Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
mSystems ; 8(5): e0057323, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37787527

ABSTRACT

IMPORTANCE: Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.


Subject(s)
Gastrointestinal Microbiome , Glucose Intolerance , Verrucomicrobia , Animals , Humans , Mice , Dietary Supplements , Glucose/metabolism , Intestines , Mice, Knockout , Verrucomicrobia/chemistry , Verrucomicrobia/metabolism , Light , Darkness , Receptors, G-Protein-Coupled/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism
2.
Gut Microbes ; 15(1): 2211501, 2023.
Article in English | MEDLINE | ID: mdl-37203220

ABSTRACT

Magnitude and diversity of gut microbiota and metabolic systems are critical in shaping human health and diseases, but it remains largely unclear how complex metabolites may selectively regulate gut microbiota and determine health and diseases. Here, we show that failures or compromised effects of anti-TNF-α therapy in inflammatory bowel diseases (IBD) patients were correlated with intestinal dysbacteriosis with more pro-inflammatory bacteria, extensive unresolved inflammation, failed mucosal repairment, and aberrant lipid metabolism, particularly lower levels of palmitoleic acid (POA). Dietary POA repaired gut mucosal barriers, reduced inflammatory cell infiltrations and expressions of TNF-α and IL-6, and improved efficacy of anti-TNF-α therapy in both acute and chronic IBD mouse models. Ex vivo treatment with POA in cultured inflamed colon tissues derived from Crohn's disease (CD) patients reduced pro-inflammatory signaling/cytokines and conferred appreciable tissue repairment. Mechanistically, POA significantly upregulated the transcriptional signatures of cell division and biosynthetic process of Akkermansia muciniphila, selectively increased the growth and abundance of Akkermansia muciniphila in gut microbiota, and further reprogrammed the composition and structures of gut microbiota. Oral transfer of such POA-reprogrammed, but not control, gut microbiota induced better protection against colitis in anti-TNF-α mAb-treated recipient mice, and co-administration of POA with Akkermansia muciniphila showed significant synergistic protections against colitis in mice. Collectively, this work not only reveals the critical importance of POA as a polyfunctional molecular force to shape the magnitude and diversity of gut microbiota and therefore promote the intestinal homeostasis, but also implicates a new potential therapeutic strategy against intestinal or abenteric inflammatory diseases.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Animals , Mice , Tumor Necrosis Factor Inhibitors/metabolism , Colitis/microbiology , Inflammatory Bowel Diseases/microbiology , Verrucomicrobia/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Biological Therapy , Dextran Sulfate , Mice, Inbred C57BL , Disease Models, Animal
3.
Appl Environ Microbiol ; 86(3)2020 01 21.
Article in English | MEDLINE | ID: mdl-31757822

ABSTRACT

Akkermansia muciniphila is a mucin-degrading bacterium found in the gut of most humans and is considered a "next-generation probiotic." However, knowledge of the genomic and physiological diversity of human-associated Akkermansia sp. strains is limited. Here, we reconstructed 35 metagenome-assembled genomes and combined them with 40 publicly available genomes for comparative genomic analysis. We identified at least four species-level phylogroups (AmI to AmIV), with distinct functional potentials. Most notably, we identified genes for cobalamin (vitamin B12) biosynthesis within the AmII and AmIII phylogroups. To verify these predictions, 10 Akkermansia strains were isolated from adults and screened for vitamin B12 biosynthesis genes via PCR. Two AmII strains were positive for the presence of cobalamin biosynthesis genes, while all 9 AmI strains tested were negative. To demonstrate vitamin B12 biosynthesis, we measured the production of acetate, succinate, and propionate in the presence and absence of vitamin supplementation in representative strains of the AmI and AmII phylogroups, since cobalamin is an essential cofactor in propionate metabolism. Results showed that the AmII strain produced acetate and propionate in the absence of supplementation, which is indicative of vitamin B12 biosynthesis. In contrast, acetate and succinate were the main fermentation products for the AmI strains when vitamin B12 was not supplied in the culture medium. Lastly, two bioassays were used to confirm vitamin B12 production by the AmII phylogroup. This novel physiological trait of human-associated Akkermansia strains may affect how these bacteria interact with the human host and other members of the human gut microbiome.IMPORTANCE There is significant interest in the therapeutic and probiotic potential of the common gut bacterium Akkermansia muciniphila However, knowledge of both the genomic and physiological diversity of this bacterial lineage is limited. Using a combination of genomic, molecular biological, and traditional microbiological approaches, we identified at least four species-level phylogroups with differing functional potentials that affect how these bacteria interact with both their human host and other members of the human gut microbiome. Specifically, we identified and isolated Akkermansia strains that were able to synthesize vitamin B12 The ability to synthesize this important cofactor broadens the physiological capabilities of human-associated Akkermansia strains, fundamentally altering our understanding of how this important bacterial lineage may affect human health.


Subject(s)
Genome, Bacterial , Verrucomicrobia/genetics , Vitamin B 12/biosynthesis , Vitamins/biosynthesis , Child , Child, Preschool , Genomics , Humans , Verrucomicrobia/metabolism , Vitamin B 12/genetics , Vitamins/genetics
4.
Cell Host Microbe ; 26(6): 779-794.e8, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31784260

ABSTRACT

Fecal transfer from healthy donors is being explored as a microbiome modality. MicroRNAs (miRNAs) have been found to affect the microbiome. Multiple sclerosis (MS) patients have been shown to have an altered gut microbiome. Here, we unexpectedly found that transfer of feces harvested at peak disease from the experimental autoimmune encephalomyelitis (EAE) model of MS ameliorates disease in recipients in a miRNA-dependent manner. Specifically, we show that miR-30d is enriched in the feces of peak EAE and untreated MS patients. Synthetic miR-30d given orally ameliorates EAE through expansion of regulatory T cells (Tregs). Mechanistically, miR-30d regulates the expression of a lactase in Akkermansia muciniphila, which increases Akkermansia abundance in the gut. The expanded Akkermansia in turn increases Tregs to suppress EAE symptoms. Our findings report the mechanistic underpinnings of a miRNA-microbiome axis and suggest that the feces of diseased subjects might be enriched with miRNAs with therapeutic properties.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fecal Microbiota Transplantation , MicroRNAs/therapeutic use , Multiple Sclerosis/drug therapy , Verrucomicrobia , Administration, Oral , Akkermansia , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Feces , Gastrointestinal Microbiome/immunology , Host Microbial Interactions , Humans , Lactase/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Verrucomicrobia/growth & development , Verrucomicrobia/immunology , Verrucomicrobia/metabolism
5.
Nature ; 572(7770): 474-480, 2019 08.
Article in English | MEDLINE | ID: mdl-31330533

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Subject(s)
Amyotrophic Lateral Sclerosis/microbiology , Amyotrophic Lateral Sclerosis/physiopathology , Gastrointestinal Microbiome/physiology , Niacinamide/metabolism , Akkermansia , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Dysbiosis , Female , Gastrointestinal Microbiome/drug effects , Germ-Free Life , Humans , Longevity , Male , Mice , Mice, Transgenic , Niacinamide/biosynthesis , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Survival Rate , Symbiosis/drug effects , Verrucomicrobia/metabolism , Verrucomicrobia/physiology
6.
Crit Rev Food Sci Nutr ; 59(6): 848-863, 2019.
Article in English | MEDLINE | ID: mdl-30569745

ABSTRACT

Diabetes mellitus (DM) and its complications are major public health concerns which strongly influence the quality of humans' life. Modification of gut microbiota has been widely used for the management of diabetes. In this review, the relationship between diabetes and gut microbiota, as well as the effects of different dietary components and traditional Chinese medicine (TCM) on gut microflora are summarized. Dietary compounds and TCM possessing bioactive components (fiber and phytochemicals) first change the composition of gut microbiota (inhibiting pathogens and promoting the beneficial bacteria growth) and then influence the production of their metabolites, which would further modify the intestinal environment through inhibiting the production of detrimental compounds (such as lipopolysaccharide, hydrogen sulfide, indol, etc.). Importantly, metabolites (short chain fatty acids and other bioactive components) fermented/degraded by gut microbiota can target multiple pathways in intestine, liver, pancreas, etc., resulting in the improvement of gut health, glycemic control, lipids profile, insulin resistance and inflammation. Furthermore, understanding the interaction between different dietary components and gut microbiota, as well as underlying mechanisms would help design different diet formula for the management of diabetes. Further researches could focus on the combination of different dietary components for preventing and treating diabetes, based on the principle of "multiple components against multiple targets" from the perspective of gut microbiota.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Diet , Gastrointestinal Microbiome , Medicine, Chinese Traditional , Blood Glucose/metabolism , Dietary Fiber/administration & dosage , Humans , Intestines/microbiology , Melatonin/administration & dosage , Polyphenols/administration & dosage , Verrucomicrobia/metabolism
7.
Ecotoxicol Environ Saf ; 170: 446-452, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30553922

ABSTRACT

Vertical up-flow constructed wetlands (CWs) with manganese ore (Mn ore) as media (M-CWs) were developed to treat simulated polluted river water. The results showed that the average removal efficiencies for NH4-N, NO3-N, TN and TP were 91.74%, 83.29%, 87.47% and 65.12% in M-CWs, respectively, which were only 79.12%, 72.90%, 75.85% and 43.23% in the CWs without Mn ore (C-CWs). Nutrient mass balance showed that nitrogen (N) removal was improved by enhanced microbial processes, media storage and plant uptake in M-CWs. Moreover, almost 50% of phosphorus (P) was retained by media storage because of the adsorption processes on Mn ore. It was found that addition of Mn ore enhanced denitrification as the relative abundance of denitrifying bacteria increased. The produced Mn(II) and more abundant Gammaproteobacteria confirmed alternative N removal pathways including anoxic nitrification coupled to Mn ore reduction and denitrification using Mn(II) as electron donor. Mn(II) concentration in the effluent of M-CWs was below the drinking water limit of 0.1 mg/L, which makes them environmentally-friendly.


Subject(s)
Manganese/chemistry , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Wetlands , Acidobacteria/isolation & purification , Acidobacteria/metabolism , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Chloroflexi/isolation & purification , Chloroflexi/metabolism , Denitrification , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Microbiota , Models, Theoretical , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Rivers/chemistry , Verrucomicrobia/isolation & purification , Verrucomicrobia/metabolism
8.
Atherosclerosis ; 268: 117-126, 2018 01.
Article in English | MEDLINE | ID: mdl-29202334

ABSTRACT

BACKGROUND AND AIMS: Gut microbiota plays a major role in metabolic disorders. Berberine is used to treat obesity, diabetes and atherosclerosis. The mechanism underlying the role of berberine in modulating metabolic disorders is not fully clear because berberine has poor oral bioavailability. Thus, we evaluated whether the antiatherosclerotic effect of berberine is related to alterations in gut microbial structure and if so, whether specific bacterial taxa contribute to the beneficial effects of berberine. METHODS: Apoe-/- mice were fed either a normal-chow diet or a high-fat diet (HFD). Berberine was administered to mice in drinking water (0.5 g/L) for 14 weeks. Gut microbiota profiles were established by high throughput sequencing of the V3-V4 region of the bacterial 16S ribosomal RNA gene. The effects of berberine on metabolic endotoxemia, tissue inflammation and gut barrier integrity were also investigated. RESULTS: Berberine treatment significantly reduced atherosclerosis in HFD-fed mice. Akkermansia spp. abundance was markedly increased in HFD-fed mice treated with berberine. Moreover, berberine decreased HFD-induced metabolic endotoxemia and lowered arterial and intestinal expression of proinflammatory cytokines and chemokines. Berberine treatment increased intestinal expression of tight junction proteins and the thickness of the colonic mucus layer, which are related to restoration of gut barrier integrity in HFD-fed mice. CONCLUSIONS: Modulation of gut microbiota, specifically an increase in the abundance of Akkermansia, may contribute to the antiatherosclerotic and metabolic protective effects of berberine, which is poorly absorbed orally. Our findings therefore support the therapeutic value of gut microbiota manipulation in treating atherosclerosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Berberine/pharmacology , Diet, High-Fat , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Verrucomicrobia/drug effects , Animals , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/microbiology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation Mediators/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Tight Junction Proteins/metabolism , Verrucomicrobia/growth & development , Verrucomicrobia/metabolism
9.
ISME J ; 11(11): 2599-2610, 2017 11.
Article in English | MEDLINE | ID: mdl-28777381

ABSTRACT

Aerobic methanotrophic bacteria have evolved a specialist lifestyle dependent on consumption of methane and other short-chain carbon compounds. However, their apparent substrate specialism runs contrary to the high relative abundance of these microorganisms in dynamic environments, where the availability of methane and oxygen fluctuates. In this work, we provide in situ and ex situ evidence that verrucomicrobial methanotrophs are mixotrophs. Verrucomicrobia-dominated soil communities from an acidic geothermal field in Rotokawa, New Zealand rapidly oxidised methane and hydrogen simultaneously. We isolated and characterised a verrucomicrobial strain from these soils, Methylacidiphilum sp. RTK17.1, and showed that it constitutively oxidises molecular hydrogen. Genomic analysis confirmed that this strain encoded two [NiFe]-hydrogenases (group 1d and 3b), and biochemical assays revealed that it used hydrogen as an electron donor for aerobic respiration and carbon fixation. While the strain could grow heterotrophically on methane or autotrophically on hydrogen, it grew optimally by combining these metabolic strategies. Hydrogen oxidation was particularly important for adaptation to methane and oxygen limitation. Complementary to recent findings of hydrogenotrophic growth by Methylacidiphilum fumariolicum SolV, our findings illustrate that verrucomicrobial methanotrophs have evolved to simultaneously utilise hydrogen and methane from geothermal sources to meet energy and carbon demands where nutrient flux is dynamic. This mixotrophic lifestyle is likely to have facilitated expansion of the niche space occupied by these microorganisms, allowing them to become dominant in geothermally influenced surface soils. Genes encoding putative oxygen-tolerant uptake [NiFe]-hydrogenases were identified in all publicly available methanotroph genomes, suggesting hydrogen oxidation is a general metabolic strategy in this guild.


Subject(s)
Methane/metabolism , Soil Microbiology , Verrucomicrobia/metabolism , Autotrophic Processes , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genomics , Hydrogenase/genetics , Hydrogenase/metabolism , New Zealand , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Soil/chemistry , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
10.
Gut Microbes ; 7(2): 146-53, 2016.
Article in English | MEDLINE | ID: mdl-26900906

ABSTRACT

The gut and its bacterial colonizers are now well characterized as key players in whole-body metabolism, opening new avenues of research and generating great expectation for new treatments against obesity and its cardiometabolic complications. As diet is the main environmental factor affecting the gut microbiota, it has been suggested that fruits and vegetables, whose consumption is strongly associated with a healthy lifestyle, may carry phytochemicals that could help maintain intestinal homeostasis and metabolic health. We recently demonstrated that oral administration of a cranberry extract rich in polyphenols prevented diet-induced obesity and several detrimental features of the metabolic syndrome in association with a remarkable increase in the abundance of the mucin-degrading bacterium Akkermansia in the gut microbiota of mice. This addendum provides an extended discussion in light of recent discoveries suggesting a mechanistic link between polyphenols and Akkermansia, also contemplating how this unique microorganism may be exploited to fight the metabolic syndrome.


Subject(s)
Metabolic Syndrome/drug therapy , Plant Extracts/administration & dosage , Polyphenols/administration & dosage , Verrucomicrobia/drug effects , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Mice , Vaccinium macrocarpon/chemistry , Verrucomicrobia/growth & development , Verrucomicrobia/metabolism
11.
Carbohydr Res ; 415: 60-5, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26340137

ABSTRACT

Since the isolation and identification of Akkermansia muciniphila one decade ago, much attention has been drawn to this gut bacterium due to its role in obesity and type 2 diabetes. This report describes the discovery and biochemical characterisation of all four putative neuraminidases annotated in the A. muciniphila genome. Recombinantly expressed candidate genes, which were designated Am0705, Am0707, Am1757 and Am2085, were shown to cover complementary pH ranges between 4.0 and 9.5. Temperature optima of the enzymes lay between 37 and 42 °C. All four enzymes were strongly inhibited by Cu(2+) and Zn(2+), and loss of activity after the addition of EDTA suggests that all neuraminidases, with the exception of Am0707, require divalent metal ions for their catalytic function. Chemoenzymatically synthesised α2,3- and α2,6-linked indoyl-sialosides were utilised to determine the regioselectivity and substrate promiscuity of the neuraminidases towards C5-modifications of sialic acids with N-acetyl-, N-glycolyl-, N-propionyl-, or hydroxyl-groups. The combination of simple purification procedures and good activities of some of the characterised neuraminidases makes them potentially interesting as tools in bioanalytical or industrial applications.


Subject(s)
Genome, Bacterial , Intestines/microbiology , Neuraminidase/chemistry , Neuraminidase/metabolism , Verrucomicrobia/genetics , Verrucomicrobia/metabolism , Copper/chemistry , Humans , Hydrogen-Ion Concentration , Neuraminidase/genetics , Neuraminidase/isolation & purification , Substrate Specificity , Temperature , Verrucomicrobia/classification
12.
Curr Obes Rep ; 4(4): 389-400, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26343880

ABSTRACT

Trillions of microorganisms inhabit the human body, strongly colonizing the gastro-intestinal tract and outnumbering our own cells. High-throughput sequencing techniques and new bioinformatic tools have enabled scientists to extend our knowledge on the relationship between the gut microbiota and host's physiology. Disruption of the ecological equilibrium in the gut (i.e., dysbiosis) has been associated with several pathological processes, including obesity and its related comorbidities, with diet being a strong determinant of gut microbial balance. In this review, we discuss the potential prebiotic effect of polyphenol-rich foods and extracts and how they can reshape the gut microbiota, emphasizing the novel role of the mucin-degrading bacterium Akkermansia muciniphila in their metabolic benefits.


Subject(s)
Dysbiosis/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Obesity/metabolism , Polyphenols/administration & dosage , Prebiotics/administration & dosage , Verrucomicrobia/metabolism , Animals , Blueberry Plants , Disease Models, Animal , Dysbiosis/diet therapy , Dysbiosis/etiology , Fruit , Gastrointestinal Microbiome/drug effects , Grape Seed Extract , Humans , Mice , Obesity/complications , Obesity/diet therapy , Polyphenols/pharmacology , Prunus domestica , Prunus persica , Quercetin , Rats , Swine , Vaccinium macrocarpon
SELECTION OF CITATIONS
SEARCH DETAIL