Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Publication year range
1.
Aging Cell ; 23(4): e14081, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236004

ABSTRACT

Aging-induced cognitive impairment is associated with a loss of metabolic homeostasis and plasticity. An emerging idea is that targeting key metabolites is sufficient to impact the function of other organisms. Therefore, more metabolism-targeted therapeutic intervention is needed to improve cognitive impairment. We first conducted untargeted metabolomic analyses and 16S rRNA to identify the aging-associated metabolic adaption and intestinal microbiome change. Untargeted metabolomic analyses of plasma revealed L-arginine metabolic homeostasis was altered during the aging process. Impaired L-arginine metabolic homeostasis was associated with low abundance of intestinal Akkermansia muciniphila (AKK) colonization in mice. Long-term supplementation of AKK outer membranes protein-Amuc_1100, rescued the L-arginine level and restored cognitive impairment in aging mice. Mechanically, Amuc_1100 acted directly as a source of L-arginine and enriched the L-arginine-producing bacteria. In aged brain, Amuc_1100 promoted the superoxide dismutase to alleviated oxidation stress, and increased nitric oxide, derivatives of L-arginine, to improve synaptic plasticity. Meanwhile, L-arginine repaired lipopolysaccharide-induced intestinal barrier damage and promoted growth of colon organoid. Our findings indicated that aging-related cognitive impairment was closely associated with the disorders of L-arginine metabolism. AKK-derived Amuc_1100, as a potential postbiotic, targeting the L-arginine metabolism, might provide a promising therapeutic strategy to maintain the intestinal homeostasis and cognitive function in aging.


Subject(s)
Cognitive Dysfunction , Verrucomicrobia , Mice , Animals , RNA, Ribosomal, 16S , Homeostasis , Arginine
2.
J Cell Mol Med ; 28(1): e18026, 2024 01.
Article in English | MEDLINE | ID: mdl-37961985

ABSTRACT

In the previous study, we found that the oral sodium valproate (SVP) increased the relative abundance of Akkermansia muciniphila (A. muciniphila) in rats, and plasma aspartate transaminase (AST) and alanine aminotransferase (ALT) activities were positively correlated with A. muciniphila levels. This study aimed to further investigate the role of A. muciniphila in SVP-induced hepatotoxicity by orally supplementing rats with the representative strain of A. muciniphila, A. muciniphila MucT. Additionally, the fresh faeces were incubated anaerobically with SVP to investigate the effect of SVP on faecal A. muciniphila in the absence of host influence. Results showed that A. muciniphila MucT ameliorated the hepatotoxicity and upregulation of A. muciniphila induced by SVP. SVP also induced a noteworthy elevation of A. muciniphila level in vitro, supporting the observation in vivo. Therefore, we speculate that A. muciniphila MucT may be a potential therapeutic strategy for SVP-induced hepatotoxicity. In addition, the increased A. muciniphila induced by SVP may differ from A. muciniphila MucT, but further evidence is needed. These findings provide new insights into the relationships between A. muciniphila and SVP-induced hepatotoxicity, highlighting the potential for different A. muciniphila strains to have distinct or even opposing effects on SVP-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Valproic Acid , Rats , Animals , Up-Regulation , Verrucomicrobia/physiology , Akkermansia
3.
mSystems ; 8(5): e0057323, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37787527

ABSTRACT

IMPORTANCE: Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.


Subject(s)
Gastrointestinal Microbiome , Glucose Intolerance , Verrucomicrobia , Animals , Humans , Mice , Dietary Supplements , Glucose/metabolism , Intestines , Mice, Knockout , Verrucomicrobia/chemistry , Verrucomicrobia/metabolism , Light , Darkness , Receptors, G-Protein-Coupled/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism
4.
Gut Microbes ; 15(1): 2211501, 2023.
Article in English | MEDLINE | ID: mdl-37203220

ABSTRACT

Magnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn's disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Tumor Necrosis Factor Inhibitors/metabolism , Colitis/microbiology , Inflammatory Bowel Diseases/microbiology , Verrucomicrobia/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Biological Therapy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
5.
Int J Biol Macromol ; 242(Pt 2): 124650, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37119914

ABSTRACT

Amuc_1100 (hereafter called Amuc) is a highly abundant pili-like protein on the outer membrane of Akkermansia muciniphila and has been found to be effective for in anti-obesity, which is probably through the activation of TLR2. However, the precise mechanisms underlying the contributions of TLR2 to obesity resistance remain unknown. Here, TLR2 knockout mice were used to decipher the anti-obesity mechanism of Amuc. Mice exposed to a high-fat diet (HFD) were treated with Amuc (60 µg) every other day for 8 weeks. The results showed that Amuc supplementation decreased mouse body weight and lipid deposition by regulating fatty acid metabolism and reducing bile acid synthesis by activating TGR5 and FXR and strengthening the intestinal barrier function. The ablation of TLR2 partially reversed the positive effect of Amuc on obesity. Furthermore, we revealed that Amuc altered the gut microbiota composition by increasing the relative abundance of Peptostreptococcaceae, Faecalibaculum, Butyricicoccus, and Mucispirillum_schaedleri_ASF457, and decreasing Desulfovibrionaceae, which may serve as a contributor for Amuc to reinforce the intestinal barrier in HFD-induced mice. Therefore, the anti-obesity effect of Amuc was accompanied by the mitigation of gut microbes. These findings provide support for the use of Amuc as a therapy targeting obesity-associated metabolic syndrome.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Mice , Animals , Diet, High-Fat/adverse effects , Toll-Like Receptor 2 , Verrucomicrobia , Obesity/etiology , Obesity/chemically induced , Fatty Acids/pharmacology , Bile Acids and Salts/pharmacology , Mice, Inbred C57BL
6.
Nutrients ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771430

ABSTRACT

The intestinal microbial population is recognized for its impact on cancer treatment outcomes. Little research has reported microbiome changes during cancer progression or the interplay of disease progression, dietary sugar/fat intake, and the microbiome through surgery and chemotherapy. In this study, the murine gut microbiome was used as a model system, and changes in microbiome diversity, richness, and evenness over the progression of the cancer and treatment were analyzed. Mice were categorized into four diet cohorts, combinations of either high or low sucrose and high or low omega-3 fatty acids, and two treatment cohorts, saline vehicle or chemotherapy, for a total of eight groups. Fecal samples were collected at specific timepoints to assess changes due to diet implementation, onset of cancer, lumpectomy, and chemotherapy. Akkermansia muciniphila abundance was very high in some samples and negatively correlated with overall Amplicon Sequence Variant (ASV) richness (r(64) = -0.55, p = 3 × 10-8). Throughout the disease progression, ASV richness significantly decreased and was impacted by diet and treatment. Alpha-diversity and differential microbial abundance were significantly affected by disease progression, diet, treatment, and their interactions. These findings help establish a baseline for understanding how cancer progression, dietary macronutrients, and specific treatments impact the murine microbiome, which may influence outcomes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neoplasms , Animals , Mice , Diet , Verrucomicrobia , Disease Progression , Feces , Neoplasms/therapy
7.
Microbiome ; 10(1): 195, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36380385

ABSTRACT

BACKGROUND: Vascular calcification is a major cause of the high morbidity and mortality of cardiovascular diseases and is closely associated with the intestinal microbiota. Short-chain fatty acids (SCFAs) are derived from the intestinal microbiota and can also regulate intestinal microbiota homeostasis. However, it remains unclear whether exogenous supplementation with propionate, a SCFA, can ameliorate vascular calcification by regulating the intestinal microbiota. This study was conducted to explore the roles of propionate and the intestinal microbiota in the process of vascular calcification. METHODS: In total, 92 patients were enrolled consecutively as the observational cohort to analyse the relationship between SCFAs and vascular calcification in both blood and faecal samples. A rat model of vascular calcification was induced by vitamin D3 and nicotine (VDN) to validate the effect of propionate. Differences in the intestinal microbiota were analysed by 16S ribosomal RNA gene sequencing. Faecal microbiota transplantation and Akkermansia muciniphila transplantation experiments were performed to evaluate the functions of the intestinal microbiota. RESULTS: The results of the observational cohort study revealed that the levels of SCFAs (particularly propionate) in both blood and faecal samples independently correlated negatively with calcification scores (P < 0.01). To verify the activities of propionate, it was provided to VDN-treated rats, and oral or rectal propionate delivery reshaped the intestinal microbiota, resulted in elevated SCFA production, improved intestinal barrier function and alleviated inflammation, ultimately ameliorating vascular calcification. Furthermore, we demonstrated that transplantation of the propionate-modulated intestinal microbiota induced beneficial outcomes similar to those with oral or rectal propionate administration. Interestingly, linear discriminant analysis (LDA) effect size (LEfSe) revealed that oral or rectal propionate administration and propionate-modulated intestinal microbiota transplantation both enriched primarily Akkermansia. Subsequently, we demonstrated that Akkermansia supplementation could ameliorate VDN-induced vascular calcification in rats. CONCLUSIONS: Propionate can significantly ameliorate vascular calcification in VDN-treated rats, and this effect is mediated by intestinal microbiota remodelling. The findings in our study indicate that the intestinal tract-vessel axis is a promising target for alleviating vascular calcification. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Vascular Calcification , Rats , Animals , Gastrointestinal Microbiome/physiology , Propionates , Fatty Acids, Volatile , Verrucomicrobia , Vascular Calcification/drug therapy
9.
Gut Microbes ; 14(1): 2120344, 2022.
Article in English | MEDLINE | ID: mdl-36109831

ABSTRACT

Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Microbiota , Akkermansia , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Expectorants/pharmacology , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Volatile , Fermentation , Firmicutes , Humans , Mucins , Prebiotics , Propionates/pharmacology , Verrucomicrobia
10.
J Med Food ; 25(6): 565-575, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35708632

ABSTRACT

Muscular atrophy is a muscle disease in which muscle mass and strength decrease due to aging, injury, metabolic disorders, or chronic conditions. Proteins in muscle tissue are degraded by the ubiquitin-proteasome pathway, and atrophy accelerates this pathway. Akkermansia muciniphila and Faecalibacterium prausnitzii strains are effective agents against metabolic and inflammatory diseases in next-generation probiotic research. In this study, we evaluated the efficacy of A. muciniphila strain EB-AMDK19 and F. prausnitzii strain EB-FPDK11 in a mouse model of muscular atrophy, since atrophy inhibits energy metabolism and immune activation. After oral administration of each strain for 4 weeks, the hind legs of the mice were fixed with a plaster cast to immobilize them for a week. As a result, the administration of EB-AMDK19 and EB-FPDK11 strains improved grip strength but did not increase muscle mass. At the molecular level, A. muciniphila and F. prausnitzii treatments decreased the expression levels of ubiquitin-proteasome genes, atrogin-1, MuRF, and cathepsin L. They increased the expression level of the mitochondrial biogenesis regulatory gene, PGC-1α. The effect of the strains was confirmed by a decrease in myostatin. Furthermore, A. muciniphila and F. prausnitzii modulated the immune function by enhancing ZO-1 and inhibiting IL-6. In particular, EB-AMDK19 promoted the expression of IL-10, an anti-inflammatory cytokine. These results suggest that A. muciniphila and F. prausnitzii may have beneficial effects on muscular atrophy, verified by newly isolated EB-AMDK19 and EB-FPDK11 as potential next-generation probiotics.


Subject(s)
Faecalibacterium prausnitzii , Proteasome Endopeptidase Complex , Akkermansia , Animals , Faecalibacterium prausnitzii/metabolism , Mice , Muscle Strength , Muscular Atrophy/etiology , Ubiquitins/metabolism , Verrucomicrobia/physiology
11.
Food Funct ; 13(8): 4399-4420, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35297435

ABSTRACT

Background: Ulcerative colitis (UC) is a chronic inflammatory disorder of the colon with a continuously remitting and relapsing course. Its etiology is closely related to abnormal interactions between host and gut microbiota. The mucus barrier lining the gastrointestinal tract is necessary to coordinate host and gut microbiota interaction by nourishing and modulating the microbiota. Differential effects of the anti-inflammatory fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on UC progression in mice were firstly addressed by our previous work; here, the mechanism for their respective effects were further uncovered from host-microbiome crosstalk based on mucus barrier modulation to pave the way for UC therapy. Methods: Assessment of the disease activity index and histopathology score was conducted in mice with dextran sodium sulfate (DSS)-induced colitis pre-treated with different doses of EPA and DHA. Mucin generation, glycosylation and secretion were evaluated by a combination of electron microscopy, specific mucous staining, and qPCR. Western blotting was used to analyze the underlying molecular events. Fecal short chain fatty acids were detected using gas chromatography, and the gut microbial composition was analyzed using 16S rRNA sequencing. Results: Compared with DHA, the more potent inhibitory effect of high dose EPA on DSS-induced colitis was reconfirmed, which was underlain by a reinforced mucus layer as indicated by increased mucin granule release, mucus layer stratification and markedly upregulated expression of the key modulators involved in goblet cell differentiation. In turn a remarkably enhanced mucus barrier in the EPA group functioned to modulate the gut microbiome, as demonstrated by the enriched abundance of the phylum Bacteroidetes and mucin-degrading bacterium Akkermansia muciniphila producing acetic and propionic acids. Conclusions: EPA and DHA differentially coordinate the interaction between the host and the gut microbiota and relieve mucus barrier disruption in DSS-induced colitis. EPA may develop into a promising adjunctive therapy for UC.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Colitis, Ulcerative/drug therapy , Colon/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Mice , Mice, Inbred C57BL , Mucins/metabolism , Mucus/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Verrucomicrobia
12.
Nutrients ; 13(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34836220

ABSTRACT

Grapes provide a rich source of polyphenols and fibers. This study aimed to evaluate the effect of the daily consumption of 46 g of whole grape powder, providing the equivalent of two servings of California table grapes, on the gut microbiome and cholesterol/bile acid metabolism in healthy adults. This study included a 4-week standardization to a low-polyphenol diet, followed by 4 weeks of 46 g of grape powder consumption while continuing the low-polyphenol diet. Compared to the baseline, 4 weeks of grape powder consumption significantly increased the alpha diversity index of the gut microbiome. There was a trend of increasing Verrucomicrobia (p = 0.052) at the phylum level, and a significant increase in Akkermansia was noted. In addition, there was an increase in Flavonifractor and Lachnospiraceae_UCG-010, but a decrease in Bifidobacterium and Dialister at the genus level. Grape powder consumption significantly decreased the total cholesterol by 6.1% and HDL cholesterol by 7.6%. There was also a trend of decreasing LDL cholesterol by 5.9%, and decreasing total bile acid by 40.9%. Blood triglyceride levels and body composition were not changed by grape powder consumption. In conclusion, grape powder consumption significantly modified the gut microbiome and cholesterol/bile acid metabolism.


Subject(s)
Bile Acids and Salts/metabolism , Cholesterol/metabolism , Gastrointestinal Microbiome/drug effects , Plant Extracts/administration & dosage , Vitis/chemistry , Adult , Akkermansia/drug effects , Bifidobacterium/drug effects , Cholesterol/blood , Female , Healthy Volunteers , Humans , Male , Middle Aged , Pilot Projects , Polyphenols/metabolism , Powders , Triglycerides/blood , Verrucomicrobia/drug effects , Young Adult
13.
Nat Commun ; 12(1): 5308, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489463

ABSTRACT

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Subject(s)
Droughts/statistics & numerical data , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Water/analysis , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Altitude , Austria , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biomass , Carbon/analysis , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Grassland , Humans , Nitrogen/analysis , Phosphorus/analysis , Planctomycetales/classification , Planctomycetales/genetics , Planctomycetales/isolation & purification , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Sulfur/analysis , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
14.
Complement Ther Clin Pract ; 45: 101463, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34348201

ABSTRACT

BACKGROUND: Multiple sclerosis is associated with gut microbiome alterations. The current study aimed to investigate the effect of home-based exercise on gut bacteria in people with multiple sclerosis (MS). We also examined the association of exercise-induced gut bacterial modulation with circulating levels of inflammatory and anti-inflammatory cytokines. MATERIALS AND METHODS: Forty-two people with MS (female/male: 31/11, expanded disability scale status <5) participated in this study and were divided into two groups: 6 months of home-based exercise (5 sessions per week) and controls. Before and after the intervention, the following parameters were assessed: gut microbiota, including faecalibacterium prausnitzii, akkermansia muciniphila, prevotella and bacteroides counts; cytokine levels including interleukin (IL)-10 and tumor necrosis factor-alpha (TNF-α); and psychosocial factors including anxiety, depression, and fatigue. RESULTS: Home-based exercise significantly increased prevotella counts, and decreased akkermansia muciniphila counts (p < 0.05); however, there were no significant effects on faecalibacterium prausnitzii and bacteroides counts (p > 0.05). There were no significant effects of home-based exercise on circulating cytokine levels (p > 0.05). Moreover, home-based exercise was associated with significant improvements in anxiety and depression (p < 0.05); however, fatigue revealed no significant change (p > 0.05). Akkermansia muciniphila, prevotella and bacteroides count changes in response to the intervention were correlated with changes in IL-10 (r = -0.052, r = 0.67, and r = -0.55, respectively). CONCLUSION: In general, our data revealed the effect of exercise on gut bacteria, especially prevotella, and akkermansia muciniphila counts, which can probably have a beneficial effect on MS disease pathology and course; however, the lack of changes in cytokines following exercise suggests the possible role of mechanisms other than modulation of circulating IL-10 and TNF- α levels.


Subject(s)
Gastrointestinal Microbiome , Multiple Sclerosis , Exercise , Faecalibacterium prausnitzii , Female , Humans , Male , Multiple Sclerosis/therapy , Verrucomicrobia
15.
Article in English | MEDLINE | ID: mdl-34209591

ABSTRACT

Urban freshwater lakes play an indispensable role in maintaining the urban environment and are suffering great threats of eutrophication. Until now, little has been known about the seasonal bacterial communities of the surface water of adjacent freshwater urban lakes. This study reported the bacterial communities of three adjacent freshwater lakes (i.e., Tangxun Lake, Yezhi Lake and Nan Lake) during the alternation of seasons. Nan Lake had the best water quality among the three lakes as reflected by the bacterial eutrophic index (BEI), bacterial indicator (Luteolibacter) and functional prediction analysis. It was found that Alphaproteobacteria had the lowest abundance in summer and the highest abundance in winter. Bacteroidetes had the lowest abundance in winter, while Planctomycetes had the highest abundance in summer. N/P ratio appeared to have some relationships with eutrophication. Tangxun Lake and Nan Lake with higher average N/P ratios (e.g., N/P = 20) tended to have a higher BEI in summer at a water temperature of 27 °C, while Yezhi Lake with a relatively lower average N/P ratio (e.g., N/P = 14) tended to have a higher BEI in spring and autumn at a water temperature of 9-20 °C. BEI and water temperature were identified as the key parameters in determining the bacterial communities of lake water. Phosphorus seemed to have slightly more impact on the bacterial communities than nitrogen. It is expected that this study will help to gain more knowledge on urban lake eutrophication.


Subject(s)
Eutrophication , Lakes , China , Nitrogen , Phosphorus , Seasons , Verrucomicrobia , Water Quality
16.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2760-2765, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34296573

ABSTRACT

Akkermansia muciniphila, abbreviated as AKK and found in 2004, is an oval-shaped gram-negative bacterium isolated from a human feal. A. muciniphila is widely present in the intestinal tract of human. Its specialization in mucin degradation makes it a key organism at the mucosal interface between the lumen and host cells. More and more studies have shown that it can play the role of probiotics. Notably, declined levels of A. muciniphila have been observed in patients with diabetes, liver disease, cardiovascular disease, inflammatory bowel disease, neurodegenerative diseases, etc. In addition, A. muciniphila combined with traditional Chinese medicine, exhibited higher effect on regulating host functions, but the underlying mechanism was still unclear, requiring further in-depth research. Therefore, the aims of this review are to summarize the main effects of A. muciniphila on host health and its relationship with traditional Chinese medicine, summarize the main problems, and provide a reference for the further research of A. muciniphila and traditional Chinese medicine.


Subject(s)
Inflammatory Bowel Diseases , Probiotics , Akkermansia , Humans , Intestines , Verrucomicrobia/genetics
17.
Cell Rep Med ; 2(3): 100206, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33763652

ABSTRACT

Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome/genetics , Infant, Extremely Low Birth Weight/growth & development , Infant, Extremely Premature/growth & development , Limosilactobacillus reuteri/physiology , Probiotics/administration & dosage , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biodiversity , Feces/microbiology , Female , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Fusobacteria/classification , Fusobacteria/genetics , Fusobacteria/isolation & purification , Humans , Infant , Male , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
18.
Article in Chinese | WPRIM | ID: wpr-887947

ABSTRACT

Akkermansia muciniphila, abbreviated as AKK and found in 2004, is an oval-shaped gram-negative bacterium isolated from a human feal. A. muciniphila is widely present in the intestinal tract of human. Its specialization in mucin degradation makes it a key organism at the mucosal interface between the lumen and host cells. More and more studies have shown that it can play the role of probiotics. Notably, declined levels of A. muciniphila have been observed in patients with diabetes, liver disease, cardiovascular disease, inflammatory bowel disease, neurodegenerative diseases, etc. In addition, A. muciniphila combined with traditional Chinese medicine, exhibited higher effect on regulating host functions, but the underlying mechanism was still unclear, requiring further in-depth research. Therefore, the aims of this review are to summarize the main effects of A. muciniphila on host health and its relationship with traditional Chinese medicine, summarize the main problems, and provide a reference for the further research of A. muciniphila and traditional Chinese medicine.


Subject(s)
Humans , Akkermansia , Inflammatory Bowel Diseases , Intestines , Probiotics , Verrucomicrobia/genetics
19.
J Microbiol ; 58(9): 780-792, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32870484

ABSTRACT

Escherichia coli (E. coli) infection is very common among young growing animals, and zinc supplementation is often used to alleviate inflammation induced by this disease. Therefore, the objective of this study was to evaluate whether chitosan-chelated zinc (CS-Zn) supplementation could attenuate gut injury induced by E. coli challenge and to explore how CS-Zn modulates cecal microbiota and alleviates intestinal inflammation in weaned rats challenged with E. coli. 36 weaned rats (55.65 ± 2.18 g of BW, n = 12) were divided into three treatment groups consisting of unchallenged rats fed a basal diet (Control) and two groups of rats challenged with E. coli and fed a basal diet or a diet containing 640 mg/kg CS-Zn (E. coli + CS-Zn, containing 50 mg/kg Zn) for a 14-day experiment. On days 10 to 12, each rat was given 4 ml of E. coli solution with a total bacteria count of 1010 CFU by oral gavage daily or normal saline of equal dosage. CS-Zn supplementation mitigated intestinal morphology impairment (e.g. higher crypt depth and lower macroscopic damage index) induced by E. coli challenge (P < 0.05), and alleviated the increase of Myeloperoxidase (MPO) activity after E. coli challenge (P < 0.05). 16S rRNA sequencing analyses revealed that E. coli challenge significantly increased the abundance of Verrucomicrobia and E. coli (P < 0.05). However, CS-Zn supplementation increased the abundance of Lactobacillus and decreased the relative abundance of Proteobacteria, Desulfovibrio and E. coli (P < 0.05). The concentrations of butyrate in the cecal digesta, which decreased due to the challenge, were higher in the E. coli + CS-Zn group (P < 0.05). In addition, CS-Zn supplementation significantly prevented the elevation of pro-inflammatory cytokines IL-6 concentration and up-regulated the level of anti-inflammatory cytokines IL-10 in cecal mucosa induced by E. coli infection (P < 0.05). In conclusion, these results indicate that CS-Zn produces beneficial effects in alleviating gut mucosal injury of E. coli challenged rats by enhancing the intestinal morphology and modulating cecal bacterial composition, as well as attenuating inflammatory response.


Subject(s)
Cecum/microbiology , Chitosan/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Intestinal Mucosa/pathology , Zinc/pharmacology , Animal Feed , Animals , Bacterial Load/drug effects , Chitosan/chemistry , Cytokines/blood , Desulfovibrio/growth & development , Diet , Dietary Supplements , Escherichia coli/drug effects , Female , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Lactobacillus/growth & development , Male , Proteobacteria/growth & development , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley , Verrucomicrobia/growth & development , Weaning , Zinc/chemistry
20.
Molecules ; 25(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033507

ABSTRACT

The allicin diallyldisulfid-S-oxide, a major garlic organosulfur compound (OSC) in crushed garlic (Allium sativum L.), possesses antibacterial effects, and influences gut bacteria. In this study, we made allicin-free garlic (AFG) extract and investigated its effects on gut microbiome. C57BL/6N male mice were randomly divided into 6 groups and fed normal diet (ND) and high-fat diet (HFD) supplemented with or without AFG in concentrations of 1% and 5% for 11 weeks. The genomic DNAs of feces were used to identify the gut microbiome by sequencing 16S rRNA genes. The results revealed that the ratio of p-Firmicutes to p-Bacteroidetes increased by aging and HFD was reduced by AFG. In particular, the f-Lachnospiraceae, g-Akkermansia, and g-Lactobacillus decreased by aging and HFD was enhanced by AFG. The g-Dorea increased by aging and HFD decreased by AFG. In addition, the ratio of glutamic-pyruvic transaminase to glutamic-oxaloacetic transaminase (GPT/GOT) in serum was significantly increased in the HFD group and decreased by AFG. In summary, our data demonstrated that dietary intervention with AFG is a potential way to balance the gut microbiome disturbed by a high-fat diet.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dietary Supplements , Garlic/chemistry , Gastrointestinal Microbiome/drug effects , Plant Extracts/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Bacteroidetes/drug effects , Bacteroidetes/isolation & purification , Diet, High-Fat , Disulfides , Firmicutes/drug effects , Firmicutes/isolation & purification , Garlic/genetics , Male , Mice , Mice, Inbred C57BL , Sulfinic Acids/analysis , Verrucomicrobia/drug effects , Verrucomicrobia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL