Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Phytomedicine ; 123: 155237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056148

ABSTRACT

BACKGROUND: The prevention and treatment of ischaemic stroke is a worldwide challenge, and effective clinical treatment strategies are lacking. Studies have demonstrated the efficacy of Verbena officinalis in managing cerebrovascular disorders. However, the neuroprotective bioactive components and mechanisms remain unclear. PURPOSE: To investigate the pharmacological combinatorial components and mechanism underlying the anti-ischemic stroke effect of the ethanol extract of Verbena officinalis (VO Ex). STUDY DESIGN AND METHODS: The components of VO Ex were identified by HPLC. A middle cerebral artery occlusion (MCAO) induced brain injury model was used to assess the therapeutic effect of VO Ex. The activity of the chemical components of VO Ex was evaluated using a primary astrocyte injury model induced by oxygen-glucose deprivation/reperfusion (OGD/R). RNA sequencing was used to reveal the potential targets of VO Ex against cerebral ischemia-reperfusion injury (CIRI), and the results were verified by qRT-PCR and western blotting. The key components and target binding ability were predicted by molecular docking. Finally, the mechanism of combinatorial components was verified by experiments. RESULTS: The HPLC results indicated that the main ingredients of VO Ex were hastatoside, verbenalin, acteoside, luteolin, apigenin and hispidulin. In vivo experiments showed that VO Ex improved MCAO-induced acute cerebral ischemic injury. Transcriptomic data and biological experiments suggested that VO Ex exerted therapeutic effects through IL17A signalling pathways. The in vitro experiments indicated that verbenalin, acteoside, luteolin, apigenin and hispidulin exhibited neuroprotective activities. The novel formula of VALAH, derived from the aforementioned active ingredients, exhibited superior efficacy compared to each individual component. Molecular docking and mechanistic studies have confirmed that VALAH functions in the treatment of ischaemic stroke by suppressing the activation of the IL17A signalling pathway. CONCLUSION: This work is the first to reveal that VO Ex effectively inhibits the IL17A signaling pathway and mitigates neuroinflammation following ischemic stroke. Moreover, we identified the novel formula VALAH as the bioactive combinatorial components for VO Ex. Further research suggests that the activity of VALAH is associated with IL17A-mediated regulation of neuroinflammation. This finding provides new insights into the efficacious components and mechanisms of traditional Chinese medicine.


Subject(s)
Brain Ischemia , Glucosides , Iridoid Glycosides , Ischemic Stroke , Polyphenols , Reperfusion Injury , Stroke , Verbena , Humans , Infarction, Middle Cerebral Artery/drug therapy , Brain Ischemia/drug therapy , Stroke/drug therapy , Stroke/complications , Neuroinflammatory Diseases , Apigenin , Luteolin/therapeutic use , Molecular Docking Simulation , Ischemic Stroke/drug therapy , Reperfusion Injury/drug therapy , Interleukin-17
2.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234866

ABSTRACT

Verbena officinalis is commonly used in traditional medicine to treat many ailments. Extracts of this plant are therapeutic agents for the potential treatment of different diseases, including colorectal and liver cancers, but have not been explored for their anti-melanoma potential so far. The goal of the current work was to prepare a methanolic extract and fractionate it using hexane, chloroform, ethyl acetate, butanol, and acetone to get semi-purified products. These semi-purified fractions were studied for their potency against melanoma cell lines. The three potent fractions (HA, VO79, and EA3) demonstrated 50% inhibition concentration (IC50) values as low as 2.85 µg/mL against the LOX IMVI cell line. All three fractions showed similar potency in inhibiting the growth of the B16 cells, a murine melanoma cell line. Based on high-resolution mass spectrometry (HRMS) data, for the first time, we report on lupulone A from this plant. LC-MS data also indicated the presence of hedergonic acid, serjanic acid, and other compounds in V. officinalis extracts.


Subject(s)
Verbena , Acetone , Animals , Butanols , Chloroform , Hexanes , Mice , Plant Extracts/chemistry , Triterpenes , Verbena/chemistry
3.
Molecules ; 27(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36235221

ABSTRACT

Verbena officinalis L. is a traditionally important medicinal herb that has a rich source of bioactive phytoconstituents with biological benefits. The objective of this study was to assess the metabolic profile and in vitro biological potential of V. officinalis. The bioactive phytoconstituents were evaluated by preliminary phytochemical studies, estimation of polyphenolic contents, and gas chromatography-mass spectrometry (GC-MS) analysis of all fractions (crude methanolic, n-hexane, ethyl acetate, and n-butanol) of V. officinalis. The biological investigation was performed by different assays including antioxidant assays (DPPH, ABTS, CUPRAC, and FRAP), enzyme inhibition assays (urease and α-glucosidase), and hemolytic activity. The ethyl acetate extract had the maximum concentration of total phenolic and total flavonoid contents (394.30 ± 1.09 mg GAE·g-1 DE and 137.35 ± 0.94 mg QE·g-1 DE, respectively). Significant antioxidant potential was observed in all fractions by all four antioxidant methods. Maximum urease inhibitory activity in terms of IC50 value was shown by ethyl acetate fraction (10 ± 1.60 µg mL-1) in comparison to standard hydroxy urea (9.8 ± 1.20 µg·mL-1). The n-hexane extract showed good α-glucosidase inhibitory efficacy (420 ± 20 µg·mL-1) as compared to other extract/fractions. Minimum hemolytic activity was found in crude methanolic fraction (6.5 ± 0.94%) in comparison to positive standard Triton X-100 (93.5 ± 0.48%). The GC-MS analysis of all extract/fractions of V. officinalis including crude methanolic, n-hexane, ethyl acetate, and n-butanol fractions, resulted in the identification of 24, 56, 25, and 9 bioactive compounds, respectively, with 80% quality index. Furthermore, the bioactive compounds identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between ligands and enzymes (urease and α-glucosidase). In conclusion, V. officinalis possesses multiple therapeutical potentials, and further research is needed to explore its use in the treatment of chronic diseases.


Subject(s)
Antioxidants , Verbena , 1-Butanol , Acetates , Antioxidants/chemistry , Flavonoids/chemistry , Gas Chromatography-Mass Spectrometry , Hexanes , Ligands , Methanol/chemistry , Molecular Docking Simulation , Octoxynol/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Urea/analysis , Urease , alpha-Glucosidases
4.
Biosci Biotechnol Biochem ; 85(7): 1602-1608, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34003212

ABSTRACT

The use of biopesticides has expanded rapidly in recent years; however, their use in weed control is less advanced. Herein, we describe the development of a weed control agent by screening 208 plant extracts (104 species) for their plant growth-inhibition activities, which resulted in 142 active samples (from 89 plant species). Verbascoside, isolated from the shoots of Verbena incompta, was identified as a growth inhibitor against rice root (EC50, 1.75 m m), and its root growth-inhibition activity was also confirmed in radish, tomato, and Lotus japonicus. Verbascoside is composed of hydroxytyrosol (EC50,12.51 m m) and caffeic acid (EC50, 4.08 m m), 2 poorly water-soluble phenolic components with weak growth-inhibition activities, and 2 sugars, which are more soluble but inactive. The plant apparently developed a more active and highly soluble compound by condensing these 4 components. We conclude that a biopesticide containing verbascoside may be useful for weed-control purposes.


Subject(s)
Glucosides/pharmacology , Herbicides/pharmacology , Phenols/pharmacology , Plant Roots/drug effects , Verbena/chemistry , Glucosides/chemistry , Glucosides/isolation & purification , Herbicides/isolation & purification , Phenols/chemistry , Phenols/isolation & purification , Plant Roots/growth & development , Plant Weeds/drug effects , Plant Weeds/growth & development , Spectrum Analysis/methods
5.
Biol Aujourdhui ; 215(3-4): 133-142, 2021.
Article in French | MEDLINE | ID: mdl-35275057

ABSTRACT

Since ancient times, plants have been the main source of bioactive molecules, such as phenolic compounds, capable of remedying various diseases. However, polyphenols' content and efficiency vary greatly as a function of several intrinsic and extrinsic factors. To optimize the procedure for the extraction of active molecules from the medicinal plant Verbena officinalis, effects of the plant origin, selected solvent, and extraction method were assessed. V. officinalis aerial parts were collected in two different regions of Tunisia (Bizerte and Ain Draham), and their bioactive molecules were extracted by maceration, decoction, and by the Soxhlet apparatus, either with water or with ethanol. Significant variability in the extracts' contents of phenolic compounds as well as their antioxidant and antimicrobial capacities were noted depending on the different studied factors. In particular, ethanol extracts were found to generally contain higher concentrations of phenolic compounds and more potent antioxidant capacities than water extracts. However, when tested against various pathogenic bacteria, water extracts were most often at least as active as ethanol extracts to inhibit bacteria growth in vitro. Finally, differences were also observed between V. officinalis samples from Bizerte compared to Ain Draham area. All of these results emphasize the need of adapting various parameters for the optimal extraction of bioactive molecules from a medicinal plant such as V. officinalis.


Title: Évaluation de différents procédés d'extraction des composés phénoliques d'une plante médicinale : Verbena officinalis. Abstract: Depuis la nuit des temps, les plantes ont été la source principale de molécules bioactives, tels les composés phénoliques, capables de remédier à diverses maladies. Cependant, le contenu et l'activité des polyphénols dépendent d'un certain nombre de facteurs intrinsèques et extrinsèques. Dans le but d'optimiser les procédés d'obtention des principes actifs de la verveine (Verbena officinalis), les effets de la provenance de la plante, du solvant et de la méthode d'extraction ont été évalués. Ainsi, la partie aérienne de V. officinalis a été collectée dans deux régions différentes de la Tunisie (Bizerte et Ain Draham). L'extraction a été réalisée par macération, décoction et par l'appareil de Soxhlet tantôt avec de l'eau tantôt avec de l'éthanol pur. Une variabilité significative des teneurs en composés phénoliques ainsi que des capacités antioxydantes et antimicrobiennes des extraits a été observée en fonction des facteurs étudiés. De manière générale, les extraits éthanoliques sont plus riches en composés phénoliques et présentent des activités antioxydantes plus fortes que les extraits aqueux. Cependant, vis-à-vis de différentes souches pathogènes, les extraits aqueux sont souvent au moins aussi puissants que les extraits éthanoliques pour inhiber la croissance bactérienne in vitro. De plus des différences notables sont observées selon que V. officinalis provient de la région de Bizerte ou d'Ain Draham. Ces résultats montrent que la prise en compte de plusieurs paramètres est nécessaire pour optimiser l'efficacité des procédures d'extraction des molécules bioactives de V. officinalis.


Subject(s)
Plants, Medicinal , Verbena , Antioxidants/pharmacology , Humans , Phenols/pharmacology , Plant Extracts/pharmacology
6.
Molecules ; 25(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260609

ABSTRACT

Callus, suspension and bioreactor cultures of Verbena officinalis were established, and optimized for biomass growth and production of phenylpropanoid glycosides, phenolic acids, flavonoids and iridoids. All types of cultures were maintained on/in the Murashige and Skoog (MS) media with 1 mg/L BAP and 1 mg/L NAA. The inoculum sizes were optimized in callus and suspension cultures. Moreover, the growth of the culture in two different types of bioreactors-a balloon bioreactor (BB) and a stirred-tank bioreactor (STB) was tested. In methanolic extracts from biomass of all types of in vitro cultures the presence of the same metabolites-verbascoside, isoverbascoside, and six phenolic acids: protocatechuic, chlorogenic, vanillic, caffeic, ferulic and rosmarinic acids was confirmed and quantified by the HPLC-DAD method. In the extracts from lyophilized culture media, no metabolites were found. The main metabolites in biomass extracts were verbascoside and isoverbascoside. Their maximum amounts in g/100 g DW (dry weight) in the tested types of cultures were as follow: 7.25 and 0.61 (callus), 7.06 and 0.48 (suspension), 7.69 and 0.31 (BB), 9.18 and 0.34 (STB). The amounts of phenolic acids were many times lower, max. total content reached of 26.90, 50.72, 19.88, and 36.78 mg/100 g DW, respectively. The highest content of verbascoside and also a high content of isoverbascoside obtained in STB (stirred-tank bioreactor) were 5.3 and 7.8 times higher than in extracts from overground parts of the parent plant. In the extracts from parent plant two iridoids-verbenalin and hastatoside, were also abundant. All investigated biomass extracts and the extracts from parent plant showed the antiproliferative, antioxidant and antibacterial activities. The strongest activities were documented for the cultures maintained in STB. We propose extracts from in vitro cultured biomass of vervain, especially from STB, as a rich source of bioactive metabolites with antiproliferative, antioxidant and antibacterial properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Glucosides/pharmacology , Hydroxybenzoates/pharmacology , Larva/growth & development , Phenols/pharmacology , Verbena/chemistry , Animals , Artemia/drug effects , Artemia/growth & development , Biomass , Bioreactors/microbiology , Cell Proliferation , Larva/drug effects , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Plant Extracts/pharmacology
7.
An Acad Bras Cienc ; 92(3): e20181116, 2020.
Article in English | MEDLINE | ID: mdl-33175014

ABSTRACT

Herein we report for the first time the levels of phenylpropanoids and iridoids in extracts and infusions of V. minutiflora consumed in Brazil to treat urinary and infectious disorders. An in house validation study demonstrated good accuracy and precision to determine the bioactive compounds in V. minutiflora by HPLC-DAD. Phenylpropanoids varied in the extracts (leaves 139.70 to 221.20 mg g-1, flowers 106.43 to 227.22 mg g-1, stems 42.18 to 56.48 mg g-1). Verbascoside occurred in higher concentration in extracts of leaves (87.66 - 136.16) mg g-1 and flowers (58.12 - 148.96) mg g-1 than in stems (19.24 - 24.62) mg g-1. Iridoids in extracts were as follows: leaves (46.60 - 54.79) mg g-1, flowers (55.88 - 93.87) mg g-1 and stems (40.05 to 61.74) mg g-1. High levels of iridoids (314.70 - 415.10) µg mL-1, phenylpropanoids (1996.39 - 2674.13) µg mL-1 and verbascoside (1029.38 - 1456.42 µg mL-1) in infusions support the popular consume of V. minutiflora.


Subject(s)
Verbena , Brazil , Chromatography, High Pressure Liquid , Iridoids/analysis , Plant Extracts , Plant Leaves/chemistry
8.
Planta Med ; 86(17): 1241-1257, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32937665

ABSTRACT

Verbena officinalis (common vervain) is a medicinal plant species widely distributed in the world and commonly used in folk medicine of different countries, including traditional Chinese medicine. Monographs on "Verbenae herba" have been included in the European Pharmacopoeia since 2008, and in the Chinese Pharmacopoeia since 1995. This work presents botanical characteristics of this species. It reviews the current knowledge of its chemical composition, which is a rich source mostly of iridoids, phenylpropanoid glycosides, phenolic acids, flavonoids, terpenoids, and essential oil. A large part of this article summarizes traditional medicinal uses and professional pharmacological in vitro and in vivo studies that prove new important applications, e.g., antioxidant, antimicrobial, anti-inflammatory, neuroprotective anticancer, analgesic, or anticonvulsant of verbena herb extracts and individual metabolites. Moreover, emphasis is put on the use of V. officinalis in the food and cosmetics industries, especially due to its antioxidant, antibacterial, and anti-inflammatory properties, and the presence of essential oil with an attractive fragrance composition. This paper also presents the state of biotechnological studies of this species.


Subject(s)
Oils, Volatile , Plants, Medicinal , Verbena , Medicine, Traditional , Oils, Volatile/pharmacology , Plant Extracts/pharmacology
9.
World J Microbiol Biotechnol ; 36(2): 31, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32048066

ABSTRACT

Biogenic production of nanoparticles is eco-friendly, less expensive method with various medical and biological applications. Nanotechnology along with photodynamic therapy is gaining tremendous importance with enhanced efficacy. The present work was aimed to evaluate methanolic extracts and nanoparticles of two selected plants (Datura suavolens and Verbina tenuisecta) for cytotoxic photodynamic, antioxidant and antimicrobial study. Both extract and silver (5 mM) nanoparticles of Datura plant showed significant activities against bacterial strains. Maximum ZOI of 27.3 ± 1.6 mm was observed with nanoparticles of Datura branches with minimum inhibitory (MIC) value of 32 µg/ml. In case of antifungal and antioxidant assay samples were moderately active. Silver nanoparticles and extracts were effective against rhabdomyosarcoma cell line with lowest IC50 value of 42.5 ± 0.6 µg/ml and percent viability of 25.6 ± 1.3 of Verbena tenuisecta. However, nanoparticles of Datura leaves and branches were more potent with IC50 value of 2.4 ± 0.9 µg/ml and 7.8 ± 1.1 µg/ml respectively. The result of photodynamic study showed that efficacy of photosensitizer was enhanced and percent viability reduced when nanoparticles used as an adjunct. The color change and UV spectra (415‒425 nm) indicated the production of nanoparticles. Fourier transform infrared spectroscopy (FTIR) spectra showed presence of different functional groups e.g., hydroxyl, carbonyl and amino. Nanoparticles are sphenoid in morphology and size ranges between 20-150 nm. Current study showed these silver nanoparticles can be used as cytotoxic agent in photodynamic therapy and can play a critical role to establish medicinal potential of selected plants.


Subject(s)
Datura/chemistry , Methanol/pharmacology , Silver/pharmacology , Verbena/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Metal Nanoparticles , Methanol/chemistry , Methanol/isolation & purification , Microbial Sensitivity Tests , Photosensitizing Agents/chemistry , Photosensitizing Agents/isolation & purification , Photosensitizing Agents/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Silver/chemistry , Silver/isolation & purification
10.
J Sep Sci ; 43(4): 829-838, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31769179

ABSTRACT

This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin-7-O-glucuronide, luteolin-7-O-glucuronide, apigenin-7-O-diglucuronide, verbascoside, and luteolin-7-O-diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head-to-head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing-Bablok-correlation and Bland-Altman-plot analysis. This cross-validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross-validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.


Subject(s)
Chromatography, Supercritical Fluid/methods , Plant Extracts/analysis , Verbena/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Secondary Metabolism , Verbena/metabolism
11.
J Evid Based Integr Med ; 24: 2515690X19886276, 2019.
Article in English | MEDLINE | ID: mdl-31707813

ABSTRACT

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


Subject(s)
Anti-Bacterial Agents/pharmacology , Plants, Medicinal/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Medicine, African Traditional , Melilotus/chemistry , Microbial Sensitivity Tests , Myrtus/chemistry , Plant Extracts , Plant Leaves/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Verbena/chemistry
12.
J Evid Based Integr Med ; 24: 2515690X19853264, 2019.
Article in English | MEDLINE | ID: mdl-31204502

ABSTRACT

Verbena officinalis L. has a folkloric repute for the management of digestive disorders, including diarrhea. However, the safety and efficacy of the plant material has not been scientifically validated yet. This study was, therefore, aimed to evaluate the overall antidiarrheal activity of the 80% methanol extracts of V officinalis in mice. The antidiarrheal activity of the 80% methanol extracts of the roots (R-80ME) and the leaves (L-80ME) of V officinalis was tested in castor oil-induced diarrhea in mice. R-80ME was further evaluated using charcoal meal and entero-pooling. In each test, group I and group II (controls) received 10 mL/kg distilled water and standard drug (5 mg/kg loperamide), respectively, whereas groups III, IV, and V (test groups) received 100, 200, and 400 mg/kg of the 80ME, respectively. The R-80ME at 200 mg/kg (P < .01) and 400 mg/kg (P < .001) significantly delayed the onset of diarrhea compared with negative control. Both R-80ME and L-80ME at 200 and 400 mg/kg significantly decreased the frequency of wet fecal outputs (P < .01). Generally, 70.24% inhibition of the number of wet fecal output was recorded at R-80ME 400 mg/kg. Results from the charcoal meal test revealed that the R-80ME at 200 (P < .01) and 400 mg/kg (P < .001) produced a significant antimotility effect. In entero-pooling test, the R-80ME, at 200 and 400 mg/kg doses (P < .01), showed a significant decline in both the volume and weight of intestinal contents. The maximum in vivo antidiarrheal index was determined to be 95.25 at dose of 400 mg/kg R-80ME. This study demonstrated that the 80ME, mainly the root extract, produced promising antidiarrheal activity and hence provides a scientific support for acclaimed traditional use of the plant material for treatment of diarrheal diseases.


Subject(s)
Antidiarrheals/administration & dosage , Diarrhea/drug therapy , Parasympatholytics/administration & dosage , Plant Extracts/administration & dosage , Verbena/chemistry , Animals , Antidiarrheals/isolation & purification , Diarrhea/physiopathology , Drug Evaluation, Preclinical , Feces/chemistry , Female , Gastrointestinal Motility/drug effects , Humans , Mice , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Roots/chemistry
13.
Molecules ; 24(10)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121915

ABSTRACT

Verbena carolina L. (Verbenaceae) is used as a decoction in Mexican folk medicine with applications against digestive problems and for dermatological infections. The present work firstly reported HPLC analysis, as well as the free radical scavenging capacity of the extracts and isolated compounds. Antimicrobial analyses of these substances against the bacteria Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Salmonella typhi and the fungi Candida albicans, Trichophyton mentagrophytes and T. rubrum were also tested, as well as the acute oral toxicity in mice of aqueous extracts. Major secondary metabolites in V. carolina extracts were isolated by conventional phytochemical methods which consisted of three terpenoids ((1), (3) and (4)) and four phenolic compounds ((2), (4)-(6)). Their contents were determined by HPLC in six different samples from different locations. The results indicated that ursolic acid (1), hispidulin (2), verbenaline (3), hastatoside (4), verbascoside (5), hispidulin 7-O-ß-d-glucuronopyranoside (6) and pectolinaringenin-7-O-α-d-glucuronopyranoside (7) were the main constituents and ranged from 0.17 to 3.37 mg/g of dried plant, with verbascoside being the most abundant and with a significant antioxidant activity in reactive oxygen species (ROS). Hispidulin was the only active compound against T. mentagrophytes and T. rubrum. The aqueous extract showed no significant toxicity (LD50: > 5000 mg/mL). To our knowledge, this is the first comprehensive report of the chemical characterization of V. carolina and also of the activity of its constituents towards reactive oxygen species and dermatophytes, and its safety for consumption.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Phytochemicals/pharmacology , Verbena/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid , Medicine, Traditional , Mice , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Reactive Oxygen Species/metabolism , Secondary Metabolism , Terpenes/chemistry , Terpenes/isolation & purification , Terpenes/pharmacology
14.
J Ethnopharmacol ; 239: 111906, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31028856

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Verbena montevidensis and Verbena litoralis are plants that present morphological similarities. They are both known as "gervão" and "fel-da-terra", among other popular names, and are used in folk medicine to treat diseases related to the liver and stomach. AIMS OF THE STUDY: The aim of the current investigation was to determine the chemical composition and evaluate the hepatoprotective properties and cytotoxicity of the methanolic and aqueous extracts of V. montevidensis, V. litoralis and their main iridoid in HepG2 cells. MATERIALS AND METHODS: Aqueous and methanolic extracts from the dried aerial parts of V. montevidensis and V. litoralis were obtained. The methanolic extract of V. montevidensis afforded an iridoid as the main compound. The extracts and isolated compound were examined for the hepatoprotective effect and cytotoxicity in human hepatoblastoma HepG2 cells by MTT reduction and neutral red uptake methods. RESULTS: The methanolic and aqueous extracts of both species showed the presence of iridoid and phenylethanoids as the main compounds. The iridoid brasoside was isolated and identified by spectroscopic methods. The phenylethanoid was characterized by HPLC, comparing the UV profile and retention time with an authentic sample. The results of the biological assays indicate that both aqueous and methanolic extracts of V. montevidensis and V. litoralis as well as brasoside were hepatoprotective against ethanol-induced damage in HepG2 cells. The effect can be attributed to the main compounds present since both classes are recognized for this activity. CONCLUSIONS: Our results contribute towards validation of the traditional use of V. montevidensis and V. litoralis in the treatment of liver disorders.


Subject(s)
Glycosides/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Verbena , Cell Survival/drug effects , Hep G2 Cells , Humans , Liver Diseases/drug therapy
15.
Chem Biol Interact ; 304: 28-42, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30807743

ABSTRACT

Verbena officinalis is widely used by women for maintaining general health and treating various gynaecological disorders during pregnancy. A case report has indicated that the consumption of V. officinalis induced an abortifacient effect. Hence, this study aimed to investigate the prenatal developmental toxicity of this plant according to OECD guideline (no. 414). A total of 50 pregnant female rats (dams) were distributed into five groups (n = 10); 500 mg/kg 1000 mg/2000 mg/kg and 3000 mg/kg of V. offcinalis extracts and the fifth group served as a normal control. All dams received their respective oral single daily treatment from the 6th to the 20th day of gestation. Maternal clinical toxicity signs, body weight and weight gain were recorded. Caesarean sections were performed on day 21 to evaluate embryo-foetal developmental toxicity. For dams, ovaries were harvested and weighed. The number of corpora lutea, implantation sites, and resorptions were recorded. No mortality was observed in dams, but their body weight gain was significantly reduced particularly in dams treated with 2000 and 3000 mg/kg V. officinalis. Asymmetrical distribution of implantation sites and embryos were observed. Embryo-fetotoxicity retardation was observed as evident by the decrease in foetal weight, head cranium, tail length, and higher incidence in the pre-and post-implantation loss. Some foetal skeleton abnormalities such as incomplete ossification of skull, sternebrae, and metatarsal bones were observed in foetuses of the 2000 and 3000 mg/kg V. officinalis-treated dams. LC/MS analysis identified the major constituents including geniposidic acid, tuberonic acid glucoside, luteolin 7, 3'-digalacturonide, iridotrial and apigenin. The glycosylated flavonoids such as apigenin and luteolin could be responsible for the reported prenatal developmental toxicity. In conclusion, the use of V. officinalis during pregnancy is not safe indicating evidence-based toxic effects on the reproductive performance of dams and dose-dependent risk potentials to the foetuses.


Subject(s)
Embryo, Mammalian/drug effects , Fetus/drug effects , Plant Extracts/toxicity , Verbena/chemistry , Animals , Body Weight/drug effects , Dose-Response Relationship, Drug , Female , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Rats, Sprague-Dawley
16.
J Ethnopharmacol ; 235: 88-99, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30738113

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, Verbena officinalis L. has been used for reproductive and gynaecological purposes. However, the mutagenicity and genotoxicity of V. officinalis have not been extensively investigated. AIM OF THE STUDY: To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines. MATERIALS AND METHODS: In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment. RESULTS: Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only. CONCLUSION: Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.


Subject(s)
Mutagenicity Tests/methods , Plant Extracts/toxicity , Verbena/chemistry , Animals , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Male , Micronucleus Tests , Plant Extracts/administration & dosage , Plant Leaves , Rats , Rats, Sprague-Dawley
17.
Article in English | MEDLINE | ID: mdl-30601712

ABSTRACT

Two methods based on a modified QuEChERS sample preparation and either LC coupled to atmospheric pressure ionisation and high-resolution MS or GC coupled to electron ionisation and tripled quadrupole MS have been assessed for the quantification of folpet and phthalimide in tea and other dry herbal infusions. Both methods have been fully validated in green tea and further checked in black tea, verbena and rooibos, and they performed according to the SANTE/11813/2017 criteria at the target LOQ concentration level (50 µg/kg). These methods allow the accurate quantification of folpet in the selected matrices according to the new EU residue definition, which includes phthalimide. Phthalimide is the main metabolite and degradation product of folpet, although according to recent studies, it could be generated from different sources than folpet breakdown, such as food processing or analysis by GC.


Subject(s)
Aspalathus/chemistry , Food Contamination/analysis , Phthalimides/analysis , Tea/chemistry , Verbena/chemistry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry
18.
Phytother Res ; 33(2): 350-359, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30450627

ABSTRACT

Aloysia citriodora (A. citriodora) has a long history of traditional use for sedation and treatment of insomnia in different societies. This study was carried out to assess the efficacy of A. citriodora in patients with insomnia. One hundred patients were randomly divided into two groups of A. citriodora (total essential oil 1.66 mg/10 ml and total amount of flavonoid in terms of quercetin 3.22 mg/10 ml of the syrup) and placebo. They were advised to use 10 cc of the syrups; an hour before the bedtime for a period of 4 weeks. Participants were assessed using Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) questionnaires at the baseline and then 2 and 4 weeks after the enrollment. Mean scores of global PSQI and its four components including sleep latency, habitual sleep efficiency, daytime dysfunction, and subjective sleep quality and also ISI score in the A. citriodora group improved significantly after 4 weeks of treatment when compared with the placebo group (p < 0.001, for all of them). Also, improvement of global score of PSQI and ISI was observed in the intervention group as compared with the placebo group, 2 weeks after the enrollment (p < 0.001). The results of this study showed that oral intake of A. citriodora can be suggested as a complementary treatment for patients with insomnia.


Subject(s)
Oils, Volatile/pharmacology , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep/drug effects , Verbena/chemistry , Adult , Double-Blind Method , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Treatment Outcome
19.
Nutrients ; 10(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200432

ABSTRACT

Lemon verbena (Lippia citriodora) has been used as a food spice, cosmetic, and in traditional medicine formulations to treat asthma and diabetes in South America and Southern Europe. Hibiscus flower (Hibiscus sabdariffa L.) is used in traditional Chinese medicine in the form of a tea to treat hypertension and inflammation. In the present study, we examined the synergistic effects of a formula of Metabolaid® (MetA), a combination of lemon verbena and hibiscus-flower extracts, on obesity and its complications in high-fat-diet (HFD)-induced obese mice. The results showed that MetA decreased body weight, white adipose tissue (WAT), and liver weight. Additionally, serum and hepatic lipid profiles, glucose levels, glucose tolerance, and cold-induced thermogenesis were significantly improved. Appetite-regulating hormones adiponectin and leptin were significantly increased and decreased, respectively, while the inflammatory-related factors tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated by MetA. Adipogenesis-activating gene expression was decreased, while increased thermogenesis-inducing genes were upregulated in the WAT, correlating with increased phosphorylation of AMPK and fatty-acid oxidation in the liver. Taken together, these results suggest that MetA decreased obesity and its complications in HFD mice. Therefore, this formula may be a candidate for the prevention and treatment of obesity and its complications.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anti-Obesity Agents/pharmacology , Diet, High-Fat , Enzyme Activators/pharmacology , Hibiscus , Lippia , Obesity/prevention & control , Plant Extracts/pharmacology , Adipose Tissue, White/drug effects , Adipose Tissue, White/physiopathology , Adiposity/drug effects , Animals , Anti-Obesity Agents/isolation & purification , Biomarkers/blood , Disease Models, Animal , Enzyme Activation , Enzyme Activators/isolation & purification , Flowers , Hibiscus/chemistry , Lippia/chemistry , Male , Mice, Inbred C57BL , Obesity/blood , Obesity/enzymology , Obesity/physiopathology , Plant Extracts/isolation & purification , Plant Leaves , Signal Transduction/drug effects , Thermogenesis/drug effects , Verbena/chemistry , Weight Gain/drug effects
20.
J Pharm Biomed Anal ; 160: 160-167, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30096646

ABSTRACT

This study presents a fast and validated ultra-high performance liquid chromatography diode array detector (UHPLC-DAD) method for the simultaneous determination of the major compounds in Verbena officinalis L. (Verbenaceae), a medicinal plant listed in the European, British, and, Chinese Pharmacopoeias. In order to get reference substances, nine compounds, belonging to iridoids, flavonoids, and phenylpropanoid glycosides, were isolated from the herb extract. Two of them, namely cistanoside D and leucosceptoside A, were found in this plant species for the first time. Chromatographic separation was achieved in less than 7 min on a Kinetex 1.7 u XB-C18 (50 × 2.10 mm) column by using a solvent gradient of water-acetonitrile modified with 0.1% formic acid. Method validation confirmed the assays sensitivity, linearity (R2 ≥ 0.997), precision (intraday precision ≤ 1.71%; interday precision ≤ 1.46%) and accuracy (recovery rates between 93.9% and 108.8%) for the quantitative analysis of the eight selected marker compounds. Identity and peak purity of the analytes was confirmed by coupling the UHPLC instrument to a quadrupole time-of-flight mass spectrometer via an electrospray ionization interface (ESI-QTOF-MS) operating in the negative ionization mode. Finally, the applicability of the developed UHPLC-DAD method was successfully proven for the sensitive quantitation of the major compounds in Verbena herb extracts, thereby providing a reliable tool for its rapid quality control.


Subject(s)
Drug Contamination/prevention & control , Plant Extracts/analysis , Quality Control , Verbena/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL