Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
J Ethnopharmacol ; 330: 118110, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38580189

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Myocardial infarction has likely contributed to the increased prevalence of heart failure(HF).As a result of ventricular remodeling and reduced cardiac function, colonic blood flow decreases, causing mucosal ischemia and hypoxia of the villous structure of the intestinal wall.This damage in gut barrier function increases bowel wall permeability, leading to fluid metabolism disorder,gut microbial dysbiosis, increased gut bacteria translocation into the circulatory system and increased circulating endotoxins, thus promoting a typical inflammatory state.Traditional Chinese Medicine plays a key role in the prevention and treatment of HF.Kidney-tonifying Blood-activating(KTBA) decoction has been proved for clinical treatment of chronic HF.However,the mechanism of KTBA decoction on chronic HF is still unclear. AIMS OF THE STUDY: The effect of KTBA decoction on gut microbiota and metabolites and p38MAPK/p65NF-κB/AQP4 signaling in rat colon was studied to investigate the mechanism that KTBA decoction delays ventricular remodeling and regulates water metabolism disorder in rats with HF after myocardial infarction based on the theory of "Kidney Storing Essence and Conducting Water". MATERIAL AND METHODS: In vivo,a rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery combined with exhaustive swimming and starvation.The successful modeling rats were randomly divided into five groups:model group, tolvaptan group(gavaged 1.35mg/(kg•D) tolvaptan),KTBA decoction group(gavaged 15.75g/(kg•D) of KTBA decoction),KTBA decoction combined with SB203580(p38MAPK inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 1.5mg/(kg•D) of SB203580),and KTBA decoction combined with PDTC(p65NF-kB inhibitor) group(gavaged 15.75g/(kg•D) of KTBA decoction and intraperitoneally injected 120mg/(kg•D) of PDTC).The sham-operation group and model group were gavaged equal volume of normal saline.After 4 weeks of intervention with KTBA decoction,the effect of KTBA decoction on the cardiac structure and function of chronic HF model rats was observed by ultrasonic cardiogram.General state and cardiac index in rats were evaluated.Enzyme linked immunosorbent assay(ELISA) was used to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration in rat serum.Hematoxylin and eosin(H&E) staining,and transmission electron microscope(TEM) were used to observe the morphology and ultrastructure of myocardial and colonic tissue,and myocardial fibrosis was measured by Masson's staining.Cardiac E-cadherin level was detected by Western blot.The mRNA expression and protein expression levels of p38MAPK,I-κBα, p65NF-κB,AQP4,Occludin and ZO-1 in colonic tissue were detected by reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR) and immunohistochemistry. Protein expression of p38MAPK, p-p38MAPK,I-κBα,p-I-κBα,p65NF-κB, p-p65NF-κB,AQP4,Occludin and ZO-1 in rat colon was detected using Western blot.Colonic microbiota and serum metabolites were respectively analyzed by amplicon sequencing and liquid chromatography-mass spectrometry.In vitro, CCD-841CoN cell was placed in the ischemic solution under hypoxic conditions (94%N2,5%CO2,and 1%O2) in a 37 °C incubator to establish an ischemia and hypoxia model.The CCD-841CoN cells were divided into 7 groups, namely blank group and model group with normal rat serum plus control siRNA, tolvaptan group with rat serum containing tolvaptan plus control siRNA, KTBA group with rat serum containing KTBA plus control siRNA, KTBA plus p38MAPK siRNA group, KTBA plus p65NF-κB siRNA group,and KTBA plus AQP4siRNA group.After 24h and 48h of intervention with KTBA decoction,RT-qPCR,immunofluorescence and Western blot was used to detect the mRNA expression and protein expression levels of p38MAPK,I-κBα,p65NF-κB,AQP4, Occludin and ZO-1 in CCD-841CoN cells. RESULTS: Compared with the model, KTBA decoction improved the general state, decraesed the serum NT-proBNP level,HW/BW ratio, LVIDd and LVIDs, increased E-cadherin level,EF and FS,reduced number of collagen fibers deposited in the myocardial interstitium,and recovered irregular arrangement of myofibril and swollen or vacuolated mitochondria with broken crista in myocardium.Moreover, KTBA decoction inhibited the expression of p38MAPK,I-κBα,and p65NF-κB and upregulated AQP4, Occludin and ZO-1 in colon tissues and CCD-841CoN cells.Additionally,p38siRNA or SB203580, p65siRNA or PDTC, and AQP4siRNA partially weakened the protective effects of KTBA in vitro and vivo.Notably,The LEfSe analysis results showed that there were six gut biomaker bacteria in model group, including Allobaculum, Bacillales,Turicibacter, Turicibacterales,Turicibacteraceae,and Bacilli. Besides, three gut biomaker bacteria containing Deltaproteobacteria, Desulfovibrionaceae,and Desulfovibrionales were enriched by KTBA treatment in chronic HF model.There were five differential metabolites, including L-Leucine,Pelargonic acid, Capsidiol,beta-Carotene,and L- Erythrulose, which can be regulated back in the same changed metabolic routes by the intervention of KTBA.L-Leucine had the positive correlation with Bacillales, Turicibacterales,Turicibacteraceae,and Turicibacter.L-Leucine significantly impacts Protein digestion and absorption, Mineral absorption,and Central carbon metabolism in cancer regulated by KTBA, which is involved in the expression of MAPK and tight junction in intestinal epithelial cells. CONCLUSIONS: KTBA decoction manipulates the expression of several key proteins in the p38MAPK/p65NF-κB/AQP4 signaling pathway, modulates gut microbiota and metabolites toward a more favorable profile, improves gut barrier function, delays cardiomyocyte hypertrophy and fibrosis,and improves cardiac function.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Heart Failure , Ventricular Remodeling , p38 Mitogen-Activated Protein Kinases , Animals , Male , Rats , Aquaporin 4 , Chronic Disease , Colon/drug effects , Colon/pathology , Colon/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/drug effects , Heart Failure/drug therapy , Kidney/drug effects , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Ventricular Remodeling/drug effects
2.
J Nat Med ; 78(3): 664-676, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427210

ABSTRACT

This study investigates the cardioprotective effects of Paeoniflorin (PF) on left ventricular remodeling following acute myocardial infarction (AMI) under conditions of hypobaric hypoxia. Left ventricular remodeling post-AMI plays a pivotal role in exacerbating heart failure, especially at high altitudes. Using a rat model of AMI, the study aimed to evaluate the cardioprotective potential of PF under hypobaric hypoxia. Ninety male rats were divided into four groups: sham-operated controls under normoxia/hypobaria, an AMI model group, and a PF treatment group. PF was administered for 4 weeks after AMI induction. Left ventricular function was assessed using cardiac magnetic resonance imaging. Biochemical assays of cuproptosis, oxidative stress, apoptosis, inflammation, and fibrosis were performed. Results demonstrated PF significantly improved left ventricular function and remodeling after AMI under hypobaric hypoxia. Mechanistically, PF decreased FDX1/DLAT expression and serum copper while increasing pyruvate. It also attenuated apoptosis, inflammation, and fibrosis by modulating Bcl-2, Bax, NLRP3, and oxidative stress markers. Thus, PF exhibits therapeutic potential for left ventricular remodeling post-AMI at high altitude by inhibiting cuproptosis, inflammation, apoptosis and fibrosis. Further studies are warranted to optimize dosage and duration and elucidate PF's mechanisms of action.


Subject(s)
Glucosides , Hypoxia , Monoterpenes , Myocardial Infarction , Oxidative Stress , Rats, Sprague-Dawley , Ventricular Remodeling , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Ventricular Remodeling/drug effects , Male , Rats , Monoterpenes/pharmacology , Monoterpenes/therapeutic use , Myocardial Infarction/drug therapy , Oxidative Stress/drug effects , Hypoxia/drug therapy , Apoptosis/drug effects , Disease Models, Animal , Ventricular Function, Left/drug effects
3.
Phytomedicine ; 128: 155464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484625

ABSTRACT

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Subject(s)
Amaryllidaceae Alkaloids , Angiotensin II , Mice, Inbred C57BL , NF-kappa B , Phenanthridines , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amaryllidaceae Alkaloids/pharmacology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phenanthridines/pharmacology , Male , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Mice , Heart Failure/drug therapy , Ventricular Remodeling/drug effects , Inflammation/drug therapy , Myocytes, Cardiac/drug effects , Hypertension/drug therapy , Hypertension/chemically induced , Disease Models, Animal , Lycoris/chemistry , Myocardium
4.
Altern Ther Health Med ; 30(8): 98-103, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38290462

ABSTRACT

Objective: The objective of this study was to investigate the early application of sacubitril valsartan sodium (LCZ696) following acute myocardial infarction (AMI) and its impact on ventricular remodeling and the TGF-ß1/Smad3 signaling pathway in patients. Methods: The clinical data of 73 patients with AMI admitted to the hospital from June 2021 to September 2022 were retrospectively analyzed, and the patients were grouped according to the treatment methods, including 36 cases in the control group (conventional drug treatment) and 37 cases in the observation group (conventional drug + LCZ696 treatment). The clinical efficacy, cardiac function parameters [left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), stroke volume (SV)], cardiac function biochemical indicators [N-terminal pro-B-type natriuretic peptide (NT-proBNP), galectin 3 (Gal-3), amino-terminal peptide of type III procollagen (PIIINP)], ventricular remodeling indicators [left ventricular posterior wall end-diastolic thickness (PWD), posterior wall end-systolic thickness (PWS), ventricular septal end-systolic thickness (IVSS)], ventricular hydrodynamic parameters [left ventricular flow rate in peak ejection (FRPE), flow reversal rate (FRR), flow reversal interval (FRI)], TGF-ß 1/Smad3 signaling pathway-related indicators (TGF-ß1, Smad3), quality of life score (SF-36 Quality of Life Scale) and occurrence of adverse reactions were compared between the two groups. Results: The main findings of the study are as follows: The observation group was significantly better than the control group in many aspects such as overall clinical effectiveness, cardiac function parameters, biochemical indicators, ventricular structure and function, TGF-ß1/Smad3 signaling pathway, and quality of life. Specifically, the observation group showed more significant positive effects in terms of improvement of cardiac function, adjustment of biochemical status, and adjustment of ventricular structure and fluid dynamics parameters. These results provide strong support for the application of new therapeutic approaches in the management of cardiovascular disease. After treatment, the total clinical effective rate in the observation group (89.19%) was significantly higher than that in the control group (69.44%) (P < .05). LVEF and SV in the two groups were significantly increased (P < .05), while LVEDD was significantly decreased (P < .05), and there were statistically significant differences in parameters between the two groups (P < .05). The levels of NT-proBNP, Gal-3 and PIIINP in both groups were significantly reduced (P < .05), and the levels in the observation group were significantly lower than those in the control group (P < .05). The PWD, PWS and IVSS in both groups significantly declined (P < .05), and the indicators in the observation group were significantly lower than those in the control group (P < .05). The FRPE and FRR in the two groups were significantly enhanced (P < .05), while the FRI was significantly reduced (P < .05), and the differences in the above parameters between the two groups were statistically significant (P < .05). The levels of TGF-ß1 and Smad3 in the two groups were significantly declined (P < .05), and the levels in the observation group were significantly lower than those in the control group (P < .05). During the period from before treatment to 6 months of treatment, the quality of life score in the two groups showed a significant downward trend (P < .05), and the score in the observation group after 3 months to 6 months of treatment was significantly lower than that in the control group (P < .05). During treatment, there was no statistical significance in the total incidence rate of adverse reactions between the two groups (P > .05). Conclusion: Early application of LCZ696 after AMI has a significant efficacy, and it can effectively improve the ventricular remodeling, regulate the expression levels of TGF-ß1 and Smad3, inhibit the TGF-ß1/Smad3 signaling pathway, promote the improvements of cardiac function and quality of life, and it has good safety and is worthy of clinical promotion and application. The study's key findings have important clinical implications for understanding and managing acute myocardial infarction (AMI). The observation group showed significant improvements in overall clinical efficacy, cardiac function, biochemical status, ventricular structure and function, etc., providing strong evidence for comprehensive treatment of AMI patients. This treatment method is expected to become an important part of the care and treatment strategy for AMI patients, help reduce cardiovascular risk, improve quality of life, and provide new research directions for future AMI treatment.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Drug Combinations , Myocardial Infarction , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Valsartan , Ventricular Remodeling , Humans , Valsartan/therapeutic use , Valsartan/pharmacology , Male , Female , Ventricular Remodeling/drug effects , Transforming Growth Factor beta1/metabolism , Middle Aged , Smad3 Protein/metabolism , Signal Transduction/drug effects , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Myocardial Infarction/drug therapy , Biphenyl Compounds/therapeutic use , Retrospective Studies , Aged , Tetrazoles/pharmacology , Tetrazoles/therapeutic use
5.
J Pharm Pharmacol ; 76(5): 567-578, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38271051

ABSTRACT

OBJECTIVES: Accumulating evidence demonstrates that copper deficiency (CuD) is a risk factor for cardiovascular diseases, besides, fructose has been strongly linked to the development of cardiovascular diseases. However, how CuD or fructose causes cardiovascular diseases is not clearly delineated. The present study aims to investigate the mechanism of CuD or fructose on cardiac remodeling. METHODS: We established a model of CuD- or fructose-induced cardiac hypertrophy in 3-week-old male Sprague-Dawley (SD) rats by CuD diet supplemented with or without 30% fructose for 4 weeks. In vitro study was performed by treating cardiomyocytes with tetrathiomolydbate (TM) and fructose. Echocardiography, histology analysis, immunofluorescence, western blotting, and qPCR were performed. KEY FINDINGS: Our findings revealed that CuD caused noticeable cardiac hypertrophy either in the presence or absence of fructose supplement. Fructose exacerbated CuD-induced cardiac remodeling and intramyocardial lipid accumulation. Furthermore, we presented that the inhibition of autophagic flux caused by Ca2+ disturbance is the key mechanism by which CuD- or fructose-induced cardiac remodeling. The reduced expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in cardiomyocytes accounts for the elevated cytoplasmic Ca2+ concentration. CONCLUSIONS: Collectively, our study suggested that fructose aggravated CuD-induced cardiac remodeling through the blockade of autophagic flux via SERCA2a decreasing-induced Ca2+ imbalance.


Subject(s)
Cardiomegaly , Copper , Fructose , Myocytes, Cardiac , Rats, Sprague-Dawley , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Ventricular Remodeling , Animals , Fructose/adverse effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Ventricular Remodeling/drug effects , Rats , Copper/metabolism , Copper/deficiency , Cardiomegaly/metabolism , Cardiomegaly/etiology , Calcium/metabolism , Disease Models, Animal , Autophagy/drug effects
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(3): 466-473, 2023 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-37087593

ABSTRACT

OBJECTIVE: To investigate the effect of Fuyu Decoction on ventricular remodeling and its association with AMPK/mTOR pathway-mediated autophagy in rats with heart failure. METHODS: Thirty male Wistar rat models of heart failure induced by ligation of the left anterior descending coronary artery were divided into model group, Fuyu Decoction treatment group, Fuyu Decoction treatment +AMPK agonist group (n=10), with another 10 rats receiving sham operation as the Sham group. After 8 weeks of drug intervention, the changes of ventricular function and ventricular remodeling indexs of the rats were assessed. TTC staining was used to detect the myocardial infarction area, and HE and Masson staining were used to observe the pathological changes in the myocardial tissue. Western blotting was performed to detect the protein expressions of p-AMPK, p-mTOR, LC3-II, Beclin1 and p62 in the myocardial tissue. RESULTS: Compared with the sham-operated rats, the rat models of heart failure showed significantly increased left ventricular end-diastolic volume (LVEDV), left ventricular endsystolic volume (LVESV), and left ventricular mass index (LVMI) (P < 0.01), reduced left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and decreased spherical index (SI) were (P < 0.01). The rat models also showed increased myocardial infarction area, obvious myocardial pathologies and fibrosis, increased apoptosis rate of the cardiomyocytes, enhanced myocardial expressions of p-AMPK, LC3-II/LC3-I and Beclin1 (P < 0.01), and reduced expressions of p-mTOR and p62 (P < 0.01). Fuyu Decoction treatment significantly ameliorated these changes in the rat models (all P < 0.01), but its effects were obviously blocked by treatment with EX229. CONCLUSION: Fuyu Decoction can improve ventricular remodeling in rats with heart failure by inhibiting AMPK/mTOR signaling-mediated autophagy in the cardiomyocytes.


Subject(s)
Autophagy , Drugs, Chinese Herbal , Heart Failure , Myocardial Infarction , Ventricular Remodeling , Animals , Male , Rats , AMP-Activated Protein Kinases/drug effects , Autophagy/drug effects , Beclin-1 , Heart Failure/drug therapy , Heart Failure/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Stroke Volume , TOR Serine-Threonine Kinases/metabolism , Ventricular Function, Left , Ventricular Remodeling/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
8.
J Ethnopharmacol ; 291: 115156, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35245628

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: LongShengZhi capsule (LSZ), a traditional Chinese medicine, is used for treatment of patients with vascular diseases. LSZ reduced doxorubicin-induced heart failure by reducing production of reactive oxygen species and inhibiting inflammation and apoptosis. AIM OF THE STUDY: This study was to explore whether LSZ could alleviate cardiac remodeling via upregulation of microRNA (miR)-150-5p and the downstream target. Cardiac remodeling was induced by Ang II in vivo and in vitro. RESULTS: LSZ attenuated Ang II-induced cardiac hypertrophy and fibrosis in rats, and in primary cardiomyocytes (CMs) and primary cardiac fibroblasts (CFs). MiR-150-5p was downregulated in Ang II-induced rat heart, CMs and CFs, and these decreases were reserved by LSZ. In vivo overexpression of miR-150-5p by transfection of miR-150-5p agomiR protected Ang II-induced cardiac hypertrophy and fibrosis in rats. Meanwhile, its overexpression also reversed Ang II-induced upregulation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and ß-myosin heavy chain (ß-MHC) in rat hearts and primary CMs, as well as upregulation of collagen I, collagen III and transforming growth factor-ß (TGF-ß) in rat hearts and primary CFs. Matrix metalloproteinase 14 (MMP14) was validated as the target gene of miR-150-5p, which was overexpressed in Ang II-induced rat heart, rat primary CMs and primary CFs. Notably, overexpression of MMP14 induced cardiac remodeling, and reversed the protective role of miR-150-5p in downregulating Ang II-induced upregulation of hypertrophy and fibrosis markers in vitro. CONCLUSION: Collectively, LSZ protects Ang II-induced cardiac dysfunction and remodeling via upregulation of miR-150-5p to target MMP14. Administration of LSZ, upregulation of miR-150-5p or targeting of MMP14 may be strategies for cardiac remodeling therapy.


Subject(s)
Drugs, Chinese Herbal , Matrix Metalloproteinase 14 , MicroRNAs , Ventricular Remodeling , Animals , Rats , Angiotensin II/pharmacology , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Fibrosis , Matrix Metalloproteinase 14/genetics , MicroRNAs/genetics , Myocytes, Cardiac , Up-Regulation , Ventricular Remodeling/drug effects
9.
Sci Rep ; 12(1): 2050, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136090

ABSTRACT

Ischemia-reperfusion (IR) injury accelerates myocardial injury sustained during the myocardial ischemic period and thus abrogates the benefit of reperfusion therapy in patients with acute myocardial infarction. We investigated the efficacy of intracoronary ethylenediaminetetraacetic acid (EDTA) administration as an adjunctive treatment to coronary intervention to reduce IR injury in a swine model. We occluded the left anterior descending artery for 1 h. From the time of reperfusion, we infused 50 mL of EDTA-based chelating agent via the coronary artery in the EDTA group and normal saline in the control group. IR injury was identified by myocardial edema on echocardiography. Tetrazolium chloride assay revealed that the infarct size was significantly lower in the EDTA group than in the control group, and the salvage percentage was higher. Electron microscopy demonstrated that the mitochondrial loss in the cardiomyocytes of the infarcted area was significantly lower in the EDTA group than in the control group. Echocardiography after 4 weeks showed that the remodeling of the left ventricle was significantly less in the EDTA group than in the control group: end-diastolic dimension 38.8 ± 3.3 mm vs. 43.9 ± 3.7 mm (n = 10, p = 0.0089). Left ventricular ejection fraction was higher in the EDTA group (45.3 ± 10.3 vs. 34.4 ± 11.8, n = 10, respectively, p = 0.031). In a swine model, intracoronary administration of an EDTA chelating agent reduced infarct size, mitochondrial damage, and post-infarct remodeling. This result warrants further clinical study evaluating the efficacy of the EDTA chelating agent in patients with ST-segment elevation myocardial infarction.


Subject(s)
Chelating Agents/therapeutic use , Edetic Acid/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Ischemia/therapy , Myocardial Reperfusion Injury/drug therapy , Ventricular Remodeling/drug effects , Animals , Aorta, Thoracic/pathology , Chelating Agents/administration & dosage , Disease Models, Animal , Echocardiography , Male , Mitochondria/metabolism , Myocardial Infarction/pathology , Myocardial Ischemia/pathology , Salvage Therapy/methods , Stroke Volume/drug effects , Swine , Ventricular Function, Left/drug effects
10.
J Thorac Cardiovasc Surg ; 163(1): e11-e27, 2022 01.
Article in English | MEDLINE | ID: mdl-32359903

ABSTRACT

OBJECTIVES: Calpain activation during ischemia is known to play critical roles in myocardial remodeling. We hypothesize that calpain inhibition (CI) may serve to reverse and/or prevent fibrosis in chronically ischemic myocardium. METHODS: Yorkshire swine were fed a high-cholesterol diet for 4 weeks followed by placement of an ameroid constrictor on the left circumflex artery to induce myocardial ischemia. 3 weeks later, animals received either: no drug; high-cholesterol control group (CON; n = 8); low-dose CI (0.12 mg/kg; LCI, n = 9); or high-dose CI (0.25 mg/kg; HCI, n = 8). The high-cholesterol diet and CI were continued for 5 weeks, after which myocardial tissue was harvested. Tissue samples were analyzed by western blot for changes in protein content. RESULTS: In the setting of hypercholesterolemia and chronic myocardial ischemia, CI decreased the expression of collagen in ischemic and nonischemic myocardial tissue. This reduced collagen content was associated with a corresponding decrease in Jak/STAT/MCP-1 signaling pathway, suggesting a role for Jak 2 signaling in calpain activity. CI also decreases the expression of focal adhesion proteins (vinculin) and stabilizes the expression of cytoskeletal and structural proteins (N-cadherin, α-fodrin, desmin, vimentin, filamin, troponin-I). CI had no significant effect on metabolic and hemodynamic parameters. CONCLUSIONS: Calpain inhibition may be a beneficial medical therapy to decrease collagen formation in patients with coronary artery disease and associated comorbidities.


Subject(s)
Calpain/metabolism , Collagen , Glycoproteins/pharmacology , Myocardial Ischemia/metabolism , Myocardium , Ventricular Remodeling , Animals , Chemokine CCL2/metabolism , Collagen/biosynthesis , Collagen/metabolism , Coronary Artery Disease/drug therapy , Coronary Artery Disease/metabolism , Disease Models, Animal , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/prevention & control , Hypercholesterolemia/metabolism , Janus Kinase 2/metabolism , Myocardium/metabolism , Myocardium/pathology , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Swine , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology
11.
Chem Biol Interact ; 351: 109721, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34715092

ABSTRACT

Obesity is recognized as an independent risk factor for cardiovascular diseases and is an important contributor to cardiac mortality. Açaí seed extract (ASE), rich in proanthocyanidins, has been shown to have potential anti-obesity effects. This study aimed to investigate the therapeutic effect of ASE in cardiovascular remodeling associated with obesity and compare it with that of rosuvastatin. Male C57BL/6 mice were fed a high-fat diet or a standard diet for 12 weeks. The ASE (300 mg/kg/day) and rosuvastatin (20 mg/kg/day) treatments started in the 8th week until the 12th week, totaling 4 weeks of treatment. Our data showed that treatment with ASE and rosuvastatin reduced body weight, ameliorated lipid profile, and improved cardiovascular remodeling. Treatment with ASE but not rosuvastatin reduced hyperglycemia and oxidative stress by reducing immunostaining of 8-isoprostane and increasing SOD-1 and GPx expression in HFD mice. ASE and rosuvastatin reduced NOX4 expression, increased SIRT-1 and Nrf2 expression and catalase and GPx activities, and improved vascular and cardiac remodeling in HFD mice. The therapeutic effect of ASE was similar to that of rosuvastatin in reducing dyslipidemia and cardiovascular remodeling but was superior in reducing oxidative damage and hyperglycemia, suggesting that ASE was a promising natural product for the treatment of cardiovascular alterations associated with obesity.


Subject(s)
Antioxidants/therapeutic use , Cardiomegaly/drug therapy , Obesity/metabolism , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Ventricular Remodeling/drug effects , Animals , Cardiomegaly/etiology , Diet, High-Fat , Euterpe/chemistry , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Proanthocyanidins/therapeutic use , Seeds/chemistry
12.
J Ethnopharmacol ; 285: 114847, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34800647

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nutmeg-5, which consists of Myristica fragrans Houtt., Aucklandia lappa Decne., Inula helenium L., Fructus Choerospondiatis and Piper longum L., is an ancient and classic formula in traditional Mongolian medicine that is widely used in the treatment of ischemic heart disease. However, its material basis and pharmacological mechanisms remain to be fully elucidated. AIM OF THE STUDY: The aim of this study was to explore the potential material basis and molecular mechanism of Nutmeg-5 in improving cardiac remodeling after myocardial infarction (MI). MATERIALS AND METHODS: The constituents of Nutmeg-5 absorbed into the blood were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). A mouse MI model was induced in male Kunming mice by permanent ligation of the left anterior descending coronary artery (LDA) ligation. Echocardiography was performed to assess cardiac function. The protective effect of Nutmeg-5 and compound Danshen dripping pills as positive control medicine on post-MI cardiac remodeling was evaluated by tissue histology and determination of the serum protein levels of biomarkers of myocardial injury. RNA sequencing analysis of mouse left ventricle tissue was performed to explore the molecular mechanism of Nutmeg-5 in cardiac remodeling after MI. RESULTS: A total of 27 constituents absorbed into blood were identified in rat plasma following gavage administration of Nutmeg-5 (0.54 g/kg) for 1 h. We found that ventricular remodeling after MI was significantly improved after Nutmeg-5 treatment in mice, which was demonstrated by decreased mortality, better cardiac function, decreased heart weight to body weight and heart weight to tibia length ratios, and attenuated cardiac fibrosis and myocardial injury. RNA sequencing revealed that the protective effect of Nutmeg-5 on cardiac remodeling after MI was associated with improved heart metabolism. Further study found that Nutmeg-5 treatment could preserve the ultrastructure of mitochondria and upregulate gene expression related to mitochondrial function and structure. HIF-1α (hypoxia inducible factor 1, alpha subunit) expression was significantly upregulated in the hearts of MI mice and significantly suppressed in the hearts of Nutmeg-5-treated mice. In addition, Nutmeg-5 treatment significantly activated the peroxisome proliferator-activated receptor alpha signaling pathway, which was inhibited in the hearts of MI mice. CONCLUSIONS: Nutmeg-5 attenuates cardiac remodeling after MI by improving heart metabolism and preserving mitochondrial dysfunction by inhibiting HIF-1α expression in the mouse heart after MI.


Subject(s)
Medicine, Mongolian Traditional , Myocardial Infarction/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Plants, Medicinal/chemistry , Animals , Male , Mice , Mongolia , Oxidative Stress , Plant Extracts/chemistry , Rats , Rats, Wistar , Ventricular Remodeling/drug effects
13.
Pak J Pharm Sci ; 34(5(Special)): 2059-2064, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34862874

ABSTRACT

To investigate the impacts of Yangxin decoction on the expressions of matrix metalloproteinase 9 (MMP-9), calcineurin (CaN), T cell activated nuclear factor 3 (NFAT3) and zinc finger transcription factor 4 (GATA4) in myocardial tissue of rats with chronic heart failure (CHF). 50 healthy SD rats were randomly divided into the normal control group (n = 10) and the operation group (n = 40). After successful modeling, the rats were randomly divided into 4 groups. And they were treated with Yangxin decoctions of low concentration (1.5 g/kg), medium concentration (2.5 g/kg), high concentration (3.5 g/kg) and distilled water (for 4 weeks). The LVSP, SAP, DAP and LVEDP in Yangxin decoction treatment groups were significantly superior to the model group. The LVEF, LVIDd and LVIDs in Yangxin decoction treatment groups were significantly superior to the model group. The activity of CaN in each group treated with Yangxin decoction was significantly lower than that in the model group. The expression levels of MMP-9, NFAT3, GATA4 protein in each group treated with Yangxin decoction were significantly lower than that in the model group.. Yangxin decoction can significantly improve the cardiac function, reduce CaN activity, decrease the expression levels of MMP-9, NFAT3 and GATA4, inhibit CaN/NFAT3 signaling pathway, increase myocardial remodeling and protect myocardial tissue in rats with CHF.


Subject(s)
Calcineurin/metabolism , Drugs, Chinese Herbal/pharmacology , GATA4 Transcription Factor/metabolism , Heart Failure/drug therapy , Matrix Metalloproteinase 9/metabolism , Myocardium/enzymology , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Ventricular Function, Left/drug effects , Animals , Chronic Disease , Disease Models, Animal , Female , Heart Failure/enzymology , Heart Failure/physiopathology , Male , Rats, Sprague-Dawley , Recovery of Function , Stroke Volume/drug effects , Ventricular Pressure/drug effects , Ventricular Remodeling/drug effects
14.
J Cell Mol Med ; 25(24): 11053-11062, 2021 12.
Article in English | MEDLINE | ID: mdl-34786834

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of death worldwide, and due to the widespread and irreversible damage caused, new therapeutic treatments are urgently needed in order to limit the degree of ischaemic damage following MI. Aberrant activation of Wnt/ß-catenin signalling pathway often occurs during cardiovascular diseases including MI, which results in excess production of reactive oxygen species (ROS) and further promotes myocardial dysfunction. Huoxin pill (HXP) is a Traditional Chinese Medicine formula that has been widely used in the treatment of coronary heart disease and angina; however, its mechanisms remain unclear. Here, we performed mouse models of MI and examined the effects and mechanisms of HXP in protecting against MI-induced ischaemic damage. Our study showed that administration with HXP robustly protected against MI-induced cardiac injuries, decreased infarct size and improved cardiac function. Moreover, HXP attenuated ischaemia-induced DNA damage occurrence in vivo and H2 O2 -induced DNA damage occurrence in vitro, via potent inhibition of adverse Wnt/ß-catenin signalling activation. Our study thus elucidated the role and mechanism of HXP in protecting against MI and oxidative stress-induced injuries and suggests new therapeutic strategies in ischaemic heart disease via inhibition of Wnt/ß-catenin signalling pathway.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Ischemia/complications , Wnt Signaling Pathway/drug effects , Animals , Cells, Cultured , DNA Damage/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Echocardiography , Heart Function Tests , Male , Medicine, Chinese Traditional , Mice , Myocardial Infarction/diagnosis , Myocardial Infarction/prevention & control , Myocardial Ischemia/diagnosis , Myocardial Ischemia/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Ventricular Remodeling/drug effects
15.
Biomed Pharmacother ; 144: 112261, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34628163

ABSTRACT

Doxorubicin (Dox), an effective antineoplastic drug, was limited use for cardiotoxicity. Xinshuitong Capsule (XST), a patented herbal formula, showed desirable beneficial effects in the treatment of chronic heart failure (CHF) patients. However, the drug on Dox-induced cardiotoxicity remains unclear. Ninety male Sprague-Dawley rats were randomized into two groups: 15 rats were selected as the normal group and 75 rats were injected intraperitoneally with Dox to establish CHF rat models, the success ones were randomly divided into five groups: low XST (LXST), medium XST (MXST) or high XST (HXST) (4.9, 9.8, or 19.6 g/kg d) administrated intragastrically twice a day for 4 weeks, with the captopril-treated group and the model group as comparison. The model group showed the cardiac functions generally impaired, and CHF mortality rate higher (47%) than those in the XST-treated groups (averaged 24%, P < 0.05). Compared with XST-treated groups, myocardial remodeling, inflammation and desarcomerization, and higher water content more severe in the cardiac tissue in the model group (P < 0.05), which was associated with higher expressions of mRNA or protein levels of AQP1, 4 and 7. Dox-impaired cardiac functions, cardiac remodeling and myocardial edema could be dose-dependently reverted by XST treatment. XST could inhibit AQP1, 4 and 7 at mRNA levels or at protein levels, which was associated with the attenuation of myocardial edema and cardiac remodeling, decreasing the ventricular stiffness and improving the cardiac functions and rats' survival. AQPs is involved in cardiac edema composed one of the mechanisms of Dox-induced cardiotoxicity, XSTvia inhibition of AQPs relieved the Dox-induced side effects.


Subject(s)
Aquaporins/antagonists & inhibitors , Drugs, Chinese Herbal/pharmacology , Edema, Cardiac/prevention & control , Heart Failure/prevention & control , Myocardium/metabolism , Administration, Oral , Animals , Aquaporin 1/antagonists & inhibitors , Aquaporin 1/genetics , Aquaporin 1/metabolism , Aquaporin 4/antagonists & inhibitors , Aquaporin 4/genetics , Aquaporin 4/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Body Water/metabolism , Capsules , Cardiotoxicity , Chronic Disease , Disease Models, Animal , Doxorubicin , Drugs, Chinese Herbal/administration & dosage , Edema, Cardiac/chemically induced , Edema, Cardiac/metabolism , Edema, Cardiac/pathology , Heart Failure/chemically induced , Heart Failure/metabolism , Heart Failure/pathology , Male , Myocardium/pathology , Rats, Sprague-Dawley , Signal Transduction , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
16.
Biomed Pharmacother ; 143: 112178, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34649308

ABSTRACT

Modified citrus pectin (MCP) is a specific inhibitor of galectin-3 (Gal-3) that is regarded as a new biomarker of cardiac hypertrophy, but its effect is unclear. The aim of this study is to investigate the role and mechanism of MCP in isoproterenol (ISO)-induced cardiac hypertrophy. Rats were injected with ISO to induce cardiac hypertrophy and treated with MCP. Cardiac function was detected by ECG and echocardiography. Pathomorphological changes were evaluated by the haematoxylin eosin (H&E) and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC), and the associated signal molecules were analysed by qRT-PCR and western blotting. The results show that MCP prevented cardiac hypertrophy and ameliorated cardiac dysfunction and structural disorder. MCP also decreased the levels of ANP, BNP, and ß-MHC and inhibited the expression of Gal-3 and Toll-like receptor 4 (TLR4). Additionally, MCP blocked the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), but it promoted the phosphorylation of p38. Thus, MCP prevented ISO-induced cardiac hypertrophy by activating p38 signalling and inhibiting the Gal-3/TLR4/JAK2/STAT3 pathway.


Subject(s)
Cardiomegaly/drug therapy , Cardiovascular Agents/pharmacology , Janus Kinase 2/metabolism , Myocytes, Cardiac/drug effects , Pectins/pharmacology , STAT3 Transcription Factor/metabolism , Toll-Like Receptor 4/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/enzymology , Cardiomegaly/physiopathology , Disease Models, Animal , Galectin 3/metabolism , Isoproterenol , Male , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/metabolism , Phosphorylation , Rats, Wistar , Signal Transduction , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
17.
Med Sci Monit ; 27: e932404, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34493698

ABSTRACT

BACKGROUND Studies in ApoE knockout mice have shown that pseudolaric acid B (PB) can act as an immunomodulatory drug and attenuate atherosclerosis progression by modulating monocyte/macrophage phenotypes. Our previous study demonstrated that high salt intake could shift the phenotype of monocytes/macrophages to an inflammatory phenotype, and that this shift was related to hypertension and hypertensive left ventricular (LV) remodeling. However, no comprehensive assessment of the effects of PB on hypertensive LV remodeling has been conducted. MATERIAL AND METHODS In this study, RAW264.7 macrophages cultured with different concentrations of NaCl were used to investigate the modulating effects of PB on macrophage phenotype. Furthermore, N-nitro-L-arginine methyl ester hypertensive mice were used to investigate the modulating effects of PB on monocyte phenotype. LV remodeling was investigated by echocardiography. LV morphologic staining (for cardiomyocyte hypertrophy and collagen deposition) was performed at the time of sacrifice. RESULTS The results showed that PB significantly improved the viability of RAW264.7 cells, suppressed their phagocytic and migration abilities, and inhibited their phenotypic shift to M1 macrophages. In addition, the blood pressure of PB-treated mice was significantly decreased relative to that of control mice. Furthermore, after PB treatment, the percentage of Ly6Chi monocytes was significantly decreased while that of Ly6Clo monocytes was apparently increased. Moreover, PB preserved LV function and alleviated myocardial fibrosis and cardiomyocyte hypertrophy as measured at the end of the experimental period. The transfer of monocytes from PB-treated mice to hypertensive mice achieved the same effects. CONCLUSIONS Together, these findings indicate that PB exerts its protective effects on hypertensive LV remodeling by modulating monocyte/macrophage phenotypes and warrants further investigation.


Subject(s)
Diterpenes/therapeutic use , Heart Ventricles/drug effects , Hypertension/drug therapy , Macrophages/drug effects , Monocytes/drug effects , Sodium Chloride/adverse effects , Ventricular Remodeling/drug effects , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Drugs, Chinese Herbal/therapeutic use , Echocardiography , Hypertension/chemically induced , Hypertension/immunology , Hypertension/physiopathology , Mice , Mice, Inbred C57BL , Phagocytosis/drug effects , Phenotype , RAW 264.7 Cells , Ventricular Remodeling/immunology
18.
Biomed Pharmacother ; 142: 111979, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358754

ABSTRACT

Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.


Subject(s)
Cardiovascular Diseases/drug therapy , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional/methods , Animals , Cardiovascular Diseases/physiopathology , Drugs, Chinese Herbal/pharmacology , Fibrosis/drug therapy , Humans , Inflammation/drug therapy , Inflammation/pathology , Oxidative Stress/drug effects , Ventricular Remodeling/drug effects
19.
J Mol Cell Cardiol ; 160: 97-110, 2021 11.
Article in English | MEDLINE | ID: mdl-34216608

ABSTRACT

Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.


Subject(s)
Angiotensin II/adverse effects , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Animals , Cardiomyopathies/pathology , Cardiotonic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Coculture Techniques , Drug Evaluation, Preclinical/methods , Fibroblasts/metabolism , Fibrosis , Humans , Induced Pluripotent Stem Cells/cytology , Lab-On-A-Chip Devices , Losartan/pharmacology , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pilot Projects , Proteome , Proteomics/methods , Recombinant Proteins/pharmacology , Relaxin/pharmacology , Ventricular Remodeling/drug effects
20.
Bioorg Chem ; 115: 105187, 2021 10.
Article in English | MEDLINE | ID: mdl-34303037

ABSTRACT

BACKGROUND: Guanxin V (GXV) has been widely used to treat ventricular remodeling (VR) in clinical practice in China. However, the underlying mechanisms are currently still lack. METHODS: A systematic pharmacology-based strategy was utilized for predicting the synergistic pharmacological mechanisms of GXV in VR. The active compounds of GXV were selected and then the potential targets of these compounds contained in GXV and VR were successively identified. Then, after networks were constructed, DAVID was applied to functional enrichment. Moreover, the key findings were validated though molecular docking and molecular biology experiments. RESULTS: A total of 119 active components in GXV and 169 potential targets shared between GXV and VR were obtained. The results of functional enrichment indicated that several biological processes and signaling pathways, mainly cell apoptosis and fibrosis. Finally, we discovered GXV produced marked anti-apoptosis and anti-fibrosis effects in VR though Caspase-3 and TGF-ß1. CONCLUSION: GXV could relieve and reverse VR through anti-apoptosis and anti-fibrosis effects predicted by systematic pharmacology and validated by molecular docking and molecular experiments. Our study deepens the understanding of the molecular mechanisms of GXV in treating VR.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Ventricular Remodeling/drug effects , Antifibrotic Agents/pharmacology , Apoptosis/drug effects , Cell Line , Humans , Network Pharmacology , Protein Interaction Maps/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL