Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Adv Sci (Weinh) ; 11(12): e2306571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38235606

ABSTRACT

Most patients with inflammatory bowel disease (IBD) develop anemia, which is attributed to the dysregulation of iron metabolism. Reciprocally, impaired iron homeostasis also aggravates inflammation. How this iron-mediated, pathogenic anemia-inflammation crosstalk is regulated in the gut remains elusive. Herein, it is for the first time revealed that anemic IBD patients exhibit impaired production of short-chain fatty acids (SCFAs), particularly butyrate. Butyrate supplementation restores iron metabolism in multiple anemia models. Mechanistically, butyrate upregulates ferroportin (FPN) expression in macrophages by reducing the enrichment of histone deacetylase (HDAC) at the Slc40a1 promoter, thereby facilitating iron export. By preventing iron sequestration, butyrate not only mitigates colitis-induced anemia but also reduces TNF-α production in macrophages. Consistently, macrophage-conditional FPN knockout mice exhibit more severe anemia and inflammation. Finally, it is revealed that macrophage iron overload impairs the therapeutic effectiveness of anti-TNF-α antibodies in colitis, which can be reversed by butyrate supplementation. Hence, this study uncovers the pivotal role of butyrate in preventing the pathogenic circuit between anemia and inflammation.


Subject(s)
Anemia , Colitis , Inflammatory Bowel Diseases , Humans , Mice , Animals , Iron/metabolism , Butyrates/metabolism , Butyrates/pharmacology , Tumor Necrosis Factor Inhibitors/metabolism , Inflammation/metabolism , Anemia/metabolism , Macrophages/metabolism , Mice, Knockout
2.
Gut Microbes ; 15(1): 2211501, 2023.
Article in English | MEDLINE | ID: mdl-37203220

ABSTRACT

Magnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn's disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Tumor Necrosis Factor Inhibitors/metabolism , Colitis/microbiology , Inflammatory Bowel Diseases/microbiology , Verrucomicrobia/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Biological Therapy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL