study investigates the effect of cinnamaldehyde and nano cinnamaldehyde on the healing rate of recurrent aphthous stomatitis lesions. METHODS: In a laboratory experiment, cinnamaldehyde was converted into niosomal nanoparticles. The niosome vesicles diameter and polydispersity index were measured at 25°C using a dynamic light scattering (DLS) Mastersizer 2000 (Malvern Panalytical technologies: UK) and Zetasizer Nano ZS system (Malvern Instruments Worcestershire: UK). After characterizing these particles, the (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) [XTT] assay was used to assess the toxicity of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblast (HGF) and macrophage (THP-1) cells. By determining the release of TNF-α, IL-6, and TGF-ß cytokines using ELISA kits, the level of tissue repair and anti-inflammatory capabilities of these two substances were evaluated. RESULTS: The size and loading rate of the cinnamaldehyde nanoparticles were established after its creation. The optimized nanovesicle exhibited the following characteristics: particle size of 228.75 ± 2.38 nm, PDI of 0.244 ± 0.01, the zeta potential of -10.87 ± 1.09 mV and the drug encapsulation percentage of 66.72 ± 3.93%. PDIs range was between 0.242-0.274. The zeta potential values at 25°C were from -2.67 to -12.9 mV. The results of the XTT test demonstrated that nano cinnamaldehyde exhibited dose-dependent toxicity effects. Moreover, nano cinnamaldehyde released more TGF-ß and had better reparative effects when taken at lower concentrations than cinnamaldehyde. CONCLUSION: Nano cinnamaldehyde and cinnamaldehyde are effective in repairing tissue when used in non-toxic amounts. After confirmation in animal models, it is envisaged that these substances can be utilized to treat recurrent aphthous stomatitis.


Subject(s)
Stomatitis, Aphthous , Animals , Macrophages , Anti-Inflammatory Agents/pharmacology , Fibroblasts , Transforming Growth Factor beta/pharmacology
8.
Curr Drug Metab ; 24(10): 709-722, 2023.
Article in English | MEDLINE | ID: mdl-37936469

ABSTRACT

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , PPAR gamma/pharmacology , PPAR gamma/therapeutic use , Arachidonic Acid/pharmacology , Arachidonic Acid/therapeutic use , Biotin/metabolism , Biotin/pharmacology , Biotin/therapeutic use , Signal Transduction , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Riboflavin/metabolism , Riboflavin/pharmacology , Riboflavin/therapeutic use , Diabetes Mellitus/drug therapy
9.
J Tradit Chin Med ; 43(6): 1126-1139, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37946475

ABSTRACT

OBJECTIVE: To explore the underlying mechanisms of the effects of Yangqing Chenfei formula (, YCF) on inflammation and fibrosis in silicosis via inhibition of macrophage polarization. METHODS: A silicotic rat model was established via a single intratracheal instillation of silica particles on the first day of week 0. Subsequently, YCF was administered intragastrically to silicotic rats during weeks 0-2 and 5-8 twice daily. The mouse-derived alveolar macrophage cell line was used to investigate the mechanisms of YCF in M1/M2 polarization. RESULTS: YCF treatment effectively inhibited lung pathological changes, including inflammatory cell infiltration and tissue damage, and increased the forced expiratory volume in the first 0.3 s, functional residual capacity, and maximal mid-expiratory flow in weeks 2 and 8. Furthermore, the treatment improved lung functions by upregulating tidal volume, pause increase, and expiratory flow at 50% tidal volume from weeks 5 to 8. Moreover, YCF could significantly suppressed the progression of inflammation and fibrosis, by reducing the levels of inflammatory cytokines, as well as collagen- I and III. YCF treatment also decreased the numbers of macrophages and M1/M2 macrophages and the level of transforming growth factor-ß (TGF-ß). Additionally, YCF5, the effective substance in YCF, decreased lipopolysaccharide and interferon-γ-induced M1 macrophage polarization in a concentration-dependent manner. The mechanism of anti-M1 polarization might be related to a decrease in extracellular signal-regulated kinase, c-JUN N-terminal kinase, P38, and P65 phosphorylation. Furthermore, YCF5 inhibited interleukin-4-induced M2 macrophages by decreasing the protein and mRNA expressions of arginase-1 and CD206 as well as the levels of profibrotic factors, such as TGF-ß and connective tissue growth factor. The mechanisms underlying the anti-M2 polarization of YCF5 were primarily associated with the inhibition of the nuclear translocation of phosphorylated signal transducer and activator of transcription 6 (p-STAT6). CONCLUSION: YCF significantly inhibits inflammation and fibrosis in silicotic rats probably via the suppression of M1/M2 macrophage polarization mediated by the inhibition of mitogen-activated protein kinase and nuclear factor kappa B signaling pathways and Janus kinase/STAT6 pathways.


Subject(s)
Pneumonia , Silicon Dioxide , Rats , Mice , Animals , Silicon Dioxide/metabolism , Silicon Dioxide/pharmacology , Fibrosis , Inflammation/drug therapy , Macrophages , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
10.
Kaohsiung J Med Sci ; 39(11): 1106-1118, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37698291

ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Neferine is used as a traditional Chinese medicine with many pharmacological effects, including antitumor properties; however, it has not been reported whether neferine plays an anticancer role by causing pyroptosis in NSCLC cells. We used two typical lung cancer cell lines, A549 and H1299, and 42 lung cancer tissue samples to investigate the regulatory effects of neferine on TGF-ß and MST1. We also treated lung cancer cells with different concentrations of neferine to study its effects on lung cancer cell survival, migration, invasion, and epithelial-mesenchymal transition (EMT) as well as on pyroptosis. Lentivirus-mediated gain-of-function studies of TGF-ß and MST1 were applied to validate the roles of TGF-ß and MST1 in lung cancer. Next, we used murine transplanted tumor models to evaluate the effect of neferine treatment on the metastatic capacity of lung cancer tissues. With increasing neferine concentration, the viability, migration, invasion, and EMT capacity of A549 and H1299 cells decreased, whereas pyroptosis increased. Neferine repressed TGF-ß expression to modulate the induction of reactive oxygen species (ROS) by MST1. Overexpression of TGF-ß in either in vitro or mouse-transplanted A549 cells restored the inhibitory effect of neferine on tumor development. Overexpression of MST1 clearly enhanced pyroptosis. Neferine contributed to pyroptosis by regulating MST1 expression through downregulation of TGF-ß to induce ROS formation. Therefore, our study shows that neferine can serve as an adjuvant therapy for NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Pyroptosis , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition/genetics
11.
Chin J Nat Med ; 21(7): 527-539, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37517820

ABSTRACT

Activated fibroblasts and M2-polarized macrophages may contribute to the progression of pulmonary fibrosis by forming a positive feedback loop. This study was aimed to investigate whether fibroblasts and macrophages form this loop by secreting SDF-1 and TGF-ß and the impacts of neotuberostemonine (NTS) and tuberostemonine (TS). Mice were intratracheally injected with 3 U·kg-1 bleomycin and orally administered with 30 mg·kg-1 NTS or TS. Primary pulmonary fibroblasts (PFBs) and MH-S cells (alveolar macrophages) were used in vitro. The animal experiments showed that NTS and TS improved fibrosis related indicators, inhibited fibroblast activation and macrophage M2 polarization, and reduced the levels of TGF-ß and SDF-1 in alveolar lavage fluid. Cell experiments showed that TGF-ß1 may activated fibroblasts into myofibroblasts secreting SDF-1 by activating the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways. It was also found for the first time that SDF-1 was able to directly polarize macrophages into M2 phenotype secreting TGF-ß through the same pathways as mentioned above. Moreover, the results of the cell coculture confirmed that fibroblasts and macrophages actually developed a feedback loop to promote fibrosis, and the secretion of TGF-ß and SDF-1 was crucial for maintaining this loop. NTS and TS may disturb this loop through inhibiting both the PI3K/AKT/HIF-1α and PI3K/PAK/RAF/ERK/HIF-1α pathways to improve pulmonary fibrosis. NTS and TS are stereoisomeric alkaloids with pyrrole[1,2-a]azapine skeleton, and their effect on improving pulmonary fibrosis may be largely attributed to their parent nucleus. Moreover, this study found that inhibition of both the AKT and ERK pathways is essential for maximizing the improvement of pulmonary fibrosis.


Subject(s)
Alkaloids , Pulmonary Fibrosis , Animals , Mice , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System , Alkaloids/pharmacology , Fibroblasts , Macrophages/metabolism
12.
Chin Med Sci J ; 38(3): 206-217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37401499

ABSTRACT

Objective To explore the effects and mechanisms of a traditional Chinese medicine (TCM) prescription, "Fang-gan Decoction" (FGD), in protecting against SARS-CoV-2 spike protein-induced lung and intestinal injuries in vitro and in vivo.Methods Female BALB/c mice and three cell lines pretreated with FGD were stimulated with recombinant SARS-CoV-2 spike protein (spike protein). Hematoxylin-eosin (HE) staining and pathologic scoring of tissues, cell permeability and viability, and angiotensin-converting enzyme 2 (ACE2) expression in the lung and colon were detected. Enzyme-linked immunosorbent assay (ELISA) was performed to detect the levels of inflammatory factors in serum and cell supernatant. The expression of NF-κB p65, p-NF-κB p65, p-IκBα, p-Smad2/3, TGF-ß1, Caspase3, and Bcl-2 was evaluated by Western blotting.Results FGD protected against the damage to the lung and colon caused by the spike protein in vivo and in vitro according to the pathologic score and cell permeability and viability (P<0.05). FGD up-regulated ACE2 expression, which was reduced by the spike protein in the lung and colon, significantly improved the deregulation of inflammatory markers caused by the spike protein, and regulated the activity of TGF-ß/Smads and NF-κB signaling.Conclusion Traditional Chinese medicine has a protective effect on lung and intestinal tissue injury stimulated by the spike protein through possible regulatory functions of the NF-κB and TGF-ß1/Smad pathways with tissue type specificity.


Subject(s)
Antineoplastic Agents , COVID-19 , Mice , Animals , Female , Humans , NF-kappa B/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Transforming Growth Factor beta1/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , SARS-CoV-2/metabolism , Lung , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Epithelial Cells/metabolism , Colon
13.
Phytomedicine ; 117: 154900, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37269754

ABSTRACT

BACKGROUND: Patrinia villosa, a traditional medicinal herb commonly used for treating intestinal-related diseases, has been commonly prescribed by Chinese medicine practitioners as a key component herb to treat colon cancer, although its anti-tumor effect and mechanisms of action have not been fully elucidated. HYPOTHESIS/PURPOSE: This study aimed to investigate the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract (PVW), and its underlying mechanisms. METHOD: The chemical profile of PVW was analysed by high-performance liquid chromatography with photodiode-array detection (HPLC-DAD) method. Cell-based functional assays MTT, BrdU, scratch, and transwell were conducted to evaluate the effects of PVW on human colon cancer HCT116 and murine colon26-luc cells, assessing cytotoxicity, cell proliferation, motility, and migration, respectively. Western blotting was performed to assess the effect of PVW on the expression of key intracellular signaling proteins. In vivo studies were conducted using zebrafish embryos and tumor-bearing mice to evaluate the anti-tumor, anti-angiogenesis, and anti-metastatic effects of PVW in colon cancer. RESULTS: Five chemical markers were identified and quantified in PVW. PVW exhibited significant cytotoxicity and anti-proliferative activity, as well as inhibitory effects on cell motility and migration in both HCT116 and colon 26-luc cancer cells via modulating protein expressions of TGF-ß R1, smad2/3, snail, E-cadherin, FAK, RhoA, and cofilin. PVW (0.01-0.1 mg/ml) could significantly decrease the length of subintestinal vessels of zebrafish embryos through decreasing mRNA expressions of FLT1, FLT4, KDRL, VEGFaa, VEGFc, and Tie1. PVW (> 0.05 mg/ml) also significantly suppressed colon cancer cells migration in the zebrafish embryos. Furthermore, oral administration of PVW (1.6 g/kg) significantly inhibited tumor growth by decreasing the expressions of tumor activation marker Ki-67 and CD 31 in tumor tissues of HCT116 tumor-bearing mice. PVW could also significantly inhibit lung metastasis in colon 26-luc tumor-bearing mice by modulating their tumor microenvironment, including immune cells populations (T cells and MDSCs), levels of cytokines (IL-2, IL-12, and IFN-γ), as well as increasing the relative abundance of gut microbiota. CONCLUSION: This study revealed for the first time the anti-tumor and anti-metastatic effects of PVW through regulation of TGF-ß-smad2/3-E-cadherin, and FAK-cofilin pathways in colon cancer. These findings provide scientific evidence to support the clinical use of P. villosa in patients with colon cancer.


Subject(s)
Colonic Neoplasms , Patrinia , Humans , Animals , Mice , Patrinia/chemistry , Zebrafish , Colonic Neoplasms/drug therapy , Transforming Growth Factor beta/pharmacology , Cadherins , Cell Movement , Cell Line, Tumor , Tumor Microenvironment , Zebrafish Proteins , Smad2 Protein
14.
Photodermatol Photoimmunol Photomed ; 39(5): 466-477, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165910

ABSTRACT

BACKGROUND: UV exposure is one of the primary factors responsible for photoaging, causing the increase in matrix metalloproteinases (MMPs) and the reduction in collagen. Salvia plebeia R. Br (SP), as an herbaceous plant, contains abundant flavonoids and possesses excellent anti-inflammatory and antioxidant activities. This study aimed to investigate the photoprotective effects of SP on UVB-induced photodamage in immortalized human keratinocytes (HaCaTs) and Kunming mice, as well as its main active components such as homoplantaginin (HP). METHODS: CCK-8 was applied to detect the cell viability in UVB-irradiated or non-irradiated HaCaTs. Commercial kits were used to evaluate the levels of ROS, MDA, SA-ß-Gal, MMP-1, and IL-6. The expression of MAPK and TGF-ß/Smad pathways was detected by western blot. HE and Masson's trichrome staining were performed to examine the epidermis thickness and collagen degradation of Kunming mice. RESULTS: Our results found that SP and HP notably decreased UVB-induced ROS, MDA, and SA-ß-Gal production, and inhibited MMP-1 and IL-6 secretion by inhibiting the MAPK signaling pathway. In addition, SP and HP significantly promoted type I procollagen synthesis by activation of TGF-ß/Smad pathway. Consistently, the in vivo experiments also indicated that SP and HP had a photoprotective effect, which significantly reversed UVB-induced epidermis thickness and collagen degradation. CONCLUSION: This study demonstrated that SP effectively could protect skin from UVB-induced photoaging, while HP acted as the active substance in SP. All these findings provided a new strategy for skin photoaging treatment.


Subject(s)
Matrix Metalloproteinase 1 , Skin Aging , Mice , Animals , Humans , Matrix Metalloproteinase 1/metabolism , Interleukin-6 , Ethanol/metabolism , Ethanol/pharmacology , Reactive Oxygen Species/metabolism , Collagen/metabolism , Skin/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Ultraviolet Rays/adverse effects , Fibroblasts/metabolism , Plant Extracts/pharmacology
15.
J Neurosurg Spine ; 39(1): 113-121, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37021767

ABSTRACT

OBJECTIVE: Infuse bone graft is a widely used osteoinductive adjuvant; however, the simple collagen sponge scaffold used in the implant has minimal inherent osteoinductive properties and poorly controls the delivery of the adsorbed recombinant human bone morphogenetic protein-2 (rhBMP-2). In this study, the authors sought to create a novel bone graft substitute material that overcomes the limitations of Infuse and compare the ability of this material with that of Infuse to facilitate union following spine surgery in a clinically translatable rat model of spinal fusion. METHODS: The authors created a polydopamine (PDA)-infused, porous, homogeneously dispersed solid mixture of extracellular matrix and calcium phosphates (BioMim-PDA) and then compared the efficacy of this material directly with Infuse in the setting of different concentrations of rhBMP-2 using a rat model of spinal fusion. Sixty male Sprague Dawley rats were randomly assigned to each of six equal groups: 1) collagen + 0.2 µg rhBMP-2/side, 2) BioMim-PDA + 0.2 µg rhBMP-2/side, 3) collagen + 2.0 µg rhBMP-2/side, 4) BioMim-PDA + 2.0 µg rhBMP-2/side, 5) collagen + 20 µg rhBMP-2/side, and 6) BioMim-PDA + 20 µg rhBMP-2/side. All animals underwent posterolateral intertransverse process fusion at L4-5 using the assigned bone graft. Animals were euthanized 8 weeks postoperatively, and their lumbar spines were analyzed via microcomputed tomography (µCT) and histology. Spinal fusion was defined as continuous bridging bone bilaterally across the fusion site evaluated via µCT. RESULTS: The fusion rate was 100% in all groups except group 1 (70%) and group 4 (90%). Use of BioMim-PDA with 0.2 µg rhBMP-2 led to significantly greater results for bone volume (BV), percentage BV, and trabecular number, as well as significantly smaller trabecular separation, compared with the use of the collagen sponge with 2.0 µg rhBMP-2. The same results were observed when the use of BioMim-PDA with 2.0 µg rhBMP-2 was compared with the use of the collagen sponge with 20 µg rhBMP-2. CONCLUSIONS: Implantation of rhBMP-2-adsorbed BioMim-PDA scaffolds resulted in BV and bone quality superior to that afforded by treatment with rhBMP-2 concentrations 10-fold higher implanted on a conventional collagen sponge. Using BioMim-PDA (vs a collagen sponge) for rhBMP-2 delivery could significantly lower the amount of rhBMP-2 required for successful bone grafting clinically, improving device safety and decreasing costs.


Subject(s)
Spinal Fusion , Male , Rats , Humans , Animals , Spinal Fusion/methods , Bone Transplantation/methods , X-Ray Microtomography , Biomimetics , Rats, Sprague-Dawley , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , Bone Morphogenetic Protein 2/pharmacology , Collagen/pharmacology , Recombinant Proteins/pharmacology , Lumbar Vertebrae/surgery
16.
Phytother Res ; 37(7): 2787-2799, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36807664

ABSTRACT

Pulmonary fibrosis (PF) is a progressive and fatal interstitial lung disease with limited therapeutic options at present, and epithelial-mesenchymal transition (EMT) is recognized as a major cause of lung fibrosis. Our previous work has confirmed that total extract of Anemarrhena asphodeloides Bunge [Asparagaceae] exerted the effect of anti-PF. As a main constituent of Anemarrhena asphodeloides Bunge [Asparagaceae], the effect of timosaponin BII (TS BII) on drug-induced EMT process in PF animals and alveolar epithelial cells remains unknown. In this study, we evaluated the effect of TS BII on bleomycin (BLM)-induced PF. The results showed that TS BII could restore the structure of lung architecture and MMP-9/TIMP-1 balance in fibrotic rat lung and inhibit collagen deposition. Moreover, we found that TS BII could reverse the abnormal expression of TGF-ß1 and EMT-related marker proteins including E-cadherin, vimentin, and α-SMA. Besides, aberrant TGF-ß1 expression and phosphorylation of Smad2 and Smad3 in BLM-induced animal model and TGF-ß1-induced cell model were downregulated by TS BII treatment, indicating that EMT in fibrosis was suppressed by inhibition of TGF-ß/Smad pathway both in vivo and in vitro. In summary, our study suggested that TS BII could be a promising candidate for PF treatment.


Subject(s)
Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition , Lung , Fibrosis , Bleomycin/adverse effects
17.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768182

ABSTRACT

Minimizing side effects, overcoming cancer drug resistance, and preventing metastasis of cancer cells are of growing interest in current cancer therapeutics. Phytochemicals are being researched in depth as they are protective to normal cells and have fewer side effects. Hesperetin is a citrus bioflavonoid known to inhibit TGFß-induced epithelial-to-mesenchymal transition (EMT), migration, and invasion of prostate cancer cells. Targeting epigenetic modifications that cause cancer is another class of upcoming therapeutics, as these changes are reversible. Global H3K27me3 levels have been found to be reduced in invasive prostate adenocarcinomas. Combining a demethylase inhibitor and a known anti-cancer phytochemical is a unique approach to targeting cancer to attain the aforementioned objectives. In the current study, we used an H3K27 demethylase (JMJD3/KDM6B) inhibitor to study its effects on TGFß-induced EMT in prostate cancer cells. We then gave a combined hesperetin and GSK-J4 treatment to the PC-3 and LNCaP cells. There was a dose-dependent increase in cytotoxicity and inhibition of TGFß-induced migration and invasion of prostate cancer cells after GSK-J4 treatment. GSK-J4 not only induced trimethylation of H3K27 but also induced the trimethylation of H3K4. Surprisingly, there was a reduction in the H3K9me3 levels. GSK-J4 alone and a combination of hesperetin and GSK-J4 treatment effectively inhibit the important hallmarks of cancer, such as cell proliferation, migration, and invasion, by altering the epigenetic landscape of cancer cells.


Subject(s)
Histone Demethylases , Prostatic Neoplasms , Humans , Male , Histone Demethylases/pharmacology , Transforming Growth Factor beta/pharmacology , Jumonji Domain-Containing Histone Demethylases , Epithelial-Mesenchymal Transition , Cell Proliferation , Prostatic Neoplasms/drug therapy
18.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674885

ABSTRACT

Our previous study reported that mesenchymal stem cells (MSCs) accelerated the wound healing process through anti-inflammatory, anti-apoptotic, and pro-angiogenetic effects in a rodent skin excision model. NF3 is a twin-herb formula, which presents similar effects in promoting wound healing. Research focusing on the interaction of MSCs and Chinese medicine is limited. In this study, we applied MSCs and the twin-herb formula to the wound healing model and investigated their interactions. Wound healing was improved in all treatment groups (MSCs only, NF3 only, and MSCs + NF3). The combined therapy further enhanced the effect: more GFP-labelled ADMSCs, collagen I and collagen III expression, Sox9 positive cells, and CD31 positive cells, along with less ED-1 positive cells, were detected; the expressions of proinflammatory cytokine IL-6 and TNF-α were downregulated; and the expression of anti-inflammatory cytokine IL-10 was upregulated. In vitro, NF3 promoted the cell viability and proliferation ability of MSCs, and a higher concentration of protein was detected in the NF3-treated supernatant. A proteomic analysis showed there were 15 and 22 proteins in the supernatants of normal ADMSCs and NF3-treated ADMSCs, respectively. After PCR validation, the expressions of 11 related genes were upregulated. The results of a western blot suggested that the TGFß/Smad and Wnt pathways were related to the therapeutic effects of the combined treatment. Our study suggests for the first time that NF3 enhanced the therapeutic effect of MSCs in the wound healing model and the TGFß/Smad and Wnt pathways were related to the procedure.


Subject(s)
Drugs, Chinese Herbal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Drugs, Chinese Herbal/pharmacology , Rodentia , Proteomics , Wound Healing , Collagen/pharmacology , Cytokines/pharmacology , Transforming Growth Factor beta/pharmacology , Anti-Inflammatory Agents/pharmacology
19.
Phytother Res ; 37(1): 89-100, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36161389

ABSTRACT

Inflammatory bowel disease is a disease that can invade the whole digestive tract and is accompanied by immune abnormalities. Immune dysfunction involving dendritic cells (DCs) and T cells is recognized as a key factor in diseases. Indirubin (IDRB) exerts antiinflammatory effects and can help in treating immune diseases. This study aimed to isolate bone marrow-derived dendritic cells (BMDCs) using lipopolysaccharide (LPS) to obtain mature DCs (mDCs). The expression of CD80, CD86, CD40, and MHC-II was detected using flow cytometry after treatment with IDRB. αVß8 siRNA was used to knock down αVß8 in mDCs, and the expression of CD80, CD86, CD40, and MHC-II was detected. Meanwhile, DCs were co-cultured with T cells. Then, T cell differentiation was detected using flow cytometry, and the cytokine levels were detected using enzyme-linked immunosorbent assay. The animal model of dextran sulfate sodium (DSS)-induced inflammatory bowel disease was established in mice. After intervention with IDRB and αVß8 shRNA, the intestinal tissues were evaluated using H&E staining, disease activity index (DAI) score, and histological damage index, and the corresponding factors and cytokines to regulatory T cells (Treg) and Th17 were measured. The results showed that αVß8 was expressed in immature DCs and mDCs. CD80, CD86, CD40, and MHC-II expression decreased after IDRB treatment in mDCs. Meanwhile, the expression of TNF-α and TGF-ß also decreased after IDRB treatment. The effect of IDRB on the expression of CD80, CD86, CD40, MHC-II, TNF-α, and TGF-ß in mDCs was reversed by αVß8 siRNA. The Treg differentiation increased after IDRB treatment, while the differentiation of Th17 cells was inhibited. This effect of IDRB was reversed by mDCs after treatment with αVß8 siRNA. In vivo experiments showed that IDRB alleviated the symptoms of inflammatory bowel disease in animals. Enteritis significantly reduced, and the effect of IDRB was reversed by αVß8 shRNA. The results suggested that IDRB regulated the differentiation of T cells by mediating the maturation of BMDCs through αVß8. This study confirmed the therapeutic effect of IDRB in inflammatory bowel disease and suggested that IDRB might serve as a potential drug.


Subject(s)
Inflammatory Bowel Diseases , Tumor Necrosis Factor-alpha , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Bone Marrow/metabolism , Cell Differentiation , Cytokines/metabolism , Transforming Growth Factor beta/pharmacology , Cells, Cultured , Inflammatory Bowel Diseases/drug therapy , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Dendritic Cells/metabolism , Mice, Inbred C57BL
20.
J Integr Med ; 21(1): 47-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36456413

ABSTRACT

OBJECTIVE: Huangqi Decoction (HQD), a classical traditional Chinese medicine formula, has been used as a valid treatment for alleviating liver fibrosis; however, the underlying molecular mechanism is still unknown. Although our previous studies showed that microRNA-663a (miR-663a) suppresses the proliferation and activation of hepatic stellate cells (HSCs) and the transforming growth factor-ß/small mothers against decapentaplegic (TGF-ß/Smad) pathway, whether long noncoding RNAs (lncRNAs) are involved in HSC activation via the miR-663a/TGF-ß/Smad signaling pathway has not yet reported. The present study aimed to investigate the roles of lncRNA lnc-C18orf26-1 in the activation of HSCs and the mechanism by which HQD inhibits hepatic fibrosis. METHODS: The expression levels of lnc-C18orf26-1, miR-663a and related genes were measured by quantitative reverse transcription-polymerase chain reaction. HSCs were transfected with the miR-663a mimic or inhibitor and lnc-C18orf26-1 small interfering RNAs. The water-soluble tetrazolium salt-1 assay was used to assess the proliferation rate of HSCs. Changes in lncRNA expression were evaluated in miR-663a-overexpressing HSCs by using microarray to identify miR-663a-regulated lncRNAs. RNA hybrid was used to predict the potential miR-663a binding sites on lncRNAs. Luciferase reporter assays further confirmed the interaction between miR-663a and the lncRNA. The expression levels of collagen α-2(I) chain (COL1A2), α-smooth muscle actin (α-SMA) and TGF-ß/Smad signaling pathway-related proteins were determined using Western blotting. RESULTS: Lnc-C18orf26-1 was upregulated in TGF-ß1-activated HSCs and competitively bound to miR-663a. Knockdown of lnc-C18orf26-1 inhibited HSC proliferation and activation, downregulated TGF-ß1-stimulated α-SMA and COL1A2 expression, and inhibited the TGF-ß1/Smad signaling pathway. HQD suppressed the proliferation and activation of HSCs. HQD increased miR-663a expression and decreased lnc-C18orf26-1 expression in HSCs. Further studies showed that HQD inhibited the expression of COL1A2, α-SMA, TGF-ß1, TGF-ß type I receptor (TGF-ßRI) and phosphorylated Smad2 (p-Smad2) in HSCs, and these effects were reversed by miR-663a inhibitor treatment. CONCLUSION: Our study identified lnc-C18orf26-1 and miR-663a as promising therapeutic targets for hepatic fibrosis. HQD inhibits HSC proliferation and activation at least partially by regulating the lnc-C18orf26-1/miR-663a/TGF-ß1/TGF-ßRI/p-Smad2 axis.


Subject(s)
Drugs, Chinese Herbal , MicroRNAs , RNA, Long Noncoding , Humans , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta1/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology , Drugs, Chinese Herbal/pharmacology , MicroRNAs/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Cell Proliferation , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL