Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Hum Vaccin Immunother ; 20(1): 2304393, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38497413

ABSTRACT

Current influenza vaccines could be augmented by including recombinant neuraminidase (rNA) protein antigen to broaden protective immunity and improve efficacy. Toward this goal, we investigated formulation conditions to optimize rNA physicochemical stability. When rNA in sodium phosphate saline buffer (NaPBS) was frozen and thawed (F/T), the tetrameric structure transitioned from a "closed" to an "open" conformation, negatively impacting functional activity. Hydrogen deuterium exchange experiments identified differences in anchorage binding sites at the base of the open tetramer, offering a structural mechanistic explanation for the change in conformation and decreased functional activity. Change to the open configuration was triggered by the combined stresses of acidic pH and F/T. The desired closed conformation was preserved in a potassium phosphate buffer (KP), minimizing pH drop upon freezing and including 10% sucrose to control F/T stress. Stability was further evaluated in thermal stress studies where changes in conformation were readily detected by ELISA and size exclusion chromatography (SEC). Both tests were suitable indicators of stability and antigenicity and considered potential critical quality attributes (pCQAs). To understand longer-term stability, the pCQA profiles from thermally stressed rNA at 6 months were modeled to predict stability of at least 24-months at 5°C storage. In summary, a desired rNA closed tetramer was maintained by formulation selection and monitoring of pCQAs to produce a stable rNA vaccine candidate. The study highlights the importance of understanding and controlling vaccine protein structural and functional integrity.


Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Neuraminidase/genetics , Vaccines, Synthetic/genetics , RNA
2.
PLoS Negl Trop Dis ; 17(10): e0011709, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37871121

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE) is caused by the infection of Echinococcus granulosus sensu lato (E. granulosus s.l.), one of the most harmful zoonotic helminths worldwide. Infected dogs are the major source of CE transmission. While praziquantel-based deworming is a main measure employed to control dog infections, its efficacy is at times compromised by the persistent high rate of dog re-infection and the copious discharge of E. granulosus eggs into the environment. Therefore, the dog vaccine is a welcome development, as it offers a substantial reduction in the biomass of E. granulosus. This study aimed to use previous insights into E. granulosus functional genes to further assess the protective efficacy of six recombinant proteins in dogs using a two-time injection vaccination strategy. METHODS: We expressed and combined recombinant E. granulosus triosephosphate isomerase (rEgTIM) with annexin B3 (rEgANXB3), adenylate kinase 1 (rEgADK1) with Echinococcus protoscolex calcium binding protein 1 (rEgEPC1), and fatty acid-binding protein (rEgFABP) with paramyosin (rEgA31). Beagle dogs received two subcutaneous vaccinations mixed with Quil-A adjuvant, and subsequently orally challenged with protoscoleces two weeks after booster vaccination. All dogs were sacrificed for counting and measuring E. granulosus tapeworms at 28 days post-infection, and the level of serum IgG was detected by ELISA. RESULTS: Dogs vaccinated with rEgTIM&rEgANXB3, rEgADK1&rEgEPC1, and rEgFABP-EgA31 protein groups exhibited significant protectiveness, with a worm reduction rate of 71%, 57%, and 67%, respectively, compared to the control group (P < 0.05). Additionally, the vaccinated groups exhibited an inhibition of worm growth, as evidenced by a reduction in body length and width (P < 0.05). Furthermore, the level of IgG in the vaccinated dogs was significantly higher than that of the control dogs (P < 0.05). CONCLUSION: These verified candidates may be promising vaccines for the prevention of E. granulosus infection in dogs following two injections. The rEgTIM&rEgANXB3 co-administrated vaccine underscored the potential for the highest protective efficacy and superior protection stability for controlling E. granulosus infections in dogs.


Subject(s)
Dog Diseases , Echinococcosis , Echinococcus granulosus , Dogs , Animals , Echinococcus granulosus/genetics , Echinococcosis/prevention & control , Echinococcosis/veterinary , Vaccines, Synthetic/genetics , Recombinant Proteins/genetics , Dog Diseases/prevention & control , Dog Diseases/parasitology , Immunoglobulin G
3.
Viruses ; 14(9)2022 08 24.
Article in English | MEDLINE | ID: mdl-36146661

ABSTRACT

The research and development (R&D) of novel adjuvants is an effective measure for improving the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recombinant protein vaccine. Toward this end, we designed a novel single-stranded RNA-based adjuvant, L2, from the SARS-CoV-2 prototype genome. L2 could initiate retinoic acid-inducible gene-I signaling pathways to effectively activate the innate immunity. ZF2001, an aluminum hydroxide (Al) adjuvanted SARS-CoV-2 recombinant receptor binding domain (RBD) subunit vaccine with emergency use authorization in China, was used for comparison. L2, with adjuvant compatibility with RBD, elevated the antibody response to a level more than that achieved with Al, CpG 7909, or poly(I:C) as adjuvants in mice. L2 plus Al with composite adjuvant compatibility with RBD markedly improved the immunogenicity of ZF2001; in particular, neutralizing antibody titers increased by about 44-fold for Omicron, and the combination also induced higher levels of antibodies than CpG 7909/poly(I:C) plus Al in mice. Moreover, L2 and L2 plus Al effectively improved the Th1 immune response, rather than the Th2 immune response. Taken together, L2, used as an adjuvant, enhanced the immune response of the SARS-CoV-2 recombinant RBD protein vaccine in mice. These findings should provide a basis for the R&D of novel RNA-based adjuvants.


Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Aluminum Hydroxide , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Mice , Mice, Inbred BALB C , RNA , Recombinant Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Tretinoin , Vaccines, Subunit/genetics , Vaccines, Synthetic/genetics
4.
J Virol ; 96(18): e0133722, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069551

ABSTRACT

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Combined , Vesicular Stomatitis , Amino Acids/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/immunology , Vaccines, Synthetic/genetics , Vesiculovirus/immunology
5.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34387280

ABSTRACT

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Subject(s)
Desensitization, Immunologic/methods , Hypersensitivity, Immediate/therapy , Oligodeoxyribonucleotides/administration & dosage , Vaccines, DNA/administration & dosage , Vaccines, Synthetic/administration & dosage , Allergens/administration & dosage , Allergens/genetics , Allergens/immunology , Animals , Clinical Trials as Topic , Desensitization, Immunologic/trends , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hypersensitivity, Immediate/immunology , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/immunology , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Treatment Outcome , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines
6.
Comput Biol Med ; 121: 103749, 2020 06.
Article in English | MEDLINE | ID: mdl-32568687

ABSTRACT

This paper continues a recent study of the spike protein sequence of the COVID-19 virus (SARS-CoV-2). It is also in part an introductory review to relevant computational techniques for tackling viral threats, using COVID-19 as an example. Q-UEL tools for facilitating access to knowledge and bioinformatics tools were again used for efficiency, but the focus in this paper is even more on the virus. Subsequence KRSFIEDLLFNKV of the S2' spike glycoprotein proteolytic cleavage site continues to appear important. Here it is shown to be recognizable in the common cold coronaviruses, avian coronaviruses and possibly as traces in the nidoviruses of reptiles and fish. Its function or functions thus seem important to the coronaviruses. It might represent SARS-CoV-2 Achilles' heel, less likely to acquire resistance by mutation, as has happened in some early SARS vaccine studies discussed in the previous paper. Preliminary conformational analysis of the receptor (ACE2) binding site of the spike protein is carried out suggesting that while it is somewhat conserved, it appears to be more variable than KRSFIEDLLFNKV. However compounds like emodin that inhibit SARS entry, apparently by binding ACE2, might also have functions at several different human protein binding sites. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 is again argued to be a convenient model pharmacophore perhaps representing an ensemble of targets, and it is noted that it occurs both in lung and alimentary tract. Perhaps it benefits the virus to block an inflammatory response by inhibiting the dehydrogenase, but a fairly complex web involves several possible targets.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/immunology , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/immunology , Binding Sites , COVID-19 , COVID-19 Vaccines , Computational Biology , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Design , Drug Resistance, Viral/genetics , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Models, Molecular , Mutation , Peptidomimetics/pharmacology , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/genetics
7.
Nat Biomed Eng ; 3(10): 768-782, 2019 10.
Article in English | MEDLINE | ID: mdl-31406259

ABSTRACT

Research into the immunological processes implicated in cancer has yielded a basis for the range of immunotherapies that are now considered the fourth pillar of cancer treatment (alongside surgery, radiotherapy and chemotherapy). For some aggressive cancers, such as advanced non-small-cell lung carcinoma, combination immunotherapies have resulted in unprecedented treatment efficacy for responding patients, and have become frontline therapies. Individualized immunotherapy, enabled by the identification of patient-specific mutations, neoantigens and biomarkers, and facilitated by advances in genomics and proteomics, promises to broaden the responder patient population. In this Perspective, we give an overview of immunotherapies leveraging engineering approaches, including the design of biomaterials, delivery strategies and nanotechnology solutions, for the realization of individualized cancer treatments such as nanoparticle vaccines customized with neoantigens, cell therapies based on patient-derived dendritic cells and T cells, and combinations of theranostic strategies. Developments in precision cancer immunotherapy will increasingly rely on the adoption of engineering principles.


Subject(s)
Antigens, Neoplasm/immunology , Biomarkers, Tumor/immunology , Cancer Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Immunotherapy/methods , Precision Medicine/methods , Algorithms , Animals , Antigens, Neoplasm/genetics , Antineoplastic Agents , Biomarkers, Tumor/genetics , Cancer Vaccines/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell- and Tissue-Based Therapy , Dendritic Cells/immunology , Drug Delivery Systems , Drug Therapy , Drug Therapy, Combination , Genetic Vectors , Humans , Mutation , Nanoparticles , Nanotechnology , Phototherapy , T-Lymphocytes/immunology , Theranostic Nanomedicine , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
8.
Hum Vaccin Immunother ; 14(9): 2107-2113, 2018.
Article in English | MEDLINE | ID: mdl-29757706

ABSTRACT

The devastating Ebola virus (EBOV) epidemic in West Africa in 2013-2016 accelerated the progress of several vaccines and antivirals through clinical trials, including the replication-competent vesicular stomatitis virus-based vaccine expressing the EBOV glycoprotein (VSV-EBOV). Extensive preclinical testing in animal models demonstrated the prophylactic and post-exposure efficacy of this vaccine, identified the mechanism of protection, and suggested it was safe for human use. Based on these data, VSV-EBOV was extensively tested in phase 1-3 clinical trials in North America, Europe and Africa. Although some side effects of vaccination were observed, these clinical trials showed that the VSV-EBOV was safe and immunogenic in humans. Moreover, the data supported the use of VSV-EBOV as an emergency vaccine in individuals at risk for Ebola virus disease. In this review, we summarize the results of the extensive preclinical and clinical testing of the VSV-EBOV vaccine.


Subject(s)
Drug Carriers , Ebola Vaccines/immunology , Ebola Vaccines/isolation & purification , Hemorrhagic Fever, Ebola/prevention & control , Vesiculovirus/genetics , Animals , Clinical Trials as Topic , Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Ebola Vaccines/administration & dosage , Ebola Vaccines/genetics , Humans , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification
9.
Vaccine ; 35(47): 6459-6467, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29029939

ABSTRACT

The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.


Subject(s)
Adjuvants, Immunologic/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Membrane Proteins/administration & dosage , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/therapy , Papillomavirus Vaccines/immunology , Repressor Proteins/immunology , Animals , Calreticulin/administration & dosage , Female , Mice, Inbred C57BL , Oligodeoxyribonucleotides/administration & dosage , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Repressor Proteins/genetics , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
10.
Vaccine ; 35(49 Pt B): 6898-6904, 2017 12 14.
Article in English | MEDLINE | ID: mdl-28899628

ABSTRACT

The RepliVax® vaccine (RV) platform is based on flavivirus genomes that are rationally attenuated by deletion. These single-cycle RV vaccine candidates targeting flavivirus pathogens have been demonstrated to be safe, highly immunogenic, and efficacious in animal models, including non-human primates. Here we show utility of the technology for delivery of a non-flavivirus immunogen by engineering several West Nile-based RV vectors to express full-length rabies virus G protein. The rabies virus G protein gene was incorporated in place of different West Nile structural protein gene deletions. The resulting RV-RabG constructs were demonstrated to replicate to high titers (8 log10 infectious particles/ml) in complementing helper cells. Following infection of normal cells, they provided efficient rabies virus G protein expression, but did not spread to surrounding cells. Expression of rabies virus G protein was stable and maintained through multiple rounds of in vitro passaging. A sensitive neurovirulence test in 2-3 day old neonatal mice demonstrated that RV-RabG candidates were completely avirulent indicative of high safety. We evaluated the RV-RabG variants in several animal models (mice, dogs, and pigs) and demonstrated that a single dose elicited high titers of rabies virus-neutralizing antibodies and protected animals from live rabies virus challenge (mice and dogs). Importantly, dogs were protected at both one and two years post-immunization, demonstrating durable protective immunity. The data demonstrates the potential of the RepliVax® technology as a potent vector delivery platform for developing vaccine candidates against non-flavivirus targets.


Subject(s)
Flavivirus/genetics , Genetic Vectors , Rabies Vaccines/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins , Viral Vaccines/immunology , Animals , Animals, Newborn , Antibodies, Viral/blood , Antibodies, Viral/immunology , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Female , Mice , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Rabies Vaccines/chemistry , Rabies Vaccines/immunology , Rabies virus/chemistry , Rabies virus/immunology , Swine , Vaccination , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/administration & dosage
11.
Prep Biochem Biotechnol ; 47(9): 889-900, 2017 Oct 21.
Article in English | MEDLINE | ID: mdl-28816622

ABSTRACT

Recombinant simian IL-15 (siIL-15) was obtained for the preclinical assessment of an anti-human IL-15 vaccine. For this purpose, the cDNA from peripheral blood mononuclear cells of a Macaca fascicularis monkey was cloned into a pIL-2 vector. The siIL-15 was expressed in Escherichia coli strain W3110 as an insoluble protein which accounted for 13% of the total cellular proteins. Inclusion bodies were solubilized in an 8 M urea solution, which was purified by ion exchange and reverse phase chromatography up to 92% purity. The protein identity was validated by electrospray ionization-mass spectrometry, confirming the presence of the amino acids which distinguish the siIL-15 from human IL-15. The purified siIL-15 stimulates the proliferation of cytotoxic T-lymphocytes line (CTLL)-2 and Kit 225 cells with EC50 values of 3.1 and 32.5 ng/mL, respectively. Antisera from modified human IL-15-immunized macaques were reactive to human and simian IL-15 in enzyme-linked immunosorbent assays. Moreover, the anti-human IL-15 antibodies from immune sera inhibited siIL-15 activity in CTLL-2 and Kit 225 cells, supporting the activity and purity of recombinant siIL-15. These results indicate that the recombinant siIL-15 is biologically active in two IL-15-dependent cell lines, and it is also suitable for the preclinical evaluation of an IL-15-based therapeutic vaccine.


Subject(s)
Interleukin-15/genetics , Macaca fascicularis/genetics , Vaccines, Synthetic/genetics , Animals , Cell Line , Cloning, Molecular/methods , Escherichia coli/genetics , Humans , Interleukin-15/immunology , Macaca fascicularis/immunology , Mice , Recombinant Proteins/genetics , Recombinant Proteins/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Synthetic/immunology
12.
Appl Microbiol Biotechnol ; 101(13): 5313-5324, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28405704

ABSTRACT

Increasing demand for the low-cost production of valuable proteins has stimulated development of novel expression systems. Many challenges faced by existing technology may be overcome by using unicellular microalgae as an expression platform due to their ability to be cultivated rapidly, inexpensively, and in large scale. Diatoms are a particularly productive type of unicellular algae showing promise as production organisms. Here, we report the development of an expression system in the diatom Thalassiosira pseudonana by expressing the protective IbpA DR2 antigen from Histophilus somni for the production of a vaccine against bovine respiratory disease. The utilization of diatoms with their typically silicified cell walls permitted development of silicon-responsive transcription elements to induce protein expression. Specifically, we demonstrate that transcription elements from the silicon transporter gene SIT1 are sufficient to drive high levels of IbpA DR2 expression during silicon limitation and growth arrest. These culture conditions eliminate the flux of cellular resources into cell division processes, yet do not limit protein expression. In addition to improving protein expression levels by molecular manipulations, yield was dramatically increased through cultivation enhancement including elevated light and CO2 supplementation. We substantially increased recombinant protein production over starting levels to 1.2% of the total sodium dodecyl sulfate-extractable protein in T. pseudonana, which was sufficient to conduct preliminary immunization trials in mice. Mice exposed to 5 µg of diatom-expressed DR2 in whole or sonicated cells (without protein purification) exhibited a modest immune response without the addition of adjuvant.


Subject(s)
Antigens, Bacterial/biosynthesis , Cattle Diseases/prevention & control , Diatoms/genetics , Pasteurellaceae Infections/veterinary , Pasteurellaceae/genetics , Animals , Antibodies, Bacterial , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Cattle , Cattle Diseases/microbiology , Diatoms/drug effects , Diatoms/growth & development , Diatoms/metabolism , Light , Mice , Pasteurellaceae Infections/immunology , Pasteurellaceae Infections/prevention & control , Recombinant Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/veterinary , Silicon/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
13.
Expert Rev Vaccines ; 16(2): 123-136, 2017 02.
Article in English | MEDLINE | ID: mdl-27653543

ABSTRACT

INTRODUCTION: Current influenza vaccines can prevent disease caused by influenza viruses but require annual administration and almost yearly reformulation. An attractive alternative approach would be to use a vaccine that provides broad and, ideally, lifelong protection against all influenza A and B virus strains. The extracellular domain of matrix protein 2 (M2e) of influenza A viruses is conserved and thus fits well in such a broadly protective vaccine. Areas covered: Recent advances in M2e vaccine design, the mode of action of M2e-based immunity and clinical progress of M2-based influenza vaccines. Expert commentary: Many M2e vaccine have been successfully tested for efficacy against a panel of divergent influenza viruses in animal models. More recently, clinical studies have been conducted with M2e vaccine candidates, which demonstrated their safety and immunogenicity in humans. Efficacy studies in humans are still needed to provide evidence that an M2e-based vaccine can protect against human influenza.


Subject(s)
Influenza Vaccines/immunology , Viral Matrix Proteins/immunology , Animals , Clinical Trials as Topic , Disease Models, Animal , Drug Discovery/trends , Drug Evaluation, Preclinical , Humans , Influenza Vaccines/adverse effects , Influenza Vaccines/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Matrix Proteins/genetics
14.
AIDS ; 31(3): 321-332, 2017 01 28.
Article in English | MEDLINE | ID: mdl-27677160

ABSTRACT

BACKGROUND: The development of a prophylactic vaccine against HIV-1 has so far not been successful. Therefore, attention has shifted more and more toward the development of novel therapeutic vaccines. Here, we evaluated a new mRNA-based therapeutic vaccine against HIV-1-encoding activation signals (TriMix: CD40L + CD70 + caTLR4) combined with rationally selected antigenic sequences [HIVACAT T-cell immunogen (HTI)] sequence: comprises 16 joined fragments from Gag, Pol, Vif, and Nef). METHODS: For this purpose, peripheral blood mononuclear cells from HIV-1-infected individuals on cART, lymph node explants from noninfected humans, and splenocytes from immunized mice were collected and several immune functions were measured. RESULTS: Electroporation of immature monocyte-derived dendritic cells from HIV-infected patients with mRNA encoding HTI + TriMix potently activated dendritic cells which resulted in upregulation of maturation markers and cytokine production and T-cell stimulation, as evidenced by enhanced proliferation and cytokine secretion (IFN-γ). Responses were HIV specific and were predominantly targeted against the sequences included in HTI. These findings were confirmed in human lymph node explants exposed to HTI + TriMix mRNA. Intranodal immunizations with HTI mRNA in a mouse model increased antigen-specific cytotoxic T-lymphocyte responses. The addition of TriMix further enhanced cytotoxic responses. CONCLUSION: Our results suggest that uptake of mRNA, encoding strong activation signals and a potent HIV antigen, confers a T-cell stimulatory capacity to dendritic cells and enhances their ability to stimulate antigen-specific immunity. These findings may pave the way for therapeutic HIV vaccine strategies based on antigen-encoding RNA to specifically target antigen-presenting cells.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , HIV Antigens/immunology , HIV Infections/prevention & control , RNA, Messenger/genetics , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Adjuvants, Immunologic/genetics , Animals , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , HIV Antigens/genetics , Humans , Mice, Inbred C57BL , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
15.
Hum Vaccin Immunother ; 13(3): 621-633, 2017 03 04.
Article in English | MEDLINE | ID: mdl-27737611

ABSTRACT

A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.


Subject(s)
Chagas Disease/prevention & control , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Recombinant Proteins/immunology , Trypanosoma cruzi/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Protozoan/blood , Cysteine/genetics , Disease Models, Animal , Female , Heart/parasitology , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Mice, Inbred BALB C , Mutagenesis , Parasite Load , Protozoan Proteins/administration & dosage , Protozoan Proteins/genetics , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Survival Analysis , Trypanosoma cruzi/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
16.
mBio ; 7(4)2016 08 30.
Article in English | MEDLINE | ID: mdl-27578760

ABSTRACT

Mycobacterium bovis BCG is the only available vaccine for protection against tuberculosis (TB). While BCG protects children from severe disease, it has little impact on pulmonary disease in adults. A recombinant BCG vaccine BCG ΔureC::hly (strain VPM1002) is in advanced clinical trials and shows promise for improved vaccine safety but little change in efficacy in animal models. A second-generation recombinant BCG vaccine with an additional deletion of the nuoG gene (BCG ΔureC::hly ΔnuoG) shows improved efficacy in a mouse model compared to that of VPM1002. BCG was first used in humans in 1921 and, like Sleeping Beauty pricked by the spinning wheel, we have slept for 100 years, showing a reluctance to invest in clinical development or in biomanufacturing capacity for TB vaccines. The advance of recombinant BCGs should awaken us from our sleep and call us to invest in new-generation TB vaccines and to protect the biomanufacture of our current BCG vaccine.


Subject(s)
BCG Vaccine/immunology , BCG Vaccine/isolation & purification , Drug Discovery/trends , Animals , BCG Vaccine/administration & dosage , BCG Vaccine/genetics , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Mice , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification
17.
Microb Pathog ; 98: 106-11, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27377430

ABSTRACT

Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae.


Subject(s)
Adhesins, Bacterial/immunology , Antigens, Bacterial/immunology , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Recombinant Proteins/immunology , Adhesins, Bacterial/genetics , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/genetics , Blood Bactericidal Activity , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay , Freund's Adjuvant/administration & dosage , Gene Expression , Genetic Vectors , Haemophilus Vaccines/administration & dosage , Haemophilus Vaccines/genetics , Haemophilus influenzae/genetics , Immunoglobulin G/blood , Injections, Subcutaneous , Mice, Inbred BALB C , Microbial Viability , Recombinant Proteins/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
18.
Vaccine ; 34(51): 6597-6609, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27395563

ABSTRACT

The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety of live, recombinant viral vaccines incorporating genes from heterologous viral and other microbial pathogens in their genome (so-called "chimeric virus vaccines"). Many such viral vector vaccines are now at various stages of clinical evaluation. Here, we introduce an attenuated form of recombinant vesicular stomatitis virus (rVSV) as a potential chimeric virus vaccine for HIV-1, with implications for use as a vaccine vector for other pathogens. The rVSV/HIV-1 vaccine vector was attenuated by combining two major genome modifications. These modifications acted synergistically to greatly enhance vector attenuation and the resulting rVSV vector demonstrated safety in sensitive mouse and non-human primate neurovirulence models. This vector expressing HIV-1 gag protein has completed evaluation in two Phase I clinical trials. In one trial the rVSV/HIV-1 vector was administered in a homologous two-dose regimen, and in a second trial with pDNA in a heterologous prime boost regimen. No serious adverse events were reported nor was vector detected in blood, urine or saliva post vaccination in either trial. Gag specific immune responses were induced in both trials with highest frequency T cell responses detected in the prime boost regimen. The rVSV/HIV-1 vector also demonstrated safety in an ongoing Phase I trial in HIV-1 positive participants. Additionally, clinical trial material has been produced with the rVSV vector expressing HIV-1 env, and Phase I clinical evaluation will initiate in the beginning of 2016. In this paper, we use a standardized template describing key characteristics of the novel rVSV vaccine vectors, in comparison to wild type VSV. The template facilitates scientific discourse among key stakeholders by increasing transparency and comparability of information. The Brighton Collaboration V3SWG template may also be useful as a guide to the evaluation of other recombinant viral vector vaccines.


Subject(s)
AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , Drug Carriers , Vesiculovirus/genetics , AIDS Vaccines/genetics , Animals , Clinical Trials, Phase I as Topic , Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Genetic Vectors , Humans , Primates , Risk Assessment , T-Lymphocytes/immunology , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
19.
Hum Vaccin Immunother ; 12(9): 2341-50, 2016 09.
Article in English | MEDLINE | ID: mdl-27104338

ABSTRACT

Chlamydia trachomatis is one of the most common sexually transmitted pathogens and the development of an effective vaccine is highly desirable. The Major Outer Membrane Protein (MOMP) is one of the most abundant and immunogenic chlamydial proteins. Here we investigated the effects of phosphate substitution on the physicochemical and immunochemical properties of an experimental vaccine composed of serovar E recombinant MOMP (rMOMP) and a proprietary adjuvant system SPA08, consisting of aluminum oxyhydroxide (AlOOH) containing the TLR4 agonist E6020. An increase in phosphate substitution in the AlOOH component of the adjuvant markedly decreased the adsorptive coefficient and adsorptive capacity for both Ser E rMOMP and E6020. In vaccine formulations used for immunizations, phosphate substitution induced a decrease in the % adsorption of Ser E rMOMP without affecting the % adsorption of E6020. Immunogenicity studies in CD1 mice showed that an increase in phosphate substitution of the SPA08 adjuvant resulted in an increase in Ser E rMOMP-specific serum total IgG and IgG1 but not IgG2a titers. The degree of phosphate substitution in SPA08 also significantly increased in vitro neutralization concomitant with a decrease in proinflammatory cytokines secreted by Ser E rMOMP-restimulated splenocytes. Taken together, the results of these studies suggest that the degree of phosphate substitution in AlOOH greatly affects the adsorption of E6020 and Ser E rMOMP to AlOOH resulting in significant effects on vaccine-induced cellular and humoral responses.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Oxide/administration & dosage , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Chlamydia trachomatis/immunology , Phosphates/administration & dosage , Toll-Like Receptor 4/administration & dosage , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Bacterial Outer Membrane Proteins/administration & dosage , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Female , Immunoglobulin G/blood , Mice , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
20.
Virol J ; 13: 57, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27036203

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus infecting pigs of all ages with high morbidity and mortality among newborn piglets. Currently, there is no effective vaccine available to protect the pigs from PEDV. The N-terminal subunit of spike protein (S1) is responsible for virus binding to the cellular receptor and contains a number of neutralizing antibody epitopes. Thus, we expressed and produced recombinant S1 protein to protect newborn piglets by immunization of sows. METHODS: Affinity tagged PEDV S1 protein was expressed in a secretory form in yeast, insect and mammalian cells to identify the most suitable production system. Purified recombinant protein was analysed by SDS-PAGE, Western blot and deglycosylation assay. A pregnant sow was intramuscularly immunized three times with adjuvanted recombinant protein prior to farrowing. PEDV-specific immune responses in sera and colostrum of the sow and piglets were assayed by ELISA and virus neutralization assays. Piglets were challenged orally with PEDV, and clinical parameters were monitored for 6 days post-challenge. RESULTS AND CONCLUSION: Of three eukaryotic expression systems tested (yeast, insect-cell, and mammalian), expression by HEK-293 T cells gave the highest yield of protein that was N-glycosylated and was the most appropriate candidate for vaccination. Administration of the subunit vaccine in a sow resulted in induction of S1-specific IgG and IgA that were passively transferred to the suckling piglets. Also, high virus neutralization titres were observed in the serum of the vaccinated sow and its piglets. After PEDV challenge, piglets born to the vaccinated sow exhibited less severe signs of disease and significantly lower mortality compared to the piglets of a control sow. However, there were no significant differences in diarrhea, body weight and virus shedding. Thus, vaccination with S1 subunit vaccine failed to provide complete protection to suckling piglets after challenge exposure, and further improvements are needed for the development of a subunit vaccine that fully protects against PEDV infection.


Subject(s)
Antigens, Viral/immunology , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antigens, Viral/genetics , Colostrum/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Injections, Intramuscular , Neutralization Tests , Porcine epidemic diarrhea virus/genetics , Pregnancy , Serum/immunology , Spike Glycoprotein, Coronavirus/genetics , Swine , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL